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Abstract The event-related potentials (ERPs) are an essential response of the human brain to environ-
mental changes that correlate with behavior. They are thus widely used as indicators of brain activity in
fundamental research and response sources in brain communication devices. The problem of their robust
identification from single-trial EEG recordings or limited data sets is timely and challenging. The current
study addresses this issue by evaluating the ERP-associated variations of EEG signals using the measures
of complexity based on the recurrence quantification analysis (RQA). Specifically, we demonstrate that the
recurrence time entropy (RTE) is a good indicator of ERP-associated changes in the course of successive
discrimination of ambiguous visual stimuli. Using the distribution of recurrence times, we conclude why
exactly this measure is sensitive to ERP-associated variations of EEG signal.

1 Introduction

Event-related potential (ERP) is an essential electro-
physiological response of the brain to external stim-
ulation or environmental changes. It manifests itself
as a specific waveform of electrical cortical activity as
recorded by an electroencephalogram (EEG) [1]. ERP
waveform such as presented in Fig. 1 consists of com-
ponents, i.e., positive and negative voltage deviations.
Name of each component is comprised of the prefix indi-
cating its polarity, i.e., P for positive and N for negative,
and the time moment of its appearance in milliseconds
(ms), i.e., component’s latency. For example, a positive
voltage peak around 300 ms after stimulus presenta-
tion would be referred as the P300 component. Usually,
ERP covers EEG sensors located over the temporal,
prefrontal, and somatosensory cortical areas and rep-
resents a short-term low-frequency modulation of local
neuronal oscillations [2].

Variation of ERP components occurrence in both
time and space domain allows to define which stage of
neuronal processing is affected by experimental manip-
ulation. ERP probe is, therefore, one of the widely used

a e-mail: phrolovns@gmail.com (corresponding author)

methods in behavioral neuroscience and neuropsychol-
ogy to test brain-behavior correlates in different exper-
imental conditions [3, 4]. In neural engineering, ERP is
exploited as a feedback source in brain-computer inter-
faces (BCIs) for rehabilitation and communication with
patients whose motor and/or cognitive functions are
limited or completely lost [5–7].

When detecting ERPs, one has to take into account
that EEG signals suffer from a low signal-to-noise ratio.
It means that the useful signal, i.e., the ERP wave-
form, is masked by high-intense random fluctuations
of the brain’s electrical activity. Extraction of useful
ERP components, thus, requires an increase in signal-
to-noise ratio which can be done in several ways. The
most common one is averaging over a large number of
trials (hundreds or more) under the same experimental
conditions. The averaging removes all the random fluc-
tuations uncorrelated between trials and leaves only a
nonrandom EEG variation associated with ERP wave-
form phase-locked with the stimulus. However, such a
procedure imposes restrictions on the duration of the
experimental session, which should last for a consider-
able time to collect the required amount of data. Fur-
thermore, applying such an approach is difficult in stud-
ies of rapid variations of neuronal activity, e.g. through-
out the session, as well as in many practical applica-
tions, for example, online biofeedback-based BCIs.
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Alternatively, to extract ERP properties from the
single-trial recordings or limited data sets, one can uti-
lize some advanced filtering or nonlinear signal process-
ing techniques. In this regard, recurrence quantifica-
tion analysis (RQA) may be a good candidate [8, 9].
A growing number of studies points out the applicabil-
ity of RQA in the different aspects of EEG analysis:
from sleep and rest-state activity [10–13] to cognitive
and motor brain functions [14–17]. In the context of
ERPs, the pioneer works by Marwan et al. [18–20] have
demonstrated the prospect of RQA in detecting P300
and N400 components, which are related to categoriza-
tion and associations of presented stimuli, in the odd-
ball paradigm (repetitive presentation of more and less
expected stimuli). To this end, the authors have estab-
lished that the meaningful variations of the vertical-
line-based measure of laminarity (LAM) are related to
the variation of above mentioned ERP components.
This finding indicates that the ERP-associated brain
dynamics become more laminar as compared with tur-
bulent background activity. Our recent studies have
established that another recurrence-based measure of
complexity—the recurrence time entropy (RTE)—is
also quite sensitive to ERP variations [21, 22]. It is not
surprising, since RTE is a robust indicator of transitions
between regular and chaotic dynamics [23].

The present paper shows the suitability of RTE in
tracing changes in the brain response throughout a pro-
longed experimental session based on a limited num-
ber of EEG trials. Specifically, a conducted experiment
involved a large number of repetitions of ambiguous
visual stimulus discrimination. As the image becomes
more and more familiar to the participant through-
out the experiment, we expected an improvement in
behavioral response and a change in the task-related
ERP components associated with it. As anticipated,
we observed a reduction of the N400 amplitude, i.e.,
its deflection from zero-level, from the beginning to the
end, which was correlated with the changes in reac-
tion time. Further, we witnessed a significant N400-
associated variation of RTE. Finally, complementing
our previous results, we explain why the RTE measure
appears to be sensitive to the variations of ERPs by
analyzing the recurrence time distributions.

2 Materials and methods

2.1 Participants

Twenty healthy individuals with normal or corrected-
to-normal visual acuity have been recruited among the
employees of Innopolis University aged 26–35 (n = 20,
9 females) to participate in this experiment. All of them
have been familiarized with the experimental procedure
and have signed written informed consent in advance.
The experimental design has been approved by the local
ethics committee of Innopolis University and has been
conducted following the Helsinki Declaration.

2.2 Procedure and EEG acquisition

The experimental study aimed at identifying behav-
ioral and neural responses to repetitive discrimination
of ambiguous visual stimuli. For approximately 40 min-
utes, 400 images of the Necker cube of randomly cho-
sen ambiguity and orientation have been presented to
each participant. Each stimulus has been shown on the
monitor in front of the participant for a time interval
randomly picked from the interval 1.0–1.5 s with the
interval between stimuli of 3.0–5.0 s. The participant
has been instructed to respond as fast as possible to
each stimulus by pressing either the left or right button
on the keypad if the presented image of the Necker cube
has been identified as left- or right-oriented. Behavioral
response is thus evaluated as the reaction time (RT),
i.e., the time interval between the stimulus onset and
button pressing.

During the experiment, we measured the electrical
activity of the brain cortex using the whole-brain EEG.
The electrodes have been placed over the scalp accord-
ing to the extended 10-20 International system and the
signals have been acquired using the electroencephalo-
graph “Encephalan-EEG-19/26” keeping the level of
impedance within 2–5 kΩ. The EEG signals have been
sampled at the frequency of 250 Hz and presented
in μV . Raw EEG has been band-pass filtered using
the 5th order Butterworth filed in the band 1–100 Hz
to exclude low-frequency artifacts and high-frequency
noise. Additionally, undesired physiological artifacts
have been removed using the independent component
analysis (ICA). EEG trials have been collected from
artifact-free recordings according to the experimental
protocol. Each trial has been centered at the stimulus
onset and contains 2 s of pre-stimulus (baseline) elec-
trical activity and 2 s of post-stimulus activity.

To test the hypothesis of neural and behavioral adap-
tation throughout the experiment we have considered
two samples of EEG trials picked from the beginning
(condition Begin) and end of the experimental session
(condition End). Each sample contains 40 trials such
that all combinations of stimulus orientation and ambi-
guity are equally presented.

2.3 Event-related potentials

With such a paradigm we expect a perceptual prim-
ing to underlie the neural adaptation to subsequently
presented visual stimuli [24, 25]. With this aim we have
assessed the variation of ERP amplitudes from the early
phase (Begin) to late phase (End) of the experiment.
The ERP waveforms have been evaluated by reducing
a signal-to-noise ratio via averaging EEG signals across
trials in both experimental conditions for each partici-
pant.

2.4 Recurrence quantification analysis

Multichannel EEG recordings naturally pave the way
to a multidimensional analysis of the brain’s electri-
cal activity without exploiting additional embedding
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procedures. Consider a set of m EEG signals X(t) =
{x1(t), x2(t), ..., xm(t)}. It describes the dynamics of a
certain brain area as a motion of the vector x(ti) =
(x1(ti), x2(ti), ..., xm(ti))T along the trajectory in the
m-dimensional state space. The recurrence matrix Rij

for such a trajectory is constructed as:

Rij =
{

1, Dij < ε,
0, otherwise,

(1)

Dij = ‖x(ti) − x(tj)‖, (2)

where Dij is a pairwise distance matrix calculated using
the Euclidean norm ‖•‖ defined on the m-dimensional
space and ε is a predefined recurrence threshold. There
are several ways to define the recurrence threshold.
To increase robustness of the recurrence matrix con-
struction, which is crucial when analyzing experimental
data, we use the approach proposed by Krämer et al.
[23], which suggests choosing the threshold as a fixed
percentile (sufficiently low) of the distance distribution
to reduce the dependence of recurrence characteristics
on the embedding dimensions. Without the loss of gen-
erality, we have chosen the 3rd percentile of the pairwise
distances distribution, i.e., ε : Pr(Dij < ε) = .03, as a
suitable recurrence threshold.

The matrix Rij can be visualized as a recurrence
plot (RP). It consists of several elementary pat-
terns—solitary dots, black diagonal and vertical lines,
and white vertical lines—that constitute the global
structure of the system’s recurrences. This structure
reflects the dynamical properties of the process evolving
along the considered trajectory. Recurrence quantifica-
tion analysis (RQA) offers a set of measures to esti-
mate the complexity of the system’s dynamics through
the structure of RP. We are interested in the tracking
of the changes of RQA measures associated with ERP
along the time series, thus we apply windowed RQA,
i.e., estimate complexity measures in a floating window
over the global RP of size w = 50 d.p. (200 ms) with
step δw = 1 d.p. (4 ms).

To trace the transitions from irregular and noisy
background EEG to coherent oscillation associated with
ERP we primarily exploit the recurrence time entropy
(RTE)—the RQA measure of complexity based on the
distribution of recurrence times (white vertical lines in
the RP). It is defined as:

RTE = −
w∑
tw

twP (tw), (3)

where P (tw) is a distribution of recurrence times tw.
We compare the sensitivity of RTE to ERP-related

changes in EEG with the other relevant RQA measures.
Alongside, we use the diagonal-line-based measure of
determinism (DET ):

DET =
∑w

l=2 lP (l)∑w
l=1 lP (l)

, (4)

where P(l) is a distribution of diagonal lines of length
l , and the vertical-line-based measure of laminarity
(LAM ):

LAM =
∑w

v=2 vP (v)∑w
v=1 vP (v)

, (5)

where P(v) is a distribution of vertical lines of length
v .

To better illustrate the deviation of the RQA mea-
sures associated with the ERP, we have explicitly con-
sidered their variations from the pre-stimulus (baseline)
level:

dRTE(t) = RTE(t) − RTEb, (6)

dDET(t) = DET(t) − DETb, (7)

dLAM(t) = LAM(t) − LAMb. (8)

In the above equations, RTEb, DETb, and LAMb are the
baseline levels of the respective RQA measures, calcu-
lated as the mean across the time interval [−500, 0] ms
prior visual stimulus onset.

The RQA has been performed via the pyunicorn
package for Python [26].

2.5 Statistical Inference

Cluster-based permutation test . Since we evaluate the
effect of interest on a large number of (sensor, time)-
pairs in the case of ERP or time points in the case
of associated RQA measures variations, the multi-
ple comparisons problem naturally arises. To control
for the emerging family-wise error rate we employ a
non-parametric cluster-based permutation test (details
in [27]). Briefly, this approach implies computation of
the relevant test statistic, which quantifies the effect
for each pair of samples. Those (sensor, time)-pairs or
time points for which the evaluated statistic exceeds the
predefined significance level αcl are clustered according
to their spatial and/or temporal adjacency. The sum
of pairwise test statistics C is then calculated for each
cluster. Then the samples are permuted among the clus-
ters and the sum of the test statistics on permuted sam-
ples Cp is collected. The latter randomized procedure is
repeated for a sufficient time N , and the histogram of
collected statistics Cp is constructed. The fraction of the
random partitions whose statistics if larger (smaller)
that the statistics for original samples Cp > C (Cp < C)
results in a desired cluster-based p-value.

For pairwise comparisons of ERP, dRTE, dDET,
and dLAM between conditions we have used a two-
tailed t-test for paired samples. The one-sample t-test
has been used to reveal if the baseline corrected RQA
measures significantly deviate from the zero-level. A
desired level of significance for t-tests has been set as
αcl = .005, which results in the critical value tcr =
±3.174 given df = n − 1 = 19. Cluster-level p-values
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Fig. 1 Analysis of event-related potentials. a The topogram of ERP amplitude difference between the End and Begin
conditions (red – higher in the End, blue—higher in the Begin). White circles indicate the electrodes demonstrating a
statistically significant difference (p < 0.05 via the non-parametric permutation test, see Methods). b ERP waveforms in
the Begin and End conditions averaged across trials and selected electrodes (upper panel) and corresponding t-value (lower
panel). c Rm-corr plot illustrating a significant subject-wise negative correlation between the RT and the amplitude of the
N400 component

have been achieved under N = 1024 permutations.
The non-parametric cluster-based permutation test has
been performed via the MNE.statistics package for
Python [28].
Correlation analysis. To uncover a within-individual

brain-behavior association as the relationship between
the behavioral characteristic of RT and the ERP ampli-
tude, we exploit a statistical technique called a repeated
measures correlation (rm corr) [29]. Unlike the tra-
ditional correlation/regression analyses, this approach
does not account for between-subject variability and
evaluates the common slope shared among the individ-
uals. Rm-corr, thus, exhibits greater statistical power
and is especially applicable in repeated measures
designs, which is the case in the current study. Rm-corr
analysis and visualization have been performed via the
pingouin statistical package for Python [30].

3 Results and discussion

3.1 ERP and behavioral response

A non-parametric cluster-based permutation test has
revealed a significant reduction of the N400 com-
ponent’s amplitude between conditions “Begin” and
“End” in occipital and parietal electrode sites (p =
0.013). Topogram in Fig. 1a shows a spatial distribu-
tion of the ERP difference. Figure 1b presents the ERP
waveforms averaged over occipital and parietal sensors
along with the corresponding t-statistic. No significant
differences in the amplitude have been identified for the
rest ERP components.

The inferred suppression of N400 amplitude is corre-
lated with the behavioral response measured in terms
of RT as identified by rm corr (r = −0.577, p = 0.006).

Figure 1c shows that the tendency for the “less neg-
ative” N400 component to be associated with shorter
RT is shared among the participants.

These results are consistent with our hypothesis that
behavioral adaptation during a long-term experiment
is most probably connected with perceptual priming.
There is evidence that the amount of N400 amplitude
reduction reflects the degree of positive priming. As the
images of the Necker cube are repeatedly presented,
the participants unconsciously recognize that the stim-
uli share the same shape despite having different ori-
entations and ambiguity. The stimuli presented earlier
activate specific brain regions to store their representa-
tion in the memory. Regarding the later phase, the rep-
resentations are already preactivated, and less neural
activation is required for stimulus perception, resulting
in increased processing speed.

3.2 Recurrence quantification analysis of ERPs

Now, we consider if the RQA measures of complex-
ity exhibit the ERP-associated variations. The pio-
neer works by Marwan and Meinke [18] have identified
that DET and LAM quantifiers indicate P300-related
changes in brain dynamics. Further attempts exploiting
more sophisticated order pattern recurrence plots have
also shown potential for discrimination of ERPs from
single-trial EEG data.

Currently, the study complements the existing knowl-
edge by testing the applicability of the RTE measure
as a promising technique to trace the transition from
chaotic to regular dynamics. Figure 2 shows the pipeline
of RQA applied to single trials in the frame of cur-
rent research. In this example, we analyze a randomly
picked EEG trial from the “Begin” condition. We con-
sider a multivariate set of EEG signals from 8 EEG sen-
sors (Fig. 2a) exhibiting the most pronounced variation
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Fig. 2 The pipeline of recurrence quantification analysis. a Given single-trial EEG recordings from the selected set of
electrodes. b The 3D projection of the constructed trajectory on the state space is formed from the multivariate EEG
signals. c Constructed recurrence plot of the trajectory. Time-dependent measures of LAM (d), DET (e), and RTE (f) were
calculated using windowed RQA of the constructed recurrence plot

of ERP between conditions as assessed by statistical
analysis (Fig. 1a). These signals describe the trajectory
of electrical brain activity on an 8-dimensional space,
whose 3D projection is presented in Fig. 2b. Next, we
construct an RP of this trajectory by choosing a thresh-
old ε that yields the recurrence rate of the global RP
equal to 0.03 (Fig. 2c). Time-dependent measures of
LAM, DET and RTE for this RP are presented in

Fig. 2d–e. In contrast with [18], both LAM and DET
measures do not show clear ERP-associated variations
in single-trial recordings. Possibly for better detection
these measures require averaging across multiple EEG
trials. However, the RTE demonstrates a visually dis-
tinct peak at approximately 200 ms. This observation
is in the favor of RTE sensitivity to ERP-associated
variations.

Fig. 3 Windowed RQA in the condition Begin. Upper panels illustrate the grand average of variations dDET(t), dLAM(t),
and dRTE(t), and lower panels present corresponding t-values computed via the one-sampled t-test. Shadings highlight the
time intervals on which DET, LAM, and RTE significantly deviate from their baseline level (p < 0.05 via the non-parametric
permutation test, see Methods)
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Fig. 4 Windowed RQA between experimental conditions. Upper panels illustrate the grand average of variations dDET(t),
dLAM(t), and dRTE(t), and lower panels present corresponding t-values computed via the paired t-test. Shadings highlight
the time intervals on which dDET, dLAM, and dRTE significantly differ between experimental conditions (p < 0.05 via the
non-parametric permutation test, see Methods)

Employing a non-parametric cluster-based permuta-
tion test, we evaluate the group-level variations of RQA
measures from their zero-level in condition “Begin”.
Figure 3 reports the grand average of dLAM, dDET and
dRTE along with the respective values of t-statistics.
One can see that both dLAM and dDET exhibit a sta-
tistically significant increase after 400 ms, p < 0.001 in
both cases, that indicates the transition from chaotic
and turbulent dynamics to more periodic and laminar
one. One can interpret this result as a stimulus-related
attenuation of intrinsic brain noise. In contrast, the
variation of dRTE is more specifically related to ERP
yielding significant group-level growth in the interval
188–304 ms (p < 0.001). This observation reflects an
ERP-associated complication of the brain dynamics in
terms of recurrence times. Given that ERP is a coherent
and phase-locked brain response to external stimulus,
one would expect quite the opposite result, and it may
seem counter-intuitive at first sight. However, we will
further provide a reasonable explanation of this finding.

Next, we evaluated the effect of interest by com-
paring the RQA measures between conditions (“End”
vs. “Begin”). A non-parametric cluster-based permuta-
tion test has indicated that all considered quantities,
i.e., dDET, dLAM and dRTE, exhibit significant ERP-
associated changes between conditions (Fig. 4). Com-
pared with the “Begin”, both dDET and dLAM demon-
strate an increase in the “End” on the intervals 208–332
ms (p = 0.009) and 208–284 ms (p = 0.03) respectively.
Besides, dRTE is reduced on approximately the same
time interval 236–268 ms (p = 0.048) between the con-
ditions. One may conclude that the suppression of N400
potential is reflected as a local reduction of EEG signal
complexity expressed in terms of the recurrence times.

Fig. 5 Recurrence times distributions. a A semi-log
presents the ERP-related distributions logP (tw) of recur-
rence times in the Begin (blue) and End (red) conditions
contrasted by the distribution during the baseline period.
b The difference between ERP-related P (tw) and the base-
line distribution for both experimental conditions. A vertical
black line indicates the inflection point
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3.3 ERP-associated recurrence times distributions

Figure 5a reports the semi-log plot of ERP-associated
recurrence times distribution P (tw) in the “Begin”
(blue line) and “End” (red line) conditions. These dis-
tortions are assessed on the interval 236–268 ms, where
dRTE demonstrates a significant variation between
experimental conditions and averaged across partic-
ipants. They are contrasted by the distribution of
the pre-stimulus (baseline) interval [0,−500] ms (black
dashed line). One can see that the ERP-associated pos-
itive variation of dRTE presented in Fig. 3c is deter-
mined by attenuation of the fast noisy recurrences
(tw < 18 d.p. or 72 ms) on the one hand and facili-
tated recurrences on the larger time scales (tw > 18
d.p. or 72 ms) on the other hand. The time scales
associated with the enhanced recurrences correspond
to the period of the slow-wave ERP modulation (about
100 ms). It implies that the additional (slow) ERP-
associated orbits emerge in the dynamical trajectory
along with the fast motion corresponding to attenuated
noisy fluctuations. The coexistence of several recurrence
time scales determines a locally complicated pattern
in the RP, thus causing local growth of the RTE with
respect to its baseline level.

Regarding the changes between experimental condi-
tions, Fig. 5b shows the difference between the ERP-
associated and the baseline recurrence time distribu-
tions dP(w) in “Begin” (blue line) and “End” (red line).
It is seen that the difference dP(w) is more prominent
in the “Begin” condition than in the “End”. It implies
a more pronounced ERP response at the beginning of
the experiment that corresponds to Fig. 1b and explains
the higher complexity of the trajectory expressed in the
terms of recurrence times (Fig. 4).

4 Conclusion

To summarize, our study examines the variations of
event-related potential during a successive ambiguous
stimuli discrimination task using the recurrence quan-
tification analysis. First, we have evaluated a signifi-
cantly reduced amplitude of the N400 component from
beginning to end of the experimental session. More-
over, on the group level, the amplitude of this ERP
component is negatively correlated with the reaction
time, which reflects a link between brain dynamics and
behavior. Secondly, we have tested various RQA mea-
sures of complexity to quantify this observation in terms
of dynamics. Our results establish that the recurrence
time entropy is a good indicator of the ERP-associated
variations in EEG signals. Surprisingly, the RTE locally
increases in the ERP-associated time frame. This coun-
terintuitive finding is, however, explained using the
recurrence time distribution. While the baseline EEG
signal is mostly defined by fast random fluctuations of
electrical brain activity, the ERP constitutes a non-
random slow modulation resulting in the additional
time-scale of brain dynamics. The coexistence of fast

fluctuations and slow-wave causes an enhanced hetero-
geneity of recurrence times, thus locally increasing the
value of RTE.

We hope that the demonstrated efficiency of the RTE
in the evaluation of ERP-associated variations from a
limited number of EEG trials could be useful in both
further fundamental studies and neural engineering.
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