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Abstract—We investigate the possibility of forecasting the
dynamics of the adaptive network, which topology changes in
time, by using Reservoir Computing (RC). As an input signal,
we use a signal averaged over 100 Kuramoto oscillators. Such
macroscopic signal has a similar nature with EEG signal which
is a macroscopic signal of a group of neurons that connections
adapt in time. We find the optimal values of RC’s parameters
for achieving maximal correlation between the output and the
target signal.
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I. INTRODUCTION

Forecasting complex systems dynamics is a complicated and

important task. Complex systems are characterized by multi-

ple, interacting spatiotemporal scales that challenge classical

numerical methods for their prediction and control. In real life,

we face the challenges of predicting the dynamics of different

natures like weather, climate, economic trends, etc [1]. One of

the interesting tasks here is forecasting neurophysiological sig-

nals to diagnose and react in time to a negative phenomenon,

like epilepsy seizure [2]. To study brain activity researchers

investigate dynamics of electroencephalographic (EEG) [3]–

[10], magnetoencephalographic (MEG) [11]–[14], functional

near-infrared spectroscopy (fNIRS) [15]–[17] signals, modu-

late neural network’s dynamics [18]–[22], use artificial neu-

ral networks (ANN) for analysing big neurophysiological

data [23]–[26].

Recurrent Neural Networks (RNNs) offer a potential method

for addressing these challenges. The most promising type of

RNN for solving this task is Reservoir Computing (RC) [27]–

[30]. RC has shown significant success in modelling the full-

order space dynamics of high dimensional chaotic systems. In

addition, reservoir computers have also been realized physi-

cally as optical feedback systems, which can perform chaotic

system forecasting at a very high rate.

In this work, we address the question of using RC to forecast

the dynamics of the adaptive network of Kuramoto oscillators,
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which topology changes in time, and the averaged signal of the

network is evolving. A similar process is going in the brain’s

neural network, and an EEG signal is a macroscopic signal of

a group of neurons that connections adapt in time.

II. METHODS

As an input signal for forecasting we use a signal averaged

over 100 Kuramoto oscillators with the adaptation of the

couplings. The model and the adaptation mechanism are

described in [31]. To generate the signal we use N = 100
oscillators and M = 1 layer with characteristic memory time

Tm = 100 and intralayer coupling strength σ = 1.0. We solve

the system of differential equations using the Runge Kutta 4th

order method with time step Δt = 0.1 ms for T = 4000 ms.

To increase the dimension of the signal, we use delayed

signals and reconstruct a phase space.

We use an RC construct known as an echo state network,

which uses a network of nodes as the internal reservoir

[32]. Every node has inputs drawn from other nodes in the

reservoir or from the input to the RC, and every input has an

associated weight. Each node also has an output, described by

a differential equation. The output of each node in the network

is fed into the output layer of the RC, which performs a linear

operation of the node values to produce the output of the RC

as a whole. The regularization constant β = 10−8 discourages

overfitting by penalizing large values of the fitting parameters.

We use the reservoir with D = 1000 nodes and investigate

RCs with different number of input nodes. The number of

output nodes in each case is the same as the number of input

nodes. The first part of the signal is used for learning and the

second one for testing.

III. RESULTS

We investigate the correlation r between the output and the

target signal versus the parameters of the reservoir (spectral

radius R, nodes degree D, input scaling σinput). We calculate

r for different time intervals: 100, 200 and 2000 ms (see

Fig. 1).
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Fig. 1. The correlation r between the output and the target signal versus the parameters of the reservoir (spectral radius R, nodes degree D, input scaling
σinput) for different time intervals: (a) 100, (b) 200 and (c) 2000 ms.

TABLE I
OPTIMAL RC’S PARAMETERS FOR ACHIEVING THE MAXIMAL

CORRELATION BETWEEN THE OUTPUT AND THE TARGET SIGNAL.

Parameter Value
100 ms 200 ms 2000 ms

Maximal correlation r 0.863 0.603 0.386
Spectral radius R 1.1 0.9 0.6
Nodes degree D 8 2 3

Input scaling σinput 0.6 0.2 0.1

We find the optimal parameters of the reservoir to achieve

a maximal correlation r (Table 1). As one can see, better

correlation is achieved for shorter time because of non-

stationary complex dynamics of the signal. Low values of input

scaling σinput and high values of spectral radius R lead to low

correlation (Fig. 1(a)).

To increase the capability of RC to forecast the signal’s

dynamics we increase the dimension of the input signal by

adding the delays. We find, that it leads to increasing the

maximum achievable value of correlation, the valid prediction

time, and minimal root mean square error of the predicted

signal.

IV. CONCLUSIONS

We have investigated the possibility of forecasting the

dynamics of the adaptive network, which topology changes in

time, by using Reservoir Computing (RC). As an input signal,

we have used a signal averaged over 100 Kuramoto oscillators.

Such macroscopic signal has a similar nature with EEG signal

which is a macroscopic signal of a group of neurons that

connections adapt in time. We have found the optimal values

of RC’s parameters for achieving maximal correlation between

the output and the target signal. Increasing the dimension of

the input signal by adding the delays leads to increasing the

capability of RC to forecast the signal’s dynamics.
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