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ABSTRACT

We propose an approach for motor-related brain activity analysis based on the combination of continuous wavelet
transform and recurrence quantification analysis (RQA). Detecting such patterns on EEG is a complex task due
to the nonstationarity and complexity of EEG signal, which leads to high inter- and intra-subject variability of
traditionally applied methods. We show that RQA measures of complexity, such as recurrence rate an laminarity,
are very useful in detection of transitions from background to motor-related EEG. Moreover, RQA measures time
dependence for upper limbs is contralateral, which allows us to distinguish two types of movements.
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1. INTRODUCTION

Development of new methods for motor-related brain activity identification and quantification is of strong demand
due to a social significance, i.e. neurorehabilitation, motor skills training, sports etc.1–3 It is known that event-
related desynchronization (ERD) or suppression of µ-oscillations (8-13 Hz) in somatosensory brain cortex is a
hallmark of motor-related activity in magneto- and electroencephalographic (M/EEG) data.4,5 Traditionally,
methods of time-frequency analysis are used to detect ERD in EEG oscillations.6,7 Besides, techniques based on
artificial intelligence were successfully applied to detection of various EEG/MEG patterns.8–10 However, direct
recognition of motor activity in real time is sometimes problematic due to the high inter- and intra-subject
variability inherent for this pattern.11 Usually, ERD patterns are easily observed from averaged data, but may
be hardly identified from single trials due the nonstationarity and complexity of EEG signals. Thus, single-trial
analysis requires extracting more relevant features and application of advanced mathematical tools for their
identification.

Summarizing the above, we propose a strategy for motor-related pattern analysis based on recurrence quan-
tification analysis (RQA). RQA was introduced in 199412 for numerical analysis of recurrences emerging in
dynamical systems. RQA has been successfully applied in climate research,13,14 analysis of biological data,15,16

and neuroscience .17,18 In present paper, we use RQA to analyze periodicities emerging in motor-related EEG.

We hypothesize, that background (random) brain activity is associated with large-amplitude and incoherent
fluctuations of spectral power in µ-band. In turn, motor-related task accomplishment is characterized by stabi-
lization of these fluctuations. With this goal in mind we applied recurrence quantification analysis (RQA) and
wavelet analysis to identify such transitions of µ-band spectral power dynamics. In course of the study, we show
that combined wavelet transform and RQA appear to be a relevant mathematical approaches for detection of
motor-related activity. In particular, results of RQA prove our hypothesis and reveal that motor task execution is
accompanied by the significant increase of recurrence rate (RR) and laminarity (LAM) of µ-band spectral power
time-series indicating the suppression of random fluctuations. Moreover, we prove the inter-subject robustness
of proposed method and show that RQA measures are contralateral, which allows to distinguish two types of
motor execution (right and left hands).
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Figure 1. Representation of the used method. (a) Experimental design and the scheme of single trial. Time intervals
between the signals within trial were ranged between 4–5 seconds, and 6–8 seconds from the second signal of the previous
and the first signal of the next task; (b) samples of EMG and EEG recordings from the experimental dataset. For
illustrative purposes, the EEG trial was filtered in the µ-rhythm range; (c) Wavelet surface of the corresponding EEG
trial and the averaged µ-rhythm spectral power Wµ; (d) Recurrence plot of the corresponding time series Wµ and (e)
windowed RQA measures. For all panels, dashed line represents the audio signal.

2. METHODS

2.1 Experimental data

Experimental setup included recording of EEG and EMG of both hands as well. We used EEG/EMG system
Encephalan-EEGR-19/26 (Medicom MTD company, Taganrog, Russian Federation) with 250 Hz sampling fre-
quency and 50 Hz Notch filtering. In further analysis, we used EEG signal recorded with 9 Ag/AgCl electrodes
placed over the sensorimotor cortex (Fc3, Fcz, Fc4, C3, Cz, C4, Cp3, Cpz, Cp4) according to the international
”Ten–Ten” system.

Our experimental dataset consisted of EEG recordings of 15 subjects, all of them healthy, 18-33, never
experienced BCI-based training. During experimental session, participants were sitting in the comfortable chair
with the hands lying on the armrests in the relaxed position. Experimental design was to clench the right or
left fist after the long or short audio signal, respectively, and hold it for 4-5 seconds until the same second
signal. The interval between two tasks (end of the previous task and beginning of the next) was also randomly
chosen in the range 6-8 seconds (see fig. 1a for the detailed scheme of the experimental procedure). Experiment
lasted approximately 30 minutes and included 30 movements with each hand. Audio commands for two types
of movements were presented randomly in order to avoid the adaptation effect.

Before applying the time-frequency analysis, we performed a set of prerocessing steps with obtained data.
EEG signal was filtered using 5th order Butterworth band-pass filter in the range 1-100 Hz. Then, whole
experimental recording was sliced on 14-seconds trials consisting of 6 seconds of background preceding the audio
signal and 8 seconds after the signal.

2.2 Time-frequency analysis

On the next step we used the continuous wavelet transform (CWT), a well-known method widely applied in
neuroscience to explore the time-frequency features of the biological signals:

W (f, t0) =
√
f

∫ +∞

−∞
x(t)ψ∗(f(t− t0))dt (1)
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with ∗ representing complex conjugation and ψ — the mother function:

ψ(η) =
1
4
√
π
eiω0ηe

−η2
2 (2)

as a complex Morlet wavelet, which is widely used in the analysis of neurophysiological signals.19 Here, i =
√
−1

and ω0 = 2π is the central frequency of the Morlet wavelet.20

Then, obtained wavelet coefficients were averaged over the µ-rhythm (8-15 Hz):

Wµ =

∫
f∈fµ

W (f, t)dt (3)

An example of CWT applied to the single-trial EEG, as well as the corresponding spectral power Wµ, is
presented on Fig. 1c. Visual inspection shows that ERD in µ-band precedes movement execution. On the next
step, we use Wµ time series to analyze motor-related dynamics via RQA.

2.3 Recurrence quantification analysis

The idea of recurrence plots (RP) uses the natural property of many dynamical processes to have periodic
behavior. These periodicities, or recurrences, are represented as the neigbouring points of the reconstructed
phase space trajectory. To visualize them, we construct binary matrix Ri,j :

Ri,j = Θ(εi − ||xi − xj ||), xi ∈ Rm, i, j = 1...N, (4)

where Θ is a Heaviside function, εi is a recurrence threshold, || · || is a norm, and N is a number of considered
stated xi.

21 Therefore, two states of the system xi an xj are considered as similar, if they enter each other’s
ε-neighborhood. Resulting recurrence matrix Ri,j contains various structures, such as diagonal and vertical lines,
which quantification allows to uncover hidden dynamical regimes of the system.

In present paper, we estimate RQA measures in 3-sec floating window (750x750 data points). The first
measure is recurrence rate:

RR =
1

N2

N∑
i,j=1

Ri,j(ε), (5)

which is the basic measure that quantifies the density of recurrence points in the RP.22

The next measure is determinism, which quantifies the diagonal structures of RP:

DET =

∑N
l=lmin

lRi,j(ε)∑N
l=1 lRi,j(ε)

, (6)

with lmin = 2 – minimal considered length of diagonal line. A diagonal line in RP represents the regime when
system repeatedly returns to the particular state. Therefore, DET is a parameter describing the regularity of
the process. The less chaotic the time series is, the longer diagonal lines it causes on the RP.

We also considered laminarity, which is the ratio between the recurrence points from vertical lines to all
recurrence points of PR:

LAM =

∑N
v=vmin

vRi,j(ε)∑N
v=1 vRi,j(ε)

, (7)

where vmin = 2 is a minimal considered length of vertical line. LAM describe the presence of laminar states in
the process.

The windowed modification of these three measures allows us to monitor their time dependence and capture
transitions from baseline to motor-related pattern. To evaluate the significance of these transitions, we com-
pared two different experimental conditions (motor execution and preceding background) using nonparametric
statistical test.
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Figure 2. RQA measures time dependencies: (a) RR for left hand; (b) RR right hand averaged over the trials; (c) LAM
for left hand; (d) LAM for right hand.

3. RESULTS

On Fig. 1d we see a recurrence plot for the single trial Wµ time series, and Fig. 1c — corresponding RQA
measures. We see pronounced changes in the RR and LAM taking place after the audio signal and covering the
short period of the motor preparation (according to the EMG, the movement onset was approximately 2 seconds
after the signal). Such time dependence of RQA measures quantify the area with higher density on the RP.
Increase of RR can be interpreted as the evidence of reduction of signal’s complexity. Indeed, motor-related µ-
rhythm desynchronization associated with the drop of the amplitude of corresponding EEG oscillations naturally
causes increase of repeating states, since the signal becomes less uncorrelated, which is reflected as neigbouring
trajectories in the phase space.

Next, we demonstrate that such features are valid for all trials. On fig. 2 we show RR and LAM averaged over
the trials for all considered channels. Here we see clear separation of significant changes on different hemispheres.
Moreover, we see that motor execution with right and left hands cause pronounced RR and LAM increase in the
opposite hemispheres. Despite the fact that changes of RR for right hand are pronounced in both left and right
hemispheres (see 2b), in the right hemisphere RR drops shortly after the peak unlike in the right hemisphere.
These observations are consistent with the well-known concept of contralaterality of motor-related brain activity.

Note that both LAM and RR have the most pronounced peak in channels C3 and C4 for right and left hand,
respectively. Indeed, these channels are known to be most informative in motor-related EEG studies.23–25 We
select these two channels to calculate LAM time dependence for right and left hand in different hemispheres (see
Fig. 3).

We see that the contralaterality of RQA measures is valid for the group of subjects. Right hand LAM has
the most pronounced peak in the left hemisphere (Fig. 3a) and the less pronounced — in the right (Fig. 3b).
Moreover, unlike in the right hemisphere, in C3 LAM increases sharply for both hands. We hypothesize that this
observation is caused by the features of experimental dataset consisted of preliminary right-handed subjects.

4. CONCLUSION

In present paper we studied the application of RQA to the spectral power time series of motor-related EEG. We
revealed that motor execution is associated with increase of RR and LAM, which evidences of transition from
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Figure 3. LAM time dependence averaged over the subjects for channels from right and left hemispheres with standard
error.

uncorrelated background brain activity to more regular oscillations, which can be considered as ERD in terms
of RQA. In our opinion, presented results indicate that RQA is a powerful tool, which has great potential in the
development of methods for motor-related activity detection.
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[7] Maksimenko, V. A., Lüttjohann, A., Makarov, V. V., Goremyko, M. V., Koronovskii, A. A., Nedaivozov,
V., Runnova, A. E., van Luijtelaar, G., Hramov, A. E., and Boccaletti, S., “Macroscopic and microscopic
spectral properties of brain networks during local and global synchronization,” Physical Review E 96(1),
012316 (2017).

[8] Hramov, A. E., Frolov, N. S., Maksimenko, V. A., Makarov, V. V., Koronovskii, A. A., Garcia-Prieto, J.,
Antn-Toro, L. F., Maest, F., and Pisarchik, A. N., “Artificial neural network detects human uncertainty,”
Chaos: An Interdisciplinary Journal of Nonlinear Science 28(3), 033607 (2018).

Proc. of SPIE Vol. 11459  1145904-5
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 10 Apr 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



[9] Maksimenko, V. A., Kurkin, S. A., Pitsik, E. N., Musatov, V. Y., Runnova, A. E., Efremova, T. Y., Hramov,
A. E., and Pisarchik, A. N., “Artificial neural network classification of motor-related eeg: An increase in
classification accuracy by reducing signal complexity,” Complexity 2018 (2018).

[10] Chholak, P., Pisarchik, A. N., Kurkin, S. A., Maksimenko, V. A., and Hramov, A. E., “Phase-amplitude
coupling between mu-and gamma-waves to carry motor commands,” in [2019 3rd School on Dynamics of
Complex Networks and their Application in Intellectual Robotics (DCNAIR) ], 39–45, IEEE (2019).

[11] Chholak, P., Niso, G., Maksimenko, V. A., Kurkin, S. A., Frolov, N. S., Pitsik, E. N., Hramov, A. E., and
Pisarchik, A. N., “Visual and kinesthetic modes affect motor imagery classification in untrained subjects,”
Scientific reports 9(1), 1–12 (2019).

[12] Webber Jr, C. L. and Zbilut, J. P., “Dynamical assessment of physiological systems and states using recur-
rence plot strategies,” Journal of applied physiology 76(2), 965–973 (1994).

[13] Adeniji, A., Olusola, O., and Njah, A., “Comparative study of chaotic features in hourly wind speed using
recurrence quantification analysis,” AIP Advances 8(2), 025102 (2018).

[14] Bai, A., Hira, S., and Deshpande Parag, S., “Recurrence based similarity identification of climate data,”
Discrete Dynamics in Nature and Society 2017 (2017).

[15] Ahmad, S. A. and Chappell, P. H., “Surface emg classification using moving approximate entropy,” in [2007
International Conference on Intelligent and Advanced Systems ], 1163–1167, IEEE (2007).

[16] Acharya, U. R., Faust, O., Sree, S. V., Ghista, D. N., Dua, S., Joseph, P., Ahamed, V. T., Janarthanan,
N., and Tamura, T., “An integrated diabetic index using heart rate variability signal features for diagnosis
of diabetes,” Computer methods in biomechanics and biomedical engineering 16(2), 222–234 (2013).

[17] Acharya, R., Faust, O., Kannathal, N., Chua, T., and Laxminarayan, S., “Non-linear analysis of eeg signals
at various sleep stages,” Computer methods and programs in biomedicine 80(1), 37–45 (2005).

[18] Acharya, U. R., Sree, S. V., Chattopadhyay, S., Yu, W., and Ang, P. C. A., “Application of recurrence
quantification analysis for the automated identification of epileptic eeg signals,” International journal of
neural systems 21(03), 199–211 (2011).

[19] Pavlov, A. N., Hramov, A. E., Koronovskii, A. A., Sitnikova, E. Y., Makarov, V. A., and Ovchinnikov,
A. A., “Wavelet analysis in neurodynamics,” Physics-Uspekhi 55(9), 845 (2012).

[20] Hramov, A. E., Koronovskii, A. A., Makarov, V. A., Pavlov, A. N., and Sitnikova, E., [Wavelets in neuro-
science ], Springer (2015).

[21] Webber Jr, C. L. and Marwan, N., “Recurrence quantification analysis,” Theory and Best Practices (2015).

[22] Marwan, N., Romano, M. C., Thiel, M., and Kurths, J., “Recurrence plots for the analysis of complex
systems,” Physics reports 438(5-6), 237–329 (2007).

[23] Camacho, J. and Manian, V., “Real-time single channel eeg motor imagery based brain computer interface,”
in [2016 World Automation Congress (WAC) ], 1–6, IEEE (2016).

[24] Pfurtscheller, G. and Da Silva, F. L., “Event-related eeg/meg synchronization and desynchronization: basic
principles,” Clinical neurophysiology 110(11), 1842–1857 (1999).

[25] Ge, S., Wang, R., and Yu, D., “Classification of four-class motor imagery employing single-channel elec-
troencephalography,” PloS one 9(6), e98019 (2014).

Proc. of SPIE Vol. 11459  1145904-6
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 10 Apr 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use


