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Abstract—In this study, we examined reservoir computing
(RC)as a tool for predicting the macroscopic dynamics of a
subset of oscillators in a network based on the macroscopic
dynamics of other parts of it. As a model network, we utilized a
network of 300 Kuramoto oscillators with adaptation. Our results
demonstrate that reservoir computing effectively addresses this
task. Additionally, a similar reservoir computing model was ap-
plied to experimental neurovisualization data and exhibited high
accuracy in reconstructing damaged EEG channels compared to
classical methods like spatial interpolation.

Index Terms—Brain adaptation, fNIRS, Sternberg paradigm,
short-term memory

I. INTRODUCTION

In recent decades, RC has been actively researched and
applied in various fields of artificial intelligence and machine
learning. This approach represents a powerful tool for analyz-
ing and predicting complex dynamic systems where hidden
network processes play a crucial role. It is well known that
RC excels in predicting the complex dynamics of chaotic
systems such as the Rossler system, Lorenz system, and
others, as well as effectively reconstructing the structure of
their attractors [1]-[3]. In our recent work, we explored the
possibility of predicting the behavior of complex systems
with limited information using RC [4]. We demonstrated that
to improve the quality of prediction of chaotic signals, it
is necessary to expand the feature space and determine the
appropriate embedding dimension.

In real life, forecasting and recovering the macroscopic
dynamics of complex networked systems are of paramount
importance. The main challenge lies in the fact that signals
from multiple different elements are combined into a single
macroscopic signal through complex communication struc-
tures, reducing the system’s dimensionality and making it
challenging to analyze. In most real-world networked systems,
the connections between elements change over time, which
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increases the complexity and unpredictability of macroscopic
dynamics. A good example of a macroscopic signal is the
signals produced by various neuroimaging techniques such as
EEG, fNIRS and fMRI, which are actively used in neurophys-
iological research [S]-[12].

In this study, we examined the dynamics of a network
consisting of 300 Kuramoto oscillators with adaptation, sim-
ilar to the work referenced [4], [13], [14]. We divided the
oscillators into 6 equal groups and calculated the macroscopic
signal obtained from each of these groups. Then, we trained
our reservoir model to predict the dynamics of one of the
macroscopic signals based on the dynamics of the others. For
reservoir computing, we used the package [15].

II. RESULTS

We optimized the hyperparametersof the reservoir (leak
rate, spectral radius, reservoir connectivity, input connectivity)
using Monte Carlo method. Optimization of hyperparameters
was performed in the following ranges: leak rate from 0.01 to
0.9; spectral radius from 0.001 to 2; reservoir connectivity
from 0.05 to 0.9; input connectivity from 0.05 to 0.9. To
evaluate the prediction quality, we estimated the standard
deviation attributable to the maximum spread of the target sig-
nal amplitude. The maximum prediction accuracy was 0.056.
Figure 1 shows the reconstructed state (blue) of the reservoir
and the actual trajectory (red) of one of the 6 macroscopic
signals of the Kuramoto adaptive network. The figure clearly
shows that the reconstructed signal well repeats the real
macroscopic signal. Also in this work, we have considered
the possibility of using RC to repair damaged channels on
neurophysiological recordings.

III. CONCLUSIONS

In this paper, we applied RC to recover the hidden macro-
scopic dynamics of a subset of oscillators in a network based
on the macroscopic dynamics of other parts of the network. We
used a network of 300 Kuramoto oscillators with adaptation as
a model network. We have shown that reservoir computing can
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Fig. 1. Recovered state (blue) of the reservoir and the actual trajectory (red) of one of the 6 macroscopic signals of the Kuramoto adaptive network.

solve this problem with high accuracy. In addition, we used a
similar reservoir computing model to recover damaged EEG
channels and found that the accuracy of recovering damaged
EEG channels outperforms classical recovery methods such
as spatial interpolation. Also in this paper we considered the
possibility of applying RC to hemodynamic neurophysiologi-
cal signals.

(1]

[2]

[3]

[4]

[51

[6]

[71

[8]

[91

REFERENCES

A. Griffith, A. Pomerance, and D. J. Gauthier, “Forecasting chaotic
systems with very low connectivity reservoir computers,” Chaos: An
Interdisciplinary Journal of Nonlinear Science, vol. 29, no. 12, 2019.
K. Nakai and Y. Saiki, “Machine-learning inference of fluid variables
from data using reservoir computing,” Physical Review E, vol. 98, no. 2,
p. 023111, 2018.

J. Pathak, Z. Lu, B. R. Hunt, M. Girvan, and E. Ott, “Using machine
learning to replicate chaotic attractors and calculate lyapunov exponents
from data,” Chaos: An Interdisciplinary Journal of Nonlinear Science,
vol. 27, no. 12, 2017.

A. V. Andreev, A. A. Badarin, V. A. Maximenko, and A. E. Hramov,
“Forecasting macroscopic dynamics in adaptive kuramoto network using
reservoir computing,” Chaos: An Interdisciplinary Journal of Nonlinear
Science, vol. 32, no. 10, 2022.

A. Badarin, V. Antipov, V. Grubov, N. Grigorev, A. Savosenkov, A. Udo-
ratina, S. Gordleeva, S. Kurkin, V. Kazantsev, and A. Hramov, “Psy-
chophysiological parameters predict the performance of naive subjects
in sport shooting training,” Sensors, vol. 23, no. 6, p. 3160, 2023.

D. Stoyanov, V. Khorev, R. Paunova, S. Kandilarova, D. Simeonova,
A. Badarin, A. Hramov, and S. Kurkin, “Resting-state functional
connectivity impairment in patients with major depressive episode,”
International Journal of Environmental Research and Public Health,
vol. 19, no. 21, p. 14045, 2022.

V. Grubov, A. Badarin, N. Schukovsky, and A. Kiselev, “Brain-computer
interface for post-stroke rehabilitation,” Cybernetics and physics, vol. 8,
no. 4, pp. 251-256, 2019.

A. A. Badarin, V. V. Grubov, A. V. Andreev, V. M. Antipov, and
S. A. Kurkin, “Hemodynamic response in the motor cortex to execution
of different types of movements,” Izvestiya VUZ. Applied Nonlinear
Dynamics, vol. 30, no. 1, pp. 96-108, 2022.

N. S. Frolov, V. S. Khoreyv, V. V. Grubov, A. A. Badarin, S. A. Kurkin,
V. A. Maksimenko, A. E. Hramov, and A. N. Pisarchik, “Stabilization of
an unstable equilibrium of a balance platform due to short-term training,”
Chaos, Solitons & Fractals, vol. 158, p. 112099, 2022.

[10]

[11]

[12]

[13]

[14]

[15]

24

N. Frolov, E. Pitsik, V. Grubov, A. Badarin, V. Maksimenko, A. Za-
kharov, S. Kurkin, and A. Hramov, “Perceptual integration compensates
for attention deficit in elderly during repetitive auditory-based sensori-
motor task,” Sensors, vol. 23, no. 14, p. 6420, 2023.

A. V. Andreev, S. A. Kurkin, D. Stoyanov, A. A. Badarin, R. Paunova,
and A. E. Hramov, “Toward interpretability of machine learning methods
for the classification of patients with major depressive disorder based
on functional network measures,” Chaos: An Interdisciplinary Journal
of Nonlinear Science, vol. 33, no. 6, 2023.

A. N. Pisarchik and A. E. Hramov, “Stochastic processes in the brain
neural network and their impact on perception and decision-making,”
Physics—Uspekhi, vol. 66, 2023.

V. Makarov, A. Koronovskii, V. Maksimenko, A. Hramov,
O. Moskalenko, J. M. Buldu, and S. Boccaletti, “Emergence of a
multilayer structure in adaptive networks of phase oscillators,” Chaos,
Solitons & Fractals, vol. 84, pp. 23-30, 2016.

R. Gutiérrez, A. Amann, S. Assenza, J. Gomez-Gardenes, V. Latora, and
S. Boccaletti, “Emerging meso-and macroscales from synchronization of
adaptive networks,” Physical review letters, vol. 107, no. 23, p. 234103,
2011.

N. Trouvain, L. Pedrelli, T. T. Dinh, and X. Hinaut, “Reservoirpy: an
efficient and user-friendly library to design echo state networks,” in
International Conference on Artificial Neural Networks. Springer, 2020,
pp. 494-505.





