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Abstract—In this study, we employed electroencephalographic
recordings to predict intelligence quotient (IQ) in children aged
8 to 10 years. The intelligence quotient (IQ) was measured using
Raven’s progressive matrices. The detrended fluctuation analysis
(DFA) method was employed to quantify the autocorrelations of
the signal. The results demonstrated that the exponent of DFA
in the frontal brain area in the alpha frequency range is corre-
lated with IQ. Consequently, DFA provides supplementary data
regarding IQ-related cognitive functions and can be employed as
a means of objective assessment of a child’s intelligence.

Index Terms—long-range temporal correlations, detrended
fluctuation analysis, electroencephalogram, intelligence quotient,
regression analysis

I. INTRODUCTION

The period of childhood is of great significance, as it is
during this time that the brain undergoes active develop-
ment, acquiring various cognitive skills [1], [2]. Therefore,
in order to accurately assess the intellectual development
of children, it is essential to identify objective biomarkers
that will reliably predict cognitive function [3], [4]. The use
of objective biomarkers will allow for individual differences
in children, thereby improving the predictive accuracy of
cognitive assessment methods, including the use of machine
learning algorithms [5], [6]. One such reliable biomarker is
brain electrical activity (EEG), which can be used to accurately
assess a child’s level of intellectual development [7].

Neuroimaging techniques based on electroencephalography
(EEG) have a broad range of practical applications in diverse
fields, including the diagnosis of neurological and psychiatric
disorders [8], the investigation of cognitive processes within
the brain [9], [10], and the study of neuroplasticity [11]. These
techniques can also be employed in conjunction with machine
learning [12], [13] and artificial intelligence approaches [14],
[15].
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In this study, we employ the detrended fluctuation analysis
(DFA) method, which in contrast to traditional methods of
investigating neurophysiological signals, such as frequency-
time analysis [16], [17] and functional reconstructions [18],
this approach is used to evaluate long-range temporal corre-
lations in the brain and delineates the temporal stability of
oscillatory processes within the brain. The DFA method has
been extensively applied in recent years to analyse electroen-
cephalographic (EEG) signals, with the objective of studying
the complexity and dynamics of neural activity in the brain
[19]. This method has found wide application in the field of
medical diagnostics [20] and the study of neural dynamics in
various neurological diseases [21].

The objective of this study was to investigate the potential
of the DFA exponent as a reliable predictor of the level of
intellectual development in schoolchildren. We have shown
the relationship between DFA, which is a measure of long-
term temporal correlations of brain activity, and IQ scores of
experimental participants.

II. MATERIALS AND METHODS

A. Experiment

The study involved 24 schoolchildren aged between 8 and
10 years (10 girls and 14 boys), who were in their third and
fourth grade at the same school.

The experimental study comprised two distinct parts: testing
the subjects with Raven’s Progressive Matrices (RPM) and
a two-minute electroencephalogram (EEG) recording at rest.
The rest EEG provides insight into the subject’s current cogni-
tive state [22]. The RPM is a non-verbal test that is commonly
employed to assess an individual’s general intelligence and
abstract thinking abilities. The test comprises 60 multiple-
choice questions, divided into five sets of increasing difficulty.
Each question is presented in the form of a visual stimulus,
typically a pattern of dots, lines, or geometric figures, with a
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missing component. The test-taker is required to select one of
the presented options to complete the picture. The test results
are converted into an intelligence quotient (IQ) according to
the age of the test taker.

B. EEG recording and preprocessing

EEG signals were recorded utilising a ”LiveAmp“ device
(Brain Products, Germany) with Ag/AgCl ”ActiCap“ active
electrodes. A total of 64 EEG channels were recorded on
the surface of the head according to the international ”10-
10“ arrangement scheme [23]. EEG signals were recorded at
a sampling rate of 1000 Hz and subsequently processed by
band-pass filters with cut-off frequencies of 1 Hz and 100 Hz,
in addition to a 50 Hz band-pass filter. Physiological artefacts
related to heart rate and eye movements were removed by
independent component analysis (ICA), utilising the FieldTrip
software package for MATLAB [24].

C. Analysis of experimental data

Long-range temporal brain correlations were estimated util-
ising the DFA method [25]. DFA is a scaling analysis method
[26] used to estimate long-range temporal correlations of
power-law form. It involves the fitting of a slow nonsta-
tionarity, which is considered to be a trend, with further
characterisation of fluctuations around the signal profile, which
deviate from the trend. DFA is a subtype of multifractal
signal analysis that is actively applied to analyze EEG sig-
nals [27]. The Neurophysiological Biomarker Toolbox was
employed to assess long-term temporal correlations. The raw
electroencephalogram (EEG) signal was filtered in the follow-
ing frequency bands: delta and theta (1-7 Hz), alpha (6-13
Hz), beta-1 (13-20 Hz), and beta-2 (20-30 Hz) using a finite
impulse response (FIR) filter. The amplitude envelope was
obtained using the Hilbert transform. The filter order was set
equal to 2/f , ensuring that at least two cycles of oscillations
with frequency f [Hz] were covered by the filter window.
Oscillations were computed in each frequency range using
overlapping windows of h = 50% from 0.8 to 30 s, and the
DFA exponent was found by fitting from 2 to 15 s. For each
subject, DFA exponents were averaged over the brain regions
of interest: frontal, central, occipital-parietal, and temporal.

III. RESULTS

We performed linear regression to assess the potential of
DFA exponents to predict IQ. The dependent variable was
IQ, while DFA exponents averaged across brain areas and
frequency bands were used as predictors. We trained two types
of models: in the first group, DFA exponents averaged across
brain areas for each frequency band were used as predictors; in
the second group, DFA exponents averaged across frequency
bands for each brain areas were used as predictors. In the first
instance, DFA in the alpha band demonstrated a significant
predictive capacity for IQ (R2 = 0.62, p = 0.002). A post-hoc
analysis revealed that only the frontal DFA made a significant
contribution to the prediction (β = 0.66, p = 0.002). In the
second case, only frontal DFA was found to be able to predict

IQ (R2 = 0.551, p = 0.006). Subsequent analysis revealed
that only the alpha band exhibited a significant correlation
with the outcome variable (β = 0.687, p = 0.006).

The results indicate that alpha-band frontal DFA can predict
IQ. Figure 1 illustrates the relationship between frontal alpha
band DFA and IQ. Each subject’s values are shown along with
the regression line (solid line) and 95% confidence interval
(dashed lines). The Pearson correlation coefficient (r) between
these variables is also reported.

80

90

100

110

120

130

140

0.35 0.40 0.45 0.50 0.55 0.60 0.65 00.7

DFA in alpha-band at frontal region

IQ

r=0.729, p<0.001,

95% CI [0.444 0.880]

Fig. 1. The correlation between IQ and DFA. The data are presented as
individual values (dots), a regression line (solid line), and 95% confidence
intervals for training and prediction data (dashed lines).

IV. CONCLUSION

A study conducted with a group of 8-10 year old schoolchil-
dren revealed that an index of long-range temporal correlations
in the time series of brain neural activity, in particular the
DFA exponent in the frontal area in the alpha frequency
range, can serve as a reliable predictor of a child’s IQ.
The findings have the potential to inform the development
of personalised educational methods [28]. The DFA can be
recorded using a small number of non-invasive electrodes at
rest, thus facilitating its implementation with portable EEG
headsets [29]. The use of IQ and DFA as biomarkers in
personalised education enables teachers to gain insight into
their students’ cognitive abilities, thereby allowing them to
tailor the educational programme to their specific needs.
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