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Chimera state in complex networks of bistable Hodgkin-Huxley neurons
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In this paper we study a chimera state in complex networks of bistable Hodgkin-Huxley neurons with
excitatory coupling, which manifests as a termination of spiking activity of a part of interacting neurons. We
provide a detailed investigation of this phenomenon in scale-free, small-world, and random networks and show
that the chimera state is robust to the network topology. Nevertheless, network topological properties determine
the stability of spatiotemporal states and therefore affect the excitability of the chimera state in the whole
network. In particular, the scale-free network whose higher degree nodes are more stable to small perturbations
is least exposed to chimera formation and exhibits an abrupt transition from a spiking to a silent regime. On the
other hand, small-world and random networks are more likely to provide transitions to the chimera state.
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I. INTRODUCTION

A brain neuronal network composed of a large number
of interconnected neurons is one of the most complex self-
organized systems in nature [1–3]. Understanding brain func-
tionality, i.e., how this complex biological system works,
through computer simulations of neural cooperation dynamics
is one of the fundamental challenges of modern science.
Modern theories state that self-organized neuronal popula-
tions provide mechanisms for normal brain functioning, i.e.,
synchronous firing in local neuronal groups and interareal
communication through coherence of brain rhythms [4–9].

Although self-organization in neuronal ensembles has re-
ceived much attention in recent years, many phenomena
still remain poorly studied. Furthermore, a variety of new
unexpected effects have been discovered. For a long time
it has been believed that a network of interconnected ele-
ments can exhibit either completely synchronous or asyn-
chronous behaviors. At this point, a chimera state, manifesting
the coexistence of synchronous and asynchronous subgroups
within an entire ensemble [10,11], is a fascinating type of the
collective effect which reflects real-life behavior of physical
[12–16], ecological [17–19], and even social systems [20].
Chimera states are usually believed to be chaotic transients,
which eventually collapse to a synchronized state [21,22].
For example, Banerjee and Sikder [23] demonstrated that
small chimeras in the local flux dynamics of an array of
magnetically coupled superconducting quantum interference
devices (SQUIDs) driven by an external field are born through
transient chaos.

Chimera states in neuronal systems were extensively stud-
ied due to their promising applications in neuroscience (see
the comprehensive review of Majhi et al. [24]). In particular,
the chimera state could be relevant to bump states in neural
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systems [25] and a multitude of neuronal disorders, including
Alzheimer’s and Parkinson’s diseases, epilepsy, brain tumors,
etc. [26–28]. Despite the lack of experimental verification
of chimera states in neuronal systems due to their extraor-
dinary complexity [29], this phenomenon has been widely
analyzed in networks of simplified Hodgkin-Huxley neurons,
namely, FitzHugh-Nagumo and Hindmarsh-Rose models. For
instance, Bandyopadhyay and Kar [30] studied synchroniza-
tion in networks of Hindmarsh-Rose neurons of random, reg-
ular, small-world, scale-free, and modular topologies. They
demonstrated the emergence of chimera-like states in some
small-world and modular networks.

For the last few years a number of remarkable fundamental
effects have been uncovered in model neuronal networks. Re-
cent papers report a multitude of chimera patterns in multiplex
networks [31–34]. For example, a link between coherence
resonance and a chimera state was found in a network of
excitable units [35,36]. Chimera states were also observed
in empirical brain networks, namely, in the C. elegans soil
worm connectome [37], cats [38], and healthy humans using
diffusion-weighted magnetic resonance imaging (MRI) data
[39]. Recently, special interest has been paid to revealing
chimera states in neuronal hypernetworks and networks of
networks [40,41]. In this context, the analysis of model neu-
ronal networks remains a challenging task since the discovery
of the existence of a number of new intriguing nontrivial
effects that deserve careful consideration.

The coexistence of different brain states is another impor-
tant issue that should also be taken into account while study-
ing neuron dynamics [42]. Switches between such coexisting
states play an important role in cell signaling and neuronal
interactions [43–45]. Typically, each cell receives inputs from
thousands of cells mediated by many different neurotransmit-
ters and consequently modifying the postsynaptic potential
by excitation or inhibition [46]. Communication between
cells takes place at synaptic contacts, where an arriving ac-
tion potential releases a neurotransmitter, thus affecting the
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postsynaptic potential of the target cell. It is believed [47] that
the coexisting dynamical regimes mimic different brain states
representing particular objects of perception which can be
selected by giving the neural network an input corresponding
to an initial condition [48–50]. Furthermore, the coexistence
of multiple states in the brain has been proposed as a basic
mechanism for associative content-addressable memory stor-
age and pattern recognition in neural systems [47,51–53].

Collective dynamics in a neuronal network is usually con-
sidered by supposing that every neuron in the network is
monostable. However, according to Keener and Sneyd [54],
the Hodgkin-Huxley (HH) model exhibits bistability in a nar-
row range of control parameters near the excitation threshold.
The bistability regime in oscillatory systems is known to be of
special interest due to a variety of hidden unexpected phenom-
ena. In particular, Nekorkin et al. [55,56] found theoretically
and experimentally both amplitude and phase chimeras in the
network of electronic oscillators constructed on the base of
a generic self-excited bistable model. Concerning neuronal
models, it is worth mentioning the recent work of Uzuntarla
et al. [57], who uncovered a counterintuitive effect in the
neuronal network of bistable HH neurons, where a spiking
behavior transformed into a steady state under excitatory cou-
pling. We suppose the origin of this lies in the coexistence of
spiking and silent neural populations in the neuronal network,
which can be referred to as a chimera state. Such kind of
chimeras may shed light on the unihemispheric brain slow-
wave sleep in mammalians and birds [58,59]. The dynamics
of the network of bistable HH neurons was recently studied
by Esir et al. [60], who highlighted the role of coupling delays
and noise in formation of up and down states in the neuronal
network.

In this paper we carry out a detailed numerical analysis
of the chimera state in complex networks of coupled bistable
excitatory HH neurons with coexistence of spiking and silent
neuronal subgroups. We focus on the inference of physical
mechanisms responsible for annihilation of the spiking be-
havior under neural interaction, and reveal conditions for a
specific type of chimeras in the network of HH neurons. As
distinct from the work of Esir et al. [60], where switches
between coexisting states were induced by noise, in our
model the chimera state appears in a completely deterministic
system. Considering different network topologies, scale-free,
small-world, and random, we demonstrate, for the first time
to the best of our knowledge, the robustness of the observed
chimera patterns to structural properties of the network. We
show that topology plays an important role in stability of
individual nodes and, therefore, affects the chimera state
excitability in the whole network.

The paper is organized as follows. In Sec. II we describe
the numerical model and consider individual dynamics of
a bistable HH neuron with two coexisting attractors (fixed
point and limit cycle). We also demonstrate features of the
switching behavior between these attractors due to a short-
pulsed external current which changes neuron dynamics from
a silent to a spiking regime and vise versa. Then in Sec. III we
analyze the collective neuronal behavior and reveal regions
of the chimera state in scale-free, small-world, and random
HH neuronal networks. In Sec. IV we discuss the problem of
nodes stability with respect to different network topology and

draw conclusions about the influence of structural properties
on transitions between various regimes of the collective be-
havior. Finally, the results are summarized in Sec. V.

II. DYNAMICS OF A SINGLE BISTABLE
HODGKIN-HUXLEY NEURON

Let us start with consideration of a bistable HH neuron.
Temporal evolution of the membrane potential and gating
variables of the HH neuron can be described by the following
differential equations [61]:

Cm
dV

dt
= − gmax

Na m3h(V − VNa) − gmax
K n4(V − VK )

− gmax
L (V − VL ) + Ie, (1)

dx

dt
= αx(V )(1 − x) − βx(V )x, x = m, n, h, (2)

where Cm = 1 μF/cm3 is the capacity of the cell mem-
brane, Ie is the external bias current (in μ A/cm2), V is the
membrane potential (in mV), gmax

Na = 120 mS/cm2, gmax
K =

36 mS/cm2, and gmax
L = 0.3 mS/cm2 are maximal sodium,

potassium, and leakage conductances, respectively, when all
ion channels are open, VNa = 115 mV, VK = −12 mV, and
VL = −10.6 mV are reversal potentials for sodium, potas-
sium, and leak channels, respectively, m, n, and h represent
mean ratios of open gates of specific ion channels, n4 and
m3h are mean portions of open potassium and sodium ion
channels within a membrane patch, and αx(V ) and βx(V ) are
rate functions given as [62]

αm(V ) = 0.1(25 − V )

exp[(25 − V )/10] − 1
, (3)

βm(V ) = 4 exp(−V/18), (4)

αh(V ) = 0.07 exp(−V/20), (5)

βh(V ) = 1

1 + exp[(30 − V )/10]
, (6)

αn(V ) = 0.01(10 − V )

exp[(10 − V )/10] − 1
, (7)

βn(V ) = 0.125 exp(−V/80). (8)

The numerical calculations of Eq. (1)–(8) were performed
using the fourth-order Runge-Kutta algorithm with a fixed
integration time step �t = 10 μs.

The external current Ie controls the neuron dynamics.
Depending on its value, the HH neuron can be either in a silent
(fixed point) or a spiking (limit cycle) regime. Keener and
Sneyd [54] demonstrated the existence of bistability within a
narrow range of Ie where these two attractors coexist. In Fig. 1
this region is highlighted in gray. For Ie < 6.24 μA/cm2

only a stable fixed point (FP) exists, whereas for Ie �
9.78 μA/cm2 there is only a stable limit cycle (LC). So a
tipping point occurs at Ie = 6.24 μA/cm2 where the neuron
generates spikes at certain initial conditions. According to
Ref. [54] a further increase in the external current results
in the transition to the fixed point through a Hopf bifurca-
tion. Since we are interested in bistable HH dynamics, we
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FIG. 1. (a) Bifurcation diagram of a single HH neuron with
external current Ie as a control parameter. Here FP and LC indicate
a fixed point and a limit cycle, respectively. (b) Basin stability of
the FP attractor. The gray area indicates the bistability region with
coexisting fixed point (solid line) and limit cycle (dotted line).

restrict our consideration on the bistability range 6.24 � Ie <

9.78 μA/cm2.
It is important to note that a relative volume of the basin

of attraction of the FP attractor estimated via the basin
stability (BS) analysis [63,64] abruptly reduces as the external
current is increased after passing the tipping point at Ie =
6.24 μA/cm2 [see Fig. 1(b)]. To perform the BS analysis,
we integrated Eqs. (1)–(8) for t = 2 s M = 4000 times, every
time starting from a random initial condition. The FP size
was estimated as the ratio BSFP = MFP/M, where MFP is the
number of trajectories terminated at the FP attractor.

Despite the basin of attraction of the FP state is very small,
switches between FP and LC states are possible if the value
of the external current Ie is suddenly increased. Let us now
consider the dynamics of a single HH neuron perturbed by a
short perturbation Ĩ e(t ) of the external current modeled by a
boxcar function as

Ĩ e(t ) = Ie + Ie
0 [H (t − t0) − H (t − t0 − �t )], (9)

where Ie
0 is the amplitude of the external current perturbation,

H (•) is the Heaviside step-function, t0 is the moment of time
when the perturbation is applied, and �t is the short external
current pulse.

The effect of the external current perturbation is illustrated
in Fig. 2. The following parameter values were chosen. The
constant external current was fixed at Ie = 6.5 μA/cm2 that
led to the basin size BSFP ≈ 2 × 10−3, the pulse duration was
�t = 5 ms, and the pulse amplitude was Ie

0 = 4 μA/cm2.
The chosen values of the amplitude and pulse duration are

comparable with that of a single neuron during its interaction
with other neurons in the network. The switches from a fixed
point to a limit cycle [Fig. 2(a)–2(c)] do not require a high
pulse amplitude because the basin of attraction of the limit
cycle is much larger than the basin size of the FP. Therefore,
a relatively small perturbation of the external current can
provide the neuron leaving the FP basin of attraction. In
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FIG. 2. (Left column) Time series of membrane potential V of
a single HH neuron and short-pulsed external current Ie and (right
column) phase portraits on the (V, n) plane. (a)–(c) Switching from a
fixed point to a limit cycle. (d)–(f) Conserving a limit cycle when the
external pulse is introduced at an improper phase (t0 = 191.5 ms).
(g)–(i) Switching from a limit cycle to a fixed point (t0 = 192 ms).
Dark gray (red online), dotted gray (blue online), and solid gray
(green online) highlight neuron stages before, during, and after the
pulse application, respectively.

turn, the inverse transition, i.e., from a limit cycle to a fixed
point [Figs. 2(g)–2(i)], is much more sensitive to the pulse
parameters, especially to the moment of time t0 when the
external pulse is applied. For instance, if the perturbation is
applied at an inappropriate phase of the limit cycle trajectory,
when it passes far from the FP basin of attraction, the attractor
will not change [Figs. 2(d)–2(f)]. After a slight trajectory de-
viation the neuron returns back to the limit cycle attractor and
continues spiking. On the other hand, if the neuron dynamics
is disturbed at the correct phase when the phase trajectory
passes close to the FP, the perturbation of the external current
switches the neuron state to the FP [Figs. 2(g)–2(i)]. It should
be noted that the difference between a correct and a wrong
phase for switching is very small and equal to approximately
0.5 ms because the FP is located very close to the limit cycle
in the phase space. Therefore, the switching from the limit
cycle to FP is possible only within a narrow time window
during the oscillation period.

III. COLLECTIVE BEHAVIOR IN A HODGKIN-HUXLEY
NEURONAL NETWORK

In this section we study collective dynamics of a neuronal
network composed of N = 100 HH bistable neurons. To
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FIG. 3. Emergence of partially spiking chimera states in neuronal networks of different topologies. (a)–(c) Scale-free, small-world, and
random network topologies (left panels) and corresponding degree D probability density functions (PDFs) (right panels). Black, gray, and
empty dots in the networks indicate nodes with high, medium, and low degree, respectively. The dashed lines and points in the PDF plots show
theoretical and empirical dependencies, respectively. (d)–(f) Relative number of spiking neurons (N ′

sp) in the two-parametric space of coupling
strength gc and external current Ie. Dashed lines indicate the boundaries between different types of collective dynamics: Silent [light gray
(yellow online)], spiking (black) and chimera [gray (orange online)]. (g)–(i) Relative number of spiking neurons (N ′

sp) versus gc at Ie = 6.75
[sections of the maps in panels (d)–(f) shown by large-dashed horizontal lines]. Network dynamics at points A, B, and C are illustrated in
Fig. 4.

model network interactions we introduce chemical synaptic
coupling so that Eqs. (1) and (2) take the following form:

Cm
dVi

dt
= − gmax

Na m3
i hi(Vi − VNa) − gmax

K n4
i (Vi − VK )

− gmax
L (Vi − VL ) + Ie + Isyn

i , (10)

dxi

dt
= αxi (Vi )(1 − xi ) − βxi (Vi )xi, x = m, n, h, (11)

where Isyn
i is the total synaptic current received by the ith

neuron. Following Ref. [65] the synaptic current is given as

Isyn
i =

∑
j∈Mi

gcα(t − t j
0 )(Erev − Vi ), (12)

where gc is the maximal conductance of a synaptic channel
in mS/cm2 referred to as a coupling strength, Mi is the set of
indices of the neurons coupled with the ith neuron, defined by
the adjacency matrix, and t j

0 is the moment of time when the
jth (presynaptic) neuron fires. Here the temporal evolution of

synaptic conductance is described as

α(t ) = e−t/τsyn H (t ), (13)

where H (•) is the Heaviside step function and τsyn = 3 ms.
Now we consider how the network topology affects col-

lective dynamics of the coupled bistable HH neurons. The
networks of three different topologies, scale-free (SF), small-
world (SW), and random, are schematically illustrated in the
left panels of Figs. 3(a), 3(b), and 3(c), respectively. In real
neuronal ensembles, the SW property determines neuronal
coupling on an anatomical level [2,66], whereas the SF topol-
ogy is inherent in functional brain networks and determines
the interaction between distinct brain regions through low-
frequency oscillatory coherence [3,67]. The adjacency matrix
for the SF network is generated using the Barabási-Albert al-
gorithm [68], which creates a graph of N = 100 nodes having
m = 5 edges each. Whereas, the SW network is generated
using the Watts-Strogatz model [69] with parameters β = 0.3
and K = 5. The parameter β is the probability for a particular
link in the initially regular topology to be randomly rewired,
and K is the mean degree. The completely random network
is generated as a limit case of the Watts-Strogatz model with
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FIG. 4. Illustration of partially spiking chimera patterns in different types of HH neuronal networks. (a)–(c) Distribution of averaged
interspike interval (ISI) over the network and (d)–(f) spatiotemporal patterns for different network topologies: (a), (d) scale-free (gc = 0.0175
mS/cm2, point A in Fig. 3), (b), (e) small-world (gc = 0.0275 mS/cm2, point B in Fig. 3), and (c), (f) random (gc = 0.0325 mS/cm2, point C
in Fig. 3). The external current is fixed at Ie = 7.4 μA/cm2.

β = 1, meaning that all links of the initially regular topology
are randomly rewired.

Next, we analyze the network dynamics with respect to two
control parameters, external current Ie and maximal conduc-
tance of synaptic channel gc. While the former determines
individual dynamics of each HH neuron, the latter controls
collective dynamics of the whole network, i.e., the coexistence
of silent and spiking neuron ensembles. Let us first quantify
the state of the neuronal network as the relative number
of spiking neurons N ′

sp = Nsp/N , where Nsp is the absolute
number of spiking neurons in the network. Figures 3(d), 3(e),
and 3(f) show the distributions of N ′

sp in the (gc, Ie) parametric
space for SF, SW and random networks, respectively. As we
have shown in Sec. II, Ie = 6.24 μA/cm2 is a threshold value
of the external current, below which only a stable steady state
exists in a single HH neuron. Obviously, below the threshold
the same silent behavior also occurs in the neuronal network
regardless of the network topology. In Figs. 3(d)–3(f) this
threshold is marked by the dashed horizontal line. One can
see that below this line all neurons are in the silent regime, i.e.,
N ′

sp = 0 for any gc. However, if the external current exceeds
the threshold (Ie > 6.24 μA/cm2), transitions between “all
spiking” (purple area) and “all silent” (yellow area) states
occur in the neuronal networks for particular values of the
control parameters.

Evidently, an increase in gc results in a growth of the synap-
tic current Isyn

i which plays the same role as the short external
pulse applied to a single neuron (see Sec. II). According to
the above discussion of single HH neuron dynamics, feeding
a neuron with a synaptic current pulse via excitatory coupling
with its neighbors can terminate its spiking. Also, the larger
the Isyn

i amplitude, the higher the probability of switching
the neuron to a silent state. Interestingly, the transition “all
spiking” → “all silent” does not happen abruptly, but is
followed by the emergence of an intermediate state with
coexisting spiking and silent neuronal subpopulations, which

we refer to as a specific type of chimera in the network of
bistable neurons.

It is worth mentioning that similar chimeras of bistable el-
ements were previously described in other papers [16,70,71].
In particular, Shchapin et al. [55] found amplitude and phase
chimeras both theoretically and experimentally in the network
of electronic oscillators constructed on the base of a generic
self-excited bistable model. They observed that the network
of bistable elements splits into two subnetworks with different
dynamics. This new state was referred to as a chimera state.

As seen from Figs. 3(d)–3(f) the appearance of the chimera
state in the network of bistable neurons is a universal effect
regardless of the network topology. Nevertheless, structural
properties of neuronal networks strongly affect the size of
the chimera patterns in the parametric space. In particular,
the smallest chimera region is observed in the SF network,
whereas the largest region occurs in the random network.
Moreover, a decrease of the spiking neuron population under
a growth of gc is rather smooth in the random and SW
networks [Figs. 3(h) and 3(i)]. Instead, the transition to a
silent regime in the SF network is very sharp [Fig. 3(g)].
According to Scheffer et al. [72], networks with a low level
of connectivity, like completely random or SW networks [see
degree distributions in Figs. 3(b) and 3(c)], are gradually
adjusted to the variation of control parameters, resulting in
a smooth change of their global state. Thus, partially spiking
chimera states, intermediate states between globally spiking
and globally silent behavior, are more pronounced in such
networks.

On the other hand, the highly connected SF network [see
degree distribution in Fig. 3(a)] responds to changes in control
parameter in the form of critical transitions. In this network,
small perturbations of globally coherent states are repaired by
the inputs from linked neighboring units, so that qualitative
changes in the network dynamics occur abruptly in the vicin-
ity of a critical point. This explains a relatively small size of

022224-5



ANDREEV, FROLOV, PISARCHIK, AND HRAMOV PHYSICAL REVIEW E 100, 022224 (2019)

5 15 25 D0
10
20
30
40

5 15 250
10
20
30
40

5 15 250
10
20
30
40

5 15 250
10
20
30
40

(a) (c)

2 6 100

10

20

2 6 100

10

20

2 6 100

10

20

2 6 100

10

20

0

10

20

30

2 6 10

0

10

20

30

2 6 10

0

10

20

30

2 6 10

0

10

20

30

2 6 10

(b)
Nsp, Nr

Nsp, Nr

Nsp, Nr

Nsp, Nr

Nsp, Nr

Nsp, Nr

Nsp, Nr

Nsp, Nr

Nsp, Nr

Nsp, Nr

Nsp, Nr

Nsp, Nr

Ie = 7.0 [µA/cm2]

Ie = 7.2 [µA/cm2]

Ie = 7.3[µA/cm2]

Ie = 7.4 [µA/cm2]

D

D

D

D

D

D

D

D

D

D

D
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gc = 0.0375 mS/cm2 for SF, SW, and random network, respectively.

the chimera region in the SF network as compared to SW and
random networks. Importantly, the number of spiking neurons
in the chimera region changes smoothly with respect to the
control parameters, regardless of the network topology. This
gives the possibility to control the size of the spiking area by
changing the control parameters.

Typical chimera patterns in neuronal networks of different
topologies are illustrated in Fig. 4. These states correspond
to the parameter values at points A, B, and C in Fig. 3. For
better visualization we sorted the network elements according
to the average interspike interval (ISI) presented in Figs. 4(a)–
4(c). Here ISI = 0 characterizes silent neurons. As seen
from Figs. 4(d)–4(f), at certain conditions all networks self-
organize to form pronounced chimera patterns of coexisting
silent and phase-locked spiking neuron populations.

Let us now consider the process of the coherent pat-
tern formation under increasing external current Ie from the
viewpoint of the network topological properties. In the left
columns of Figs. 5(a)–5(c) we plot the neuron populations
of spiking (closed dots) and silent (open dots) elements for
different values of the external current Ie and fixed maximal
conductance gc for each network topology (Fig. 3). One can
see that once the neurons are activated, they continue spiking
with increasing Ie (from up to down in Fig. 3), involving more
and more neurons into the spiking regime. Obviously, such a
behavior is affected by the network structure. In other words,
the probability of an individual node to be activated is closely
related to its degree. The right columns in Figs. 5(a)–5(c)
evidence the fact that nodes with lower degree are more likely

to be switched from silent to spiking activity as Ie is increased.
This happens because a low-degree node poorly interacts with
other network elements and does not have enough subsidiary
inputs to be “repaired,” i.e., to turn back to the less stable FP
attractor. By contrast, a high-degree node is strongly affected
by the excitatory coupling summarized over many network
nodes, which makes the FP (silent state) more stable and
decreases the probability of this node to be switched to a limit
cycle (spiking regime).

The uncovered property is universal with respect to net-
work topology. Moreover, it provides insight into the relation
between the size of the chimera region and the network
topology. One can see that the SF network is characterized
by a large number of low-degree nodes that determine a rapid
growth of the spiking neuron population and, therefore, a fast
transition from a globally silent to a globally spiking regime
and vice versa. In turn, the SW and random networks have
a pronounced distribution of the node degrees that provide a
smooth growth of the spiking subgroup.

IV. NODE STABILITY IN THE BISTABLE
HODGKIN-HUXLEY NETWORK

Now we address the issue of excitability of the partially
spiking chimera pattern under a short external current pulse
applied to the entire network. As was shown in Sec. II, the
pulse induces a transition of a single neuron from a resting
to a spiking state and vice versa. So we expect that a small
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FIG. 6. Partial termination of spiking activity in a scale-free
network of bistable HH neurons under small perturbation of exter-
nal current Ĩ e. (a) Interspike intervals distribution averaged over a
100-ms time interval after the external pulse was applied. (b) Spa-
tiotemporal dynamics under the influence of the external current
pulse. The arrow indicates the moment of time t0 when the pulse
is applied.

perturbation of a totally spiking neuronal network will cause
a partial or a complete termination of the spiking behavior.

By analogy with Sec. III, we apply a short (�t = 5 ms)
pulse to the external current at t0 = 405 ms in the form of a
boxcar function given by Eq. (9). To test the network stability,
we introduce the small deviation of the external current Ie

0 =
0.5 μA/cm2 to the totally spiking neuronal network in the
vicinity of the chimera boundary, with the following con-
trol parameters: Ie = 7 μA/cm2 and gc = 0.0025 mS/cm2.
Figure 6(a) illustrates the evolution of the SF network under
the external perturbation. One can see that some of the spiking
neurons (i � 35) are robust to the external perturbation and
remain in the spiking mode, while other neurons (i � 36)
switch to a silent regime. Similar to a single HH neuron, the
entire neuronal network is also sensitive to the moment of time
(or phase) when the external perturbation is applied.

In Fig. 7 we plot the spiking neuron population size as a
function of time t0 when the external perturbation is applied.
One can see that this dependence has a pronounced minimum
regardless of the network type, corresponding to the phase
of periodic trajectory optimal for switching the most of the
neurons to the silent state.

In this context, it is also interesting to reveal stability
properties of network nodes with respect to their degree. With
this goal we consider 20 randomly generated networks for
each type of network topology, sort their elements according
to their node degree, and perturb them as described above.
Afterwards, we compare the average degree D of ith node
with its probability si = Mi

sp/20 (Mi
sp being the number of

times the ith node continue spiking) to maintain the spiking

 0.2
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 0.6

 0.8

398  402  406  410  t0 [ms]

N’sp

 (1)
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FIG. 7. Relative size of spiking neuron population Nsp/N versus
time t0 of the short pulse introduction during one spiking period
for (1) scale-free, (2) random, and (3) small-world networks. Each
curve is averaged over the set of 20 randomly chosen networks of the
corresponding type.

behavior and find a very good correlation. Therefore, we
conclude that the nodes with higher degree are likely to
maintain the spiking regime (see Fig. 8). This property is
highly manifested in the SF network of bistable HH neurons
due to the presence of nodes with extremely high degree
[Figs. 8(a) and 8(d)]. By contrast, in the SW and random
networks the variation of the node degree distribution is not
well pronounced, thus resulting in a homogeneous distribution
of probability s [Figs. 8(c)–8(f)].

V. CONCLUSION

In this paper we have studied a phenomenon of partially
spiking chimera behavior induced in complex networks of
bistable Hodgkin-Huxley neurons with excitatory coupling.
Our finding evidences a counterintuitive phenomenon that an
increase in the excitatory coupling strength leads to the termi-
nation of a globally spiking behavior of a neuronal network.
This is possible due to specific dynamical features of a single
bistable HH neuron, where an external current pulse leads to
switches between coexisting attractors, i.e., from a fixed point
(silent state) to a limit cycle (spiking state) and vice versa.
Moreover, the probability of the “limit cycle” → “fixed point”
transition is proportional to the external pulse parameters.
Specifically, a strong interaction between network elements
stabilizes the silent state in the network. In contrast to Baner-
jee and Sikder [23], who observed the emergence of small
chimera states out of transient chaos in the model of nonlinear
metamaterial, in our model the chimera is born as a result of
bistability in the individual network element.

Here we have demonstrated that along with globally spik-
ing and globally silent dynamics, complex neuronal networks
exhibit a specific type of a collective behavior manifesting as a
long-term stable coexistence of spiking and silent ensembles.
Having considered scale-free, small-world, and completely
random networks, we have shown that a partially spiking
chimera pattern is a universal phenomenon which emerges
regardless of the network topology. However, the network
structural properties strongly affect the size of the chimera
region in the parameter space. According to our results of
the extensive computational studies, highly connected net-
works, e.g., scale-free, are characterized by a narrow region
of the chimera behavior, by contrast with networks with lower
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FIG. 8. Relation between node stability and its degree D. (a)–(c) Probability of a node to maintain the spiking regime and (d)–(f) node
degree distribution. Each plot is an average over 20 different realizations in networks of the same topology: (a), (d) scale-free, (b), (e) small-
world, and (c), (f) random.

connectivity, like small-world and random, where chimera
states are observed in a considerably wider area. As distinct
from the work of Bandyopadhyay and Kar [30], who found
chimera-like states in small-world and modular networks of
Hindmarsh-Rose neurons, we have demonstrated the emer-
gence of chimera states not only in small-world but also
in scale-free and completely random networks of Hodgkin-
Huxley neurons.

We have also demonstrated the possibility to control the
size of the spiking neuron population by applying a short
external current pulse. In this context, structural properties
play a crucial role in stability of nodes with respect to small
perturbations of a control parameter. In particular, we have
found a negative correlation between node degree and its

probability to switch to a silent state under the external pulse.
We believe that apart from fundamental interest to provide
new insight into neuronal interactions, the uncovered chimera
state may also have potential applications for the development
of pulsed signal classifiers based on interconnected biological
neurons.
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