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Abstract
The knowledge of the mechanisms of motor imagery

(MI) is very important for the development of brain-
computer interfaces. Depending on neurophysiologi-
cal cortical activity, MI can be divided into two cat-
egories: visual imagery (VI) and kinesthetic imagery
(KI). Our magnetoencephalography (MEG) experiments
with ten untrained subjects provided evidences that in-
hibitory control plays a dominant role in KI. We found
that communication between inferior parietal cortex and
frontal cortex is realised in the mu-frequency range. We
also pinpointed three gamma frequencies to be used for
motor command communication. The use of artificial
intelligence allowed us to classify MI of left and right
hands with maximal classification accuracy using the
brain activity encoded in the identified gamma frequen-
cies which were then proposed to be used for commu-
nication of specifics. Mu-activity was identified as the
carrier of gamma-activity between these areas by means
of phase-amplitude coupling similar to the modern day
radio wave transmission.

Key words
Brain-computer interface, motor imagery, inhibition,

neural communication, phase-amplitude coupling, infe-
rior parietal.

1 Introduction
Brain-computer interfaces (BCI) aim to control exter-

nal devices as per the interpretation of the operator’s

brain activity [Abiri et al., 2019]. BCI systems can
be classified into two general categories [Abiri et al.,
2019]. In the first category, feedforward brain activity
is used to control external devices, and in the second cat-
egory, closed-loop brain activity with feedback device(s)
is used for neural rehabilitation.

The important task of BCI applications is the recogni-
tion of the patterns of neurophysiological brain activity
associated with motor imagery (MI) which is defined as
a mental simulation of overt actions in the absence of any
muscle movements. This bears crucial importance for
both brain-controlled exoskeletons or bioprosthesis and
neurorehabilitation of amputee and stroke patients. MI
can be classified into two categories, namely, visual im-
agery (VI) and kinesthetic imagery (KI) [Chholak et al.,
2019]. While in VI subjects MI activates visual cortex,
in KI subjects the activity is detected in the same motor
areas as in the case of real movements [Pfurtscheller and
Neuper, 1997] with an additional mechanism for inhibit-
ing motor commands to avoid overt actions ([Solodkin
et al., 2004]; [Hanakawa et al., 2008]; [Guillot et al.,
2012]; [Abiri et al., 2019]). Functional magnetic reso-
nance imaging (fMRI) studies evidence the involvement
of motor associated areas and inferior parietal (IP) cor-
tex for KI subjects, in contrast to VI subjects who ex-
hibit the involvement of visual and superior parietal cor-
tices [Guillot et al., 2009]. Moreover, transcranial mag-
netic stimulation (TMS) experiments suggest that the IP
area participates in the inhibitory control of the precen-
tral gyrus (PCG) during KI-dominated MI [Lebon et al.,
2012]. However, despite extensive research on MI, no
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clear experimental evidence of the underlying KI mech-
anism has yet been provided.

One of the most popular experimental paradigms for
MI studies is based on sensorimotor rhythms (SMR)
[Abiri et al., 2019], which involves KI of large body
parts, such as whole limbs, to obtain modulations of neu-
ronal activity [Morash et al., 2008]. At the same time,
alpha- and beta-rhythms are crucial and ubiquitous in
most studies on MI [Craik et al., 2019]. For example,
in 1991 [Wolpaw et al., 1991] used the alpha-rhythm to
control the cursor position on a computer screen in one-
dimensional space. Later, more advanced and sophisti-
cated methods, such as linear regression, logistic regres-
sion, and artificial neural networks (ANNs), were ap-
plied to control the cursor position in three-dimensional
space ([Wolpaw and McFarland, 2004]; [Wolpaw and
McFarland, 1994]; [McFarland et al., 2010]), prosthetics
([Murguialday et al., 2007]; [Chen et al., 2008]; [Ramos-
Murguialday et al., 2013]), robots ([Müller-Putz et al.,
2005]; [Kai Keng Ang et al., 2009]; [Sarac et al., 2013];
[Baxter et al., 2013]; [LaFleur et al., 2013]), and for
stroke rehabilitation [Ramos-Murguialday et al., 2013];
[Ono et al., 2014]; [Rayegani et al., 2014]) (for review
see [Abiri et al., 2019] and [Ang et al., 2012]).

Among the massive amount of literature on the BCI de-
velopment using MI, electroencephalography (EEG) is
found to be the most popular noninvasive technique ([Bi
et al., 2013]; [Machado et al., 2013]; [Moghimi et al.,
2013]; [Vaughan et al., 1996]; [Hwang et al., 2013];
[Lotte et al., 2007]; [Pfu, 2006]; [Machado et al., 2010])
for controlling wheelchairs [Bi et al., 2013], commu-
nication aid systems [Birbaumer et al., 1999], assistive
and rehabilitative devices for healthy [Meng et al., 2016]
and disabled people, stroke patients and people with
other neurological deficits ([Daly and Wolpaw, 2008];
[Birbaumer and Cohen, 2007]; [Machado et al., 2013];
[Moghimi et al., 2013]; [Birbaumer, 2006]). In ad-
dition, a fair amount of papers were devoted to mag-
netoencephalography (MEG) studies on MI ([Salmelin
and Hari, 1994]; [Schnitzler et al., 1997]; [Kauhanen
et al., 2004]; [Halme and Parkkonen, 2016]; [Halme and
Parkkonen, 2018]), which has the advantage of a higher
spatial resolution and better resilience against artifacts
as compared to EEG, although pros of EEG, such as low
cost and portability, are crucial for BCI development, but
can be kept aside while understanding the fundamental
activity underlying MI.

The aim of this study is to analyse MEG signals, es-
pecially in the alpha- and beta-frequency bands, associ-
ated with MI in the SMR paradigm. We focus on the
inhibitory mechanism to avoid overt action during KI,
that was previously investigated using other neuroimag-
ing techniques, such as TMS. Subsequently, we perform
various validation tests along the way using methods
based on spectral power, coherence and artificial neural
networks (ANN), and suggest a model which explains
empirical observations related to KI and real movements
(overt actions).

2 Materials and Methods
The neurophysiological data were acquired using the

Vectorview MEG system (Elekta AB) with 306 chan-
nels (102 magnetometers and 204 planar gradiometers)
placed inside a magnetically shielded room (Vacuum
Schmelze GmbH). Three fiducial points (nasion, left and
right preauricular) were acquired for each subject.

The experimental study consisted of ten (eight males)
previously untrained volunteers between the age of 20
and 31. The subjects sat in a comfortable reclining chair
with their legs straight, shoes off, and arms resting on an
armrest in front of them. All of them provided a writ-
ten informed-consent before the experiment commence-
ment. The experimental studies were performed in ac-
cordance with the Declaration of Helsinki.

Spatiotemporal signal space separation of [Taulu and
Hari, 2009] was used to separate neuronal signals
from nearby electromagnetic interference. The signals
from bad MEG channels were replaced with spatially-
averaged signals of the nearby well-functioning MEG
channels. The software used for this preprocessing
task was MaxFilter that came along with the Elekta-
Neuromag machine. The sampling frequency was 1000
Hz and an online anti-alias [0.1–330] Hz bandpass filter
was utilised.

The experimental protocol was designed as follows.
Resting-state recordings were performed at the start and
end of each experiment with open eyes (OE) and closed
eyes (CE), respectively. OE recordings were later dis-
carded because all data during MI were recorded with
closed eyes. The duration of CE recordings was differ-
ent for each subject and ranged from 40 to 280 s. The
recordings were divided into four series sets. Every se-
ries contained the MEG data of MI of each of four limbs
in a random order, i.e., left hand (LH), right hand (RH),
left leg (LL), and right leg (RL). Before MI of each limb,
a visual message was demonstrated to the subject to ask
him/her to close eyes and imagine the movement of the
indicated limb as soon as he/she hears a beep. The sub-
sequent beeps were made every 6–8 s (the time interval
was ordered randomly). Each imaginary movement be-
tween the beeps was counted as one trial. The number of
trials for each limb was varied among subjects between
4 and 7 in each series. After every series, the subjects
had a 40-s rest during which they listened to a relaxing
music.

The experiments were programmed using software
provided by the Cogent 2000 team at the Functional
Imaging Laboratory and the Institute of Cognitive Neu-
roscience and Cogent Graphics developed by John Ro-
maya at the Laboratory of Neurobiology at the Well-
come Department of Imaging Neuroscience. A MAT-
LAB code was used to produce all audio and visual com-
mands (Cogent) as well as to log the time at the be-
ginning of each MI-trial in a protocol file (in .txt for-
mat). The protocol file was later used to mark all events
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manually when analysing the MEG file (in .fif format).
A part of the data analysis was performed with Brain-
storm [Tadel et al., 2011] documented and freely avail-
able for downloading under the GNU general public li-
cense (http://neuroimage.usc.edu/brainstorm). Once the
beginnings of each limb’s MI were marked using the pro-
tocol file, 5-s trials were extracted immediately follow-
ing these marks. Similarly, 10-s trials from CE record-
ings were also marked and extracted as the background
activity for every subject.

The time-frequency structure of the MEG signals was
analysed with the help of a wavelet-based approach,
well-known for the analysis of nonstationary time-series
in medicine and biology [Iva, 1999]. For each limb,
we used Morlet wavelets with f0 = 1 Hz central
frequency and a 3-s full width at half maximum to
evaluate time-frequency spectrograms (TFS) for all ex-
tracted 5-s MEG-trials of each limb, and then aver-
aged the TFS to all trials for that limb. Then, the
TFS was also averaged over desired frequency ranges
of delta (1–5 Hz) and mu (8–30 Hz). The same pro-
cess was repeated for the background 10-s trials using
the same parameters. To evaluate event-related synchro-
nisation/desynchronisation (ERS/ERD), we took the dif-
ference between the spectrogram for the MI-trials and
the averaged-over-time spectrogram of the background
and then normalized it to the background. This normal-
ized difference was assumed to be positive for ERS and
negative for ERD.

Magnitude squared coherence was used as a measure
of connectivity between two brain regions. After mod-
elling the brain using a mesh of about 15000 vertices,
the observed brain activity in the 306 MEG channels was
mapped onto the brain sources situated at these vertices
using additional constraints such as minimisation of to-
tal system energy. The effects of depth-dependent sen-
sitivity and spatial resolution were normalised using the
sLORETA method. Desikan-Killany atlas in Brainstorm
[Tadel et al., 2011] was used to identify vertices corre-
sponding to the IP and PCG, and subsequently average
responses of these regions were evaluated for coherence
studies.

ANN were used in the later stages for validation pur-
poses. Multilayer perceptron (MLP) was chosen as the
network architecture to classify between LH and RH MI-
trials. The input data for the ANN were taken from MEG
time series from all 102 magnetometers, after bandpass
filtering with a 10-Hz passing window. This passing
window was varied from 5–60 Hz in steps of 5 Hz, i.e.,
(5–15), (10–20), (15–25), ..., and (50–60) Hz. The in-
put layer containing 102 neurons was followed by three
hidden layers having 30, 15 and 5 neurons, respectively.
The output layer consisted of a single neuron. A scaled
conjugate gradient training algorithm was used. The
training stopped as soon as the batch training with all
input data ran for at least 5000 times. To improve the
efficiency of machine learning, we randomly mixed the
input signal maintaining the correspondence to the MI-

type, either LH or RH. Therefore, to classify MI of LH
and RH, we mixed the MEG time series of all collected
trials related to the LH and RH for each channel with-
out losing their corresponding targets (0 for LH and 1
for RH) and time instance. The ANN classification was
carried out in MATLAB (R2017a; Mathworks Inc., MA,
USA) using Neural Network Toolbox.

3 Results and Discussion
Based on differential µ-activity of the cortex, we first

segregated the subjects into two groups, six KI subjects
(Sub 1, 2, 4, 5, 9 and 10) and four VI subjects (Sub 3, 6, 7
and 8). The differentiation was performed according to
ERS/ERD. Specifically, the KI subjects exhibited ERD
in the aforementioned associated cortical sites, while the
VI subjects showed ERS. Curiously, [Pfurtscheller and
Lopes da Silva, 1999] reported event-related desynchro-
nisation (ERD) of µ-rhythms in the discussed KI sites
during MI in the SMR paradigm and ERS for resting.
Although the subjects in our study were instructed to per-
form KI, only some of them could successfully achieve
this goal, because all participants were untrained.

The obtained results are in agreement with the previ-
ous study, where KI subjects (successful-SMR) exhib-
ited ERD in µ-band, while VI subjects (failed-SMR)
showed ERS, similar to the resting state of SMR. In the
δ-range, all KI subjects exhibited either ERS or ERD in
the frontal cortex and insignificant activity in the pos-
terior parts of the brain. On the other hand, the VI sub-
jects exhibited the distributed non-uniform activity with-
out any preference for a particular region. The method
used to evaluate ERS/ERD was as explained in section
2.

As discussed in section 1, KI and real movements share
a common neuronal network, distinctly to KI which
involves an additional mechanism for inhibiting overt
movement that is likely to be situated in the IP. The co-
incidence of finding ERD for the KI subjects in µ-band
at the same site as the one that is responsible for in-
hibitory control (i.e., IP) instils curiosity and deems to
be further looked upon. In order to reveal the mecha-
nism underlying this inhibitory control, we suppose that
desynchronised activity of neurons near the IP disrupts
signal propagation that passes from IP to PCG, as hinted
by TMS studies.

[Sirigu et al., 1996] showed that when subjects
were asked to predict beforehand the time neces-
sary to perform motor tasks, the subjects with le-
sions in the posterior parietal cortex typically underes-
timated/overestimated the time. This strongly contrasted
with subjects having dysfunctional motor regions who
exhibited impaired movements, but retained the ability to
estimate motor performance times [Sirigu et al., 1995].
Prefrontal cortex (PF) is also known to be involved in in-
hibition of movements (Krams et al, 1998), more specif-
ically in choosing between the responses (Duque et al,
2012).
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Figure 1. Connectivity between IP and PCG for both MI groups and
all subjects together. Gamma range peaks were obtained at 32-Hz, 45-
Hz, and 48-Hz.

In order to predict motor performance times, a subject
needs to simulate the entire repertoire of the act from
long-term memory. This function is perhaps localised in
the posterior parietal cortex. Conveniently, nearby tem-
poral lobe has been implicated to play a role in long-term
memory function, especially the medial temporal lobe
[for review see [Jeneson and Squire, 2012]]. Before the
actual execution of motor commands by M1, aided by
its associated areas like premotor cortex (PM) and sup-
plementary motor area (SMA), passable responses are
likely to be chosen at PF. As most of the conscious pro-
cessing is performed in the frontal cortex, PF being the
point hosting this decision-making process is amenable.

We therefore propose the following neuronal pathway
for motor signals. Motor commands are generated in the
posterior parietal cortex and need to travel to PF before
being relayed to motor associated areas for final execu-
tion. ERD centred around IP disrupts the communication
of motor commands from the posterior parietal cortex to
frontal cortex in order to avoid any overt movement dur-
ing KI.

[Schwoebel et al., 2002] showed that bilateral lesions
in the parietal cortex led to the execution of motor com-
mands during MI experiments without the patient realis-
ing it. The patient with lesions at IP may not have ERD
in IP at µ-frequency and would pass the signal to the PF
region, not expecting an input from IP during KI and thus
leading to actual execution without the subject’s knowl-
edge. At the same time, injured parietal cortex would
also ensure no feedback of the movement through the
sensory system.

The coherence results indicate better communication
in the µ-band between IP and PCG for VI subjects in
comparison to KI subjects who show a clearly compro-
mised connectivity between these areas. We plot the
mean-squared coherence of the MEG signals collected
from IP and PCG versus frequency (in Hz) in γ-band
range. Apart from a peak at 10-Hz µ, the strength of

connectivity between IP and PCG showed peaks at 32-,
45-, and 48-Hz gamma frequencies for both groups of
subjects (Fig.1). ([Bressler, 1995]; [Varela et al., 2001];
[Fries, 2005]; [Siegel et al., 2012]) also validate that co-
herence in γ-band between two points of the brain can
be used to control neural communication of information
between them.

[Lisman and Jensen, 2013] discussed about a theta-
gamma neural code for multi-message communication
during memory processes. They prescribed phase-
amplitude coupling between the phase of θ-waves and
the amplitude of γ-waves and envisaged upon the ex-
tension of their model to sensory processes if θ-waves
are replaced by µ-waves. The studies of ([Llinás and
Ribary, 1993]; [Mormann et al., 2005]; [Canolty et al.,
2006]; [Demiralp et al., 2007]; [Sauseng et al., 2009];
[Axmacher et al., 2010]; [Voytek et al., 2010]; [Maris
et al., 2011]) provide evidences of this phase-amplitude
coupling in humans. During each γ-cycle, a set of neu-
rons or neural ensemble fire concurrently, forming a spa-
tial pattern on the cortex that corresponds to the object
being represented by that γ-cycle. ([Skaggs et al., 1996];
[Harris et al., 2003]; [Dragoi and Buzsáki, 2006]; [Gupta
et al., 2012]) showed that a sequence of generated in-
formation in the form of gamma-cycles gets mapped to
different phases of theta wave, maintaining the same or-
der of information generation. [Voytek et al., 2010] have
reported shifts in gamma phase-amplitude coupling fre-
quency from theta to alpha during visual tasks. Simi-
larly, we expect a phase-amplitude coupling between γ-
waves and α- / µ-waves for MI tasks.

We therefore propose that motor commands involve µ-
waves as general carriers of motor related activity. These
carrier waves carry γ-waves, containing specifics of mo-
tor activity from IP to PF, which acts as a relay junc-
tion and transfers the information to motor related areas
around the PCG.

Our ANN classification study designed in an uncon-
ventional yet appropriate way, supports this hypothesis.
The study was designed to find what frequency compo-
nent of the MEG signal generates higher ANN accuracy
in order to gauge the kind of ANN classification-task re-
lated information carried by that component. As dis-
cussed in section 2, bandpass filtering in windows of
a 10-Hz width was used to pre-process MEG data be-
fore ANN classification of LH and RH MI. ANN clas-
sification accuracy was found to be largely independent
of the KI or VI mode of MI. Figure 2 shows the ANN
classification accuracy averaged over all subjects ver-
sus the bandpass frequency range. Each data point in
this figure represents the centre of the corresponding
bandpass frequency range. Thus, the points at the two
local maxima represent 25–35 Hz and 45–55 Hz win-
dows, respectively. Observing the two maxima in the
frequency ranges which include the gamma signal fre-
quencies shown in Fig. 1 validates our hypothesis that
specifications of MI (e.g., hand motion) were encoded
in the γ-band signals. On the other hand, the µ-band
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Figure 2. ANN classification accuracy between LH and RH MI av-
eraged for all subjects versus bandpass-frequency range on the input
MEG signal to the ANN. Each data point on the x-axis represents the
centre of the bandpass-frequency range of a 10-Hz width. Two lo-
cal maxima in the gamma range are found that coincide the coherence
study.

played a general role in this motor task and did not con-
tribute as much in differentiating between two hands.
The amplitude of intracellular spiking in γ-band in the
directionality-specific (LH or RH) neurons is codepen-
dent on the phase of the µ-band signal at 10 Hz which
acts as an envelope for motor-related activity between
these regions.

In the very recent, systematic and extensive review,
[Craik et al., 2019] described only eight studies that em-
ployed MLP for deep neural network classification using
EEG, three of which were focussed on MI. Only one of
these MI studies utilised MEG time series as inputs for
ANN [Sturm et al., 2016] with a 75% accuracy, whereas
other two studies ([Yohanandan et al., 2018]; [She et al.,
2019]) used different forms of frequency transforma-
tions on the input signal and achieved up to 85% ac-
curacy. The maximum accuracy obtained in our study,
utilising MEG signals as input, was about 85% in the
40–50 Hz range. This means that the physiological in-
formation gained out of this study can greatly benefit the
efficiency of cybernetic systems such as brain-computer
interfaces and at the same time elucidate upon how neu-
ronal communication is parallel to the modern day radio
communication.

Future directions for this research can be to verify and
quantify phase-amplitude coupling using the mean vec-
tor length method suggested by [Canolty et al., 2006]. It
would also be interesting simulate the identified network
using popular neuronal oscillators such as Hindmarsh-
Rose to see the parameters of coupling that can produce
complex patterns of collective behaviour as has been
done in [Hizanidis et al., 2015].

4 Conclusion
In this work we identified the neuronal pathway for

motor command propagation during both kinesthetic im-

agery and real movements. We also revealed parts of
the encoding details and signal disruption to avoid overt
action. During KI, desynschronised neurons prevent
brain activity in gamma (32-, 45-, and 48-Hz) carry-
ing specifics of the movement to propagate from inferior
parietal lobe to the prefrontal cortex which can blindly
relay the signal to the motor areas for execution. All mo-
tor related communications are performed in the mu (10-
Hz) frequency regime using phase-amplitude coupling.
Delta waves also participate in this circuit and definitely
play an important role in the frontal cortex. We aspire
that the identification of these motor related frequencies
and the areas in which they are communicated through
will turn out to be radical in developing BCIs henceforth.
And, the insights about neural communication and inhi-
bition may benefit research on controlling human inhibi-
tion towards harmful substances or preventing the prop-
agation of undesirable sensations like pain.
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