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ABSTRACT

We investigate the dynamics of individual Hodgkin-Huxley neuron in a multistable area where both stable fixed
point and stable limit cycle coexist. We demonstrate a possibility of controlling neuron dynamics by a short
pulse of the constant external current. Depending on the pulse time, duration and amplitude it can switch the
neuron state from resting to oscillatory one and vice versa. We investigate the possibility of controlling the
dynamics of a network of 100 bistable Hodgkin-Huxley neurons by a short external current pulse. We show that
for certain values of the pulse parameters, such as amplitude, time length, and applying time, the pulse can force
some neurons to change their dynamics.

Keywords: Complex network, Hodgkin-Huxley neuron, neural network, scale-free topology, external pulse

1. INTRODUCTION

Human brain is one of the most complex and interesting object for investigation. In recent years many researchers
had done a lot of experimental studies of the brain.1–7 But sometimes, it is not so easy to understand how the
brain regions interact to each other on a neural level.8,9 In that cases it is useful to do numerical simulation.10

Numerical simulation of the networks of different nature and investigation of its dynamics has attracted
much attention in recent years.11–16 Especially, the networks of biological neurons is of interest due to it
allows investigating the brain properties at the microscopic level and getting a better understanding of some
phenomena.17–21 Usually, dynamics in a neuronal network is considered by supposing that every neuron in the
network is monostable. But the bistability regime in oscillatory systems is known to be of special interest due
to a variety of hidden unexpected phenomena.22,23 And also it is of interest in terms of control.

Controlling the internal state of complex systems is of fundamental interest24–26 and enables applications
in biological, technological, and social contexts. Especially, much attention is paid to controlling the neural
networks.25,27,28 That can make a contribution to the development of signal classifiers based on interconnected
biological neurons.29,30

The most popular biological neuron models used in the mathematical simulation are Hodgkin-Huxley (HH),31

FitzHugh–Nagumo (FN),32 and Hindmarsh-Rose (HR)33 ones. In our research, we use HH neuron due to its
most realistic behavior and biological inspiration.

In the paper, we investigate the dynamics of individual HH neuron in a multistable area where both stable
fixed point and stable limit cycle coexist. We also demonstrate a possibility of controlling a neuron dynamics
by a short pulse of the constant external current changing the neuron’s regime from resting to oscillatory one
and vice versa. Then we investigate how the short external pulse influences the dynamics of the networks of 100
identical bistable Hodgkin-Huxley neurons with scale-free topology. We show that for certain values of the pulse
parameters, such as amplitude, time length, and applying time, the pulse can force some neurons to change their
dynamics.
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2. NUMERICAL MODEL

We consider one Hodgkin-Huxley neuron and the network of N = 100 Hodgkin-Huxley neurons. The time
evolution of the transmembrane potential of the HH neurons is given by31

Cm
dVi
dt

= −gmaxNa m3
ihi(Vi − VNa) − gmaxK n4i (Vi − VK)−

− gmaxL (Vi − VL) + Iexi + Isyni

(1)

where Cm = 1 µF/cm3 is the capacity of cell membrane, Iexi is an external bias current injected into a neuron in
the network, Vi is the membrane potential of i-th neuron, i = 1,...,N , gmaxNa = 120 mS/cm2, gmaxK = 36 mS/cm2

and gmaxL = 0.3 mS/cm2 receptively denote the maximal sodium, potassium and leakage conductance when all
ion channels are open. VNa = 50 mV , VK = −77 mV and VL = −54.4 mV are the reversal potentials for
sodium, potassium and leak channels respectively. m, n and h represent the mean ratios of the open gates of the
specific ion channels. n4 and m3h are the mean portions of the open potassium and sodium ion channels within
a membrane patch. The dynamics of gating variables (x = m,n, h) are given:

dxi
dt

= αxi
(Vi)(1 − xi) − βxi

(Vi)xi, x = m,n, h (2)

αx(V ) and βx(V ) are rate functions, described by34

αm(V ) =
0.1(25 − V )

exp[(25 − V )/10] − 1
(3)

βm(V ) = 4 exp(−V/18) (4)

αh(V ) = 0.07 exp(−V/20) (5)

βh(V ) =
1

1 + exp[(30 − V )/10]
(6)

αn(V ) =
0.01(10 − V )

exp[(10 − V )/10] − 1
(7)

βn(V ) = 0.125 exp(−V/80) (8)

Isyni is the total synaptic current received by neuron i. We consider coupling via chemical synapses. The
synaptic current takes the form35

Isyni =
∑

j∈neigh(i)

gcα(t− tj0)(Erev − Vi) (9)

where the alpha function α(t) describes the temporal evolution of the synaptic conductance, gc is the maximal
conductance of the synaptic channel and tj0 is the time at which presynaptic neuron j fires. We suppose α(t) =
e−t/τsynΘ(t), there Θ(t) is the Heaviside step function and τsyn = 3ms. The initial conditions of all neurons
correspond to the oscillatory basin of attraction of individual neuron.

3. RESULTS

External current Ie controls the dynamics of the neuron: depending on it the neuron can be either in “silent” or
spike generation regime. So the current amplitude is a system bifurcation parameter. It was shown in36 and we
demonstrate it in Fig.1(a) that there is a small multistable area of Ie where both regimes coexist. For Ie < 6.24
only the stable steady state exists, and for Ie > 9.78 there is only a limit cycle. So the point Ie = 6.24 is a
threshold point for a neuron due to it starts generating spikes and transmitting information. According to36

further increasing the external current leads to decreasing oscillation amplitude and transition to steady state
through Hopf bifurcation. But we are not interested in the investigation of that area.
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Figure 1. (a) Bifurcation diagram of one HH neuron, with the external current Ie as the bifurcation parameter. Here, ss
denotes a stable steady state, oscmax and oscmin denote the maximum and minimum of a limit cycle. (b) Basin stability
measure of ss attractor.

In order to investigate the basin stability37 (BS) of steady state and limit cycle: BS = L/M , where M = 4000
is the number of different random initial conditions for each value of external current, L is the number of them
iterated into the first or the second one. Fig.1(b) demonstrates this dependence. One can see that the relative
size of steady state basin sharply reduces when the limit cycle appears, and for Ie = 6.3µA/cm2 it is only 0.875%
of its initial size and continues to decrease for higher external current.

We investigate the possibility of controlling neural dynamics using the short external pulses (Fig.2). We
choose external current as follows:

Ie =



6.5 t < t1

10.5 t1 ≤ t ≤ t1 + 5

6.5 t1 + 5 < t < t2

10.5 t2 ≤ t ≤ t2 + 5

6.5 t > t2 + 5

(10)

where t1 and t2 are the applying times of the first and the second pules respectively. We choose Ie = 6.5µA/cm2

as the constant external current because the size of steady state basin is relatively not so small for this value.
So we choose the initial conditions corresponding to the steady state, and apply the 5 ms pulse of the extended
external current of amplitude Ie = 10.5µA/cm2 that on 4 µA/cm2 higher than the constant one at t1 = 205
ms. These values of amplitude and time length are enough to change the neuron dynamics from “silent” to
oscillatory. It happens because according to Fig.1(a) for this current amplitude there is only oscillatory regime
exists in the system. During the pulse, membrane potential has time to leave from the steady state basin
existing in the constant current case, and after the pulse, neuron stays in the periodic cycle and continues to
generate spikes (red curves in Fig.2). Then after some time, we apply the second pulse identical to the first one.
Depending on the applying time t2 neuron dynamics can either be changed to “silent” or it continues to oscillate.
As one can see from Fig.1, the pulse parameters (length, amplitude and applying time) should be optimal to
make the neuron’s phase trajectory be in the steady state basin after applying the pulse. For the values of the
pulse length and amplitude, we choose the pulse should be applied during the time period when its membrane
potential V slowly increases after spike generation. During the pulse (blue curve) phase plane trajectory goes on
a new periodic orbit corresponding higher external current. That orbit crosses the area of steady state basin for
Ie = 6.5µA/cm2, and if after the pulse the trajectory will be inside that area, it iterates into the steady state.
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Figure 2. (a,d,g) The time series of membrane potential oscillations of one Hodgkin-Huxley neuron, (b,e,h) the phase
planes of the corresponding signals and (c,f,i) the increased parts of them. In all 3 cases we apply a short pulse of
increased external current with amplitude of 10.5 µA/cm2 and length of 5 ms twice: the first pulse is applied at t1 = 205
ms, the second one at t2 = 391.5 ms (a-c), t2 = 392 ms (d-j), t2 = 396.5 ms (g-i). The colors correspond to the parts of
the signals: “black” – before the first pulse, “blue” – a pulse period, “red” – between pulses, “green” – after the second
pulse. Ie = 6.5µA/cm2 at the times out of pulse.

The top panels in Fig.2(a-c) represent the case when we apply the pulse too early and after the pulse phase
plane trajectory stays in limit cycle basin, so it returns to the periodic orbit corresponding for Ie = 6.5µA/cm2

(green line). But if we apply the pulse 0.5 ms later, neuron trajectory goes to steady state eventually (d-f). The
middle and the bottom panels in Fig.2 correspond the earliest and the latest applying time leading to the steady
state within the limit cycle period respectively.

As one can see the steady state point is inside the limit cycle and increasing the external current amplitude
leads to changing the last one’s trajectory making it crossing the steady state basin existing for lower current.

Now we investigate the possibility of controlling the dynamics of the network of 100 HH neurons with scale-free
topology. Scale-free topology is a well-known and widely-used connectivity paradigm in computational studies of
local microcircuits since such connectivity has been observed in many functional brain regions via neuroimaging
and electrophysiological studies.38,39 Scale-free topology was generated by Barabási–Albert algorithm.40

As we discussed before, the pulse is able to change neural dynamics from resting to spiking one and vice
versa. So in that case, if we choose the parameters corresponding to the case when all elements in the system
are active and bistable, we could expect that a part of them will change its dynamics after the pulse.

We choose pulse length is equal to 5 ms, but during the pulse, the external current amplitude is only
0.5 µA/cm2 higher than outside the pulse. We choose Ie = 7 µA/cm2 outside the pulse and gc = 0.0025
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Figure 3. Time series of all neurons calculated for scale-free topology. We apply the external pulse of 5 ms duration at
tp = 405 ms. Ie is described by Eq. (11), gc = 0.0025.

corresponding to the case when all neurons are active, but in the phase plane, there are 2 coexisting stable
states. So the external current is defined as follows:

Ie =


7.0 t < tp

7.5 tp ≤ t ≤ tp + 5

7.0 t > tp + 5

(11)

where tp is the time of the pulse applying.

Fig. 3 illustrates the dynamics of all neurons before (t < 405 ms) and after (t > 410 ms) the pulse for
scale-free topology. All elements are sorted by averaged inter-spike interval calculated after the pulse. As one
can see initially all neurons generate spikes but when we apply the pulse a part of them (n ≥ 66) remains in that
state while another one (n ≤ 65) iterates to the steady state. The reason why some neurons do not change their
dynamics while others do is the state in which the neuron is, when the pulse is applying. So changing tp can lead
to the case when another group of neurons will fire. As we discovered before, the neuron has an optimal time
range regarding the spike generation time applying pulse in which its dynamics will change. And each one has
its own time range. So as there is no full synchrony in the neural dynamics only a part of elements is affected
by the pulse. But if the pulse time satisfies to the time ranges of each neuron all of them change their dynamics
to the resting one. And also it can be a reverse situation when the pulse time does not satisfy any neuron in the
network and all of them stay active.

4. CONCLUSION

In this paper, we have investigated the dynamics of individual HH neuron in a multistable area where both
stable fixed point and stable limit cycle coexist. A possibility of controlling a neuron dynamics by a short pulse
of the constant external current changing its regime from resting to oscillatory one and vise versa has been
demonstrated. It is possible because the steady state point is inside the limit cycle and increasing the external
current amplitude leads to changing the last one’s trajectory making it crossing the steady state basin existing
for lower current.

We have investigated how the short external pulse influences on the dynamics of the networks of 100 identical
bistable Hodgkin-Huxley neurons with scale-free topology. We have shown that for certain values of the pulse
parameters, such as amplitude, time length, and applying time, the pulse can force some neurons to change their
dynamics.
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