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ABSTRACT Major depressive disorder (MDD) is associated with complex disruptions in brain function,
yet the underlying neural mechanisms remain incompletely understood. Traditional approaches to studying
functional brain networks have primarily focused on pairwise interactions between brain regions, offering
valuable insights into basic connectivity. However, such methods often fail to capture the complexity
of higher-order interactions that are critical for understanding integrative processes in the brain. This
study aims to address this gap by applying Q-analysis, a mathematical framework that extends beyond
pairwise interactions, to fMRI-derived brain networks to investigate higher-order interactions and structural
organization in individuals with MDD compared to healthy controls (HCs). Our analysis revealed significant
alterations in the topology of brain networks in MDD patients, characterized by a lower maximum topology
level and an increased prevalence of isolated edges and chains at the pairwise interaction level. The substantia
nigra area demonstrated a higher topological dimension in MDD, suggesting its greater integration into
disrupted network structures, potentially reflecting dopaminergic dysfunction associated with the disorder.
Additionally, the consensus networks at higher topology levels indicated distinct network configurations
between MDD patients and HCs, with the former exhibiting a single q-connected component primarily
involving limbic, cerebellar, and occipital-temporal regions. We identified significant disruptions in the
higher-order organizational structures of the brain, characterized by reduced topological diversity and
complexity, fewer and less connected cliques, and altered involvement of key brain regions in MDD: the
increased engagement of the limbic structures such as the substantia nigra, parahippocampal gyrus, and
hippocampus, and decreased involvement of the cerebellum, the occipital and temporal lobes. Our study
introduces a novel approach to understanding MDD pathophysiology through the lens of higher-order
network structures, offering potential avenues for more targeted diagnostic and therapeutic strategies.
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I. INTRODUCTION
Functional networks (FNs) have emerged as a powerful
framework for describing and analyzing neuronal processes
in the brain. These networks offer critical insights into how
different brain regions interact to facilitate cognitive and
behavioral functions [1], [2]. Constructing a brain network
model through functional connectivity involves identifying
statistical dependencies between time series data associated
with different brain regions, as obtained from functional
magnetic resonance imaging (fMRI). Traditional approaches
to studying brain FNs primarily focus on pairwise interac-
tions, treating the network as a collection of all possible
pairwise combinations of brain regions [3], [4], [5]. From
a mathematical perspective, these functional brain networks
are represented as graphs with nodes and edges, whose
topological properties are analyzed using metrics derived
from complex network theory [6], [7], [8]. These metrics
have proven sensitive enough to differentiate between healthy
individuals and patients with neurological disorders, thus
facilitating diagnostic applications based on reconstructed
fMRI-based brain FNs. For instance, graph characteristics
such as mean node strength, clustering coefficient, and the
number of edges have shown significant predictive value in
classifying patients with major depressive disorder (MDD)
based on functional network measures [9], [10].

While this pairwise interaction-based method has sub-
stantially advanced our understanding of brain connectivity,
it often fails to capture the complexity of the brain’s intrinsic
mechanisms, which are fundamentally higher-order and
involve large-scale network interactions [11], [12], [13], [14].
Higher-order interactions (HOIs)—relationships involving
three or more nodes simultaneously—reflect the brain’s
capacity to perform its functions through the coordinated
activity of multiple regions, leading to the formation of
higher-order network structures such as simplicial complexes
or hypergraphs [15], [16], [17]. These HOI-based network
structures are essential for understanding the brain’s integra-
tive processes, as they represent more than just the sum of
individual pairwise interactions. Therefore, exploring these
higher-order structures is crucial for gaining a deeper under-
standing of the brain’s functional organization [18], [19].
Even in the simplest model network systems, incorporating
higher-order interactions results in significant qualitative and
quantitative changes in system dynamics [20], [21], [22].
Consequently, the formation of HOI structures in brain FNs
may serve as a critical diagnostic marker for understanding
changes in brain function in patients with neurological
disorders.

Q-analysis provides a robust framework for investigating
these higher-order interactions within brain FNs [13], [16],
[23]. By leveraging this approach, researchers can uncover
and analyze complex network structures that are not readily

apparent through pairwise analysis alone. In the paper,
we propose and apply a novel mathematical tool to exam-
ine the unique organizational features of functional brain
networks. Notably, this study marks the first systematic
application of Q-analysis to address a socially significant
problem: investigating disruptions in the functional brain
network associated with the development of major depressive
disorder. Understanding these disruptions is paramount for
advancing our knowledge of MDD pathophysiology and
could potentially guide the development of more effective
diagnostic and therapeutic strategies.

II. METHODS
The pipeline of the research paradigm is presented schemati-
cally in Fig. 1. A detailed description of all steps and methods
is presented below.

A. FMRI PROCEDURE AND DATASET PREPARATION
1) SUBJECTS
We enrolled a total of 164 participants, including 94 individ-
uals without any known psychiatric conditions (healthy con-
trols, HC group) and 70 patients with major depressive disor-
der (MDD group). Each participant underwent assessment by
experienced psychiatrists, including the administration of the
Mini International Neuropsychiatric Interview [24] and the
Montgomery—Åsberg Depression Rating Scale (MADRS)
[25], [26]. Exclusion criteria for both groups included a
history of comorbid psychiatric conditions, autoimmune
diseases, neurological disorders, previous head trauma,
or the presence of metal implants incompatible with MRI
scans.

There were no significant differences between the two
groups in terms of mean age, sex distribution, or level of
education. However, as expected, patients had significantly
higher MADRS scores compared to the healthy controls
(see Table 1).

2) MR SCANNING AND IMAGE PROCESSING
The MR scanning procedure was performed on a 3T MRI
system (GE Discovery 750w). The protocol included a
high-resolution structural scan (Sag 3D T1) with a slice
thickness of 1 mm, matrix 256 × 256, TR (relaxation time)
7.2 s, TE (echo time) 2. 3 s, and flip angle 12◦, FOV 24,
resting state functional scan — with slice thickness 3 mm,
matrix 64 × 64, repetition time — 2000 ms, echo time —
30 ms, flip angle 90◦, 192 volumes [27].

The functional data were preprocessed with SPM 12 soft-
ware [28] in a standard way [29]. The functional images
of each participant were first realigned, co-registered
with the high-resolution anatomical image, and normal-
ized to standard MNI space. Parameters for the realign-
ment step were the following: quality 0.9, separation 4,
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FIGURE 1. Flowchart of the research. (I) Experimental procedure of BOLD signal recording during fMRI with qualitative visualization of
time series obtained for 165 brain regions according to the AAL3 brain atlas. (II) Calculation of functional connectivity matrices based on
estimation of Pearson correlation coefficients and visualization of corresponding binarized brain networks. (III) Construction of the
consensus networks for the MDD and control groups. (IV) Application of the Bron-Kerbosch algorithm to find all maximal cliques
(simplices) in the consensus networks; the inset shows the q-cliques for q = 2, 3, 4, and 5, which are color-coded in the figure.
(V) Q-analysis: the calculation of the specific characteristics. (VI) Visualization and analysis of higher-order structures in the consensus
networks.

no smoothing, 2nd degree B-spline interpolation, no wrap,
12 × 12 basis function, regularization 1 with medium factor,
without Jacobian deformations, 5 iterations, average Taylor
expansion point. In addition, the default pipeline of the
program included a motion correction step for each patient.

The co-registration method was set to Normalized Mutual
Information. The MNI normalization parameters were as
follows: bias regularization 0.0001, bias FWHM 60 mm
cutoff, affine regularization ICBM European brain template,
warping regularization, no smoothing, sampling distance 3.

197170 VOLUME 12, 2024



S. A. Kurkin et al.: Beyond Pairwise Interactions: Higher-Order Q-Analysis of fMRI-Based Brain FNs

TABLE 1. Demographic and clinical characteristics of the considered groups: HC – the group of healthy controls, MDD – the group of patients with major
depressive disorder.

As a result, we obtained voxel-level blood oxygen level
dependent (BOLD) signals.

3) RECONSTRUCTION OF BRAIN FUNCTIONAL NETWORK
The brain volume was parcellated into 165 regions (see
Fig. 1, panel I) according to the automated anatomical
labeling atlas AAL3 [30]. We chose the AAL3 atlas because
of its widespread use in functional network analysis and
optimal level of detail [31]. To assess the connectivity
between pairs of brain regions (the so-called, connectivity
matrix), we calculated the average BOLD time series xi(t)
for each of 165 brain parcellations (nodes), detrended them,
and estimated Pearson correlation coefficients for all pairs
of the averaged parcellation activities [10]. The resulting
connectivity matrix represents the functional brain network
(see Fig. 1, panel II). We then performed a p-value-based
binarization of the functional brain networks: we keep only
significant connections that had a p-value in the Pearson
correlation of less than 0.05.

4) CONSENSUS NETWORKS CALCULATION
To minimize intersubject variability, we utilized the concept
of a consensus network (see Fig. 1, panel III), initially
introduced for fMRI-based functional networks in [32].
The primary principle of constructing a consensus network
involves identifying the common connections that appear
in the majority of networks within each group. To create
the consensus network, we first eliminate all insignificant
connections (with p > 0.05) and then retain only those
connections that are found in 95% of subjects within the
respective group (HC or MDD). These thresholds (p >

0.05 and 95%) are standard in statistical analysis.
The consensus network effectively represents the group-

specific network structure, thereby mitigating the problem
of intersubject variability. By focusing on a single, group-
specific network pattern, this approach eliminates the need
to consider individual variations in brain connectivity.
In addition, the consensus network approach eliminates the
need to select a threshold to filter out weak connections,
as all significant connections are included in the consensus
network. This avoids the potential biases associated with
thresholding, which can inadvertently exclude potentially
meaningful connections.

B. Q-ANALYSIS
To study higher-order structures in functional brain networks,
we used the Q-analysis [16], [33]. Q-analysis is an algebraic

topology approach based on identifying and counting all
cliques in the network and studying the connections between
them. A clique of size (order) q is the complete graph of q
vertices, so that every two different vertices in the clique are
adjacent (the examples of cliques for q = 2, 3, 4, and 5 are
shown in the inset in 0. Two cliques Cr and Cq of the orders
r , q can be connected by sharing some vertices; the structure
formed by the shared vertices represents a common face of
both cliques. If for r < q all vertices of Cr belong to Cq, then
the clique Cr represents a face of the order r in the clique Cq.
We used the Bron-Kerbosch algorithm [34] to identify

all maximal cliques in the obtained consensus networks
(see Section II-A4). Based on this information, we then
found how different cliques were connected to each other
via shared faces to form the higher order structures (clique
complexes). The overall hierarchical organization of the
graph can be quantified by three structure vectors [16], [23],
[35], [36] with components along different topology levels
q = 1, 2, 3, . . . qmax , where qmax is the order of the largest
clique in the network. These structure vectors were computed
as follows:

• The first structure vector (FSV):
Q = {Q0,Q1, . . .Qqmax−1,Qqmax }, where Qq is the
number of q-connected components; a q-connected
component is any clique of order ≥ q or a set of such
cliques connected via common faces of order r ≥ q.
If cliques in a set are connected via a common face of
order r < q, such cliques are considered as separate
components.

• The second structure vector (SSV):
Ns = {n0, n1, . . . nqmax−1, nqmax }, where nq is the
number of cliques from the level q upwards.

• The third structure vector (TSV): the component Q̂q =

1−Qq/nq quantifies the degree of connectedness among
cliques at the topology level q.

We also evaluated the topological dimension of nodes and
the topological entropy introduced in [23]. The topological
dimension dimQi of a node i is defined as the number
of cliques of all orders in which the corresponding node
participates. In fact, the topological dimension is a general-
ization of the node degree, taking into account higher-order
interactions.

Topological entropy of a topology level q was calculated
as follows:

SQ(q) = −

∑
i p
i
q log p

i
q

logMq
, (1)
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where piq is the node’s occupation probability of the q-level,

piq =
K i
q∑
i K

i
q
, (2)

K i
q is the number of cliques of the order q in which a node i

participates, and the normalization factor Mq is the number
of nodes that have a non-zero entry at the level q in the entire
graph. Thus, the topological entropy measures the degree of
cooperation between nodes. The nodes that form an isolated
clique result in a higher entropy than the nodes that share
different cliques at a given level, resulting in a decrease in
entropy [23].

In addition, we computed the number of cliques g and the
number of common faces f at different levels q.
All of the above features provide a measure of the global

architecture of the graph corresponding to a consensus
network. In particular, we can identify all higher-order brain
network structures (cliques) with the nodes (brain regions)
that form them, as well as how these cliques are connected to
each other by sharing specific groups of nodes.

We used our custom Python package ‘‘Q-analysis toolkit’’:
https://github.com/pakrentos/q-analysis.

C. STATISTICAL ANALYSIS
To address the multiple comparisons problem and a possible
non-normality of the distributions of the Q-analysis measures
(structure vectors, entropy, number of cliques, and number
of common faces) across the topology levels q, we used
an extended consensus network-based permutation test.
This method extends the classical permutation test by
incorporating shared structural information across networks
within each group and can be described as follows.

LetHC= (HC1, . . . ,HCn)andMDD= (MDD1, . . . ,MDDm)

be two samples of size n and m, respectively, representing
Q-analysis measures from the HC and MDD groups of
networks. To test the null hypothesis H0 that HC and MDD
come from the same distribution, the permutation test is
performed as follows [37], [38]:

1) Compute for each topology level q the observed value
of the test statistic (see below) for the initial groups HC
and MDD, to.

2) Generate permutations of the combined sample
(HC1, . . . ,HCn,MDD1, . . . ,MDDm).

3) For each permutation j:
• Divide the permuted sample into two groups A(j)

and B(j) of size n and m.
• Compute for each topology level q the test statistic
(see below) tj.

4) Compute the p-value as the proportion of permutations
where the distribution values of the test statistic exceed
the observed value of the test statistic: |tj| ≥ |to| for a
two-sided test.

This non-parametric method determines the statistical sig-
nificance of differences between two groups by generating

a null distribution against which the observed difference is
compared.

The consensus network-based test statistic is calculated as
follows:

1) Compute consensus networks for each group in the
comparison (see Section II-A4).

2) Compute the distributions of the Q-analysis measures
across the topology levels q for these consensus
networks.

3) Find the difference in the measures between the two
groups for each topology level q.

4) Use these differences as the test statistic for the
permutation test.

Thus, the test statistic is calculated as the difference
between the Q-analysis measures derived from the consensus
networks of each group.We calculate differences for multiple
measures, and each is treated independently in the subsequent
statistical analysis. Permutation testing process then involves
randomly reassigning samples to groups, recalculating the
test statistic, and constructing a permutation distribution for
each metric. The significance level was set at 0.05. The
permutation distribution contained 10000 samples.

This method allows us to assess the statistical significance
of the observed differences in Q-analysis measures between
groups, while taking into account the shared structural
information within each group.

We performed the similar statistical procedure for the
topological dimension across nodes.

To analyze the statistical significance of the difference
between the structure vectors of the groups at the macro
level, we calculated the modulus of difference between
the corresponding vectors and then applied the similar
permutation-based procedure.

We used the Python libraries numpy and scipy and
the ‘‘Q-analysis toolkit’’ (https://github.com/pakrentos/
q-analysis) for statistical analysis.

D. VISUALIZATION OF CHARACTER HIGHER-ORDER
NETWORK STRUCTURES
To illustrate the topology of a network of cliques of order q for
each topology level q, we created a multilayer decomposition
of the original consensus networks for the MDD and HC
groups. Each layer in such a representation corresponds to
a particular topology level q, and the nodes on each layer
represent cliques of order q, while the connections represent
common faces of different orders r < q between pairs of
connected cliques. The coordinate of a node corresponding to
a clique was calculated as the centroid of the corresponding
clique. We used the Python library matplotlib for the
visualization of the multilayer decomposition.

We analyzed and visualized the hypoactivated and hyper-
activated connections in the particular q-connected compo-
nent in theMDD group compared to the HC group.We define
the hyperactivated connections as those that are present in the
q-connected component of the MDD group, but are missing
in the consensus network of the HC group. On the contrary,
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the hypoactivated connections are present in the q-connected
component of the HC group, but are missing in the consensus
network of theMDDgroup. To quantitatively characterize the
hypoactivated and hyperactivated subnetworks, we calculated
the node degree measure for the regions included in these
subnetworks.We emphasize that the node degree is calculated
considering only the connections included in the correspond-
ing subnetwork, so the same region may have different node
degrees in the two given subnetworks. To visualize the q-
connected components and the hypoactivated/hyperactivated
subnetworks in a brain, we used the Python libraries
mne-connectivity and netplotbrain.

In this section, we have described the details of the fMRI
procedure and data preprocessing, including the technique of
reconstructing functional brain networks, as well as the basics
of Q-analysis and the statistical and visualization methods
used.

III. RESULTS
A. MULTILAYER DECOMPOSITION
Figure 2 shows the multilayer representation of the consensus
networks of the HC and MDD groups. This figure illustrates
the diverse composition of cliques of different order and
variants of their combination into larger components, which
allows us to qualitatively analyze higher-order structures
in brain FNs, as well as to demonstrate the differences
between groups at different levels of HOI. While the classical
representation of a network by pairwise interactions does not
uncover fully connected higher-order network structures (see
e.g. the pictograms with red networks on the brain in the
margins of Fig. 2), the decomposition into distinct layers of
cliques allows to elegantly and clearly identify and illustrate
all higher-order structures separately at each topology level.

The q = 1 topology level corresponds to pairwise
interactions and shows the original consensus networks.
It can be seen that the density of connections in the HC
network is higher than in the MDD network. At q = 2, there
is an essentially higher number of cliques in the MDD group,
indicating a higher number of isolated edges and chains in
the characteristic functional network of the patient group.
At higher levels, the network of the HC group has a larger
number of cliques for most levels q, as well as a larger number
of connections between cliques. Importantly, the maximum
clique dimensionality qmax for the MDD group is 9—and at
this level of topology the networks of both groups have one
clique each—while for the HC group qmax = 11.

B. Q-ANALYSIS MEASURES OF THE CONSENSUS
NETWORKS
1) TOPOLOGICAL DIMENSIONS AND NETWORK HUBS
We computed the topological dimensions dimQi of all nodes
for the HC and MDD consensus networks and sorted them
according to their dimensions. As a result, we identified
the top 10 regions with maximum dimensions for both
groups — the so-called hubs of the networks, taking into
account the HOIs (see Table 2). Thus, these hub regions are

involved in a maximum number of higher-order structures.
On average, the topological dimension is higher for the HC
group, and the maximum dimension for the HC group is 24,
while for the MDD group it is 19. The composition and
order of brain areas in the top-10 lists differs between groups.
Unique to the list of the HC group (marked in green in
Table 2) are the areas of the occipital cortex, and for the
MDD group (marked in red) — the hippocampus. Common
to both lists (marked in blue) are areas of the temporal cortex,
postcentral gyrus, fusiform and cerebellum.

Applying a permutation-based statistical procedure to
the distributions of topological dimension across nodes,
we found that this measure was significantly greater
(p = 0.0105) in theMDD group for the Substantia nigra (pars
compacta) region. This node was involved in 3 cliques of the
2nd order in the MDD group as opposed to a single clique of
the 2nd order in the HC group (see Table 3).

Thus, all the nodes of the cliques containing the Substantia
nigra (pars compacta) region are midbrain regions, with the
first clique being the same in both groups and theMDD group
containing two additional 2-cliques (see Table 3).

2) STRUCTURE VECTORS AND TOPOLOGICAL ENTROPY
We analyzed the difference between the structure vectors of
the MDD and HC groups.

At the macro level, there were the significant effects in
the modulus of difference between the first structure vectors
(p = 0.0453, see Table 4) and the third structure vectors
(p = 0.0308) of the groups. Thus, on average, regardless
of the topology level q, there was a difference between the
groups in the number of q-connected components and the
degree of connectedness among cliques in the consensus
functional networks.

At the level of individual topology levels, we found the
following significant effects for the structure vectors (see the
dependencies of the components of the structure vectors in
Fig. 3; significant effects are highlighted with red asterisks
under the abscissa axis):

• The 2nd component of the first structure vector was
significantly higher in the MDD group, and the 10th

and 11th components were significantly higher in the
HC group.

• The 9th, 10th, and 11th components of the second
structure vector were significantly higher in the HC
group.

• The 2nd, 8th, 9th, and 10th components of the third struc-
ture vector were significantly higher in the HC group.

The revealed statistically significant difference in the 2nd

component of the FSV implies the presence of a greater
number of separate isolated edges (2-cliques) in the MDD
group, compared to the HC group (see also Fig. 2, q = 2).
This conclusion was also supported by the significantly
higher number of cliques at the q = 2 level in the
corresponding dependence g(q) in Fig. 3. The significant
effects at the levels q = 10 and 11 were a consequence of
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FIGURE 2. Multilayer representation of the original consensus networks for the HC and MDD groups on a brain
(superior view). Each layer represents a particular topology level q. The topology level q = 1, shown in black,
corresponds to pairwise interactions and illustrates the original consensus networks. The blue nodes on each layer in
the middle part of the figure represent cliques of order q corresponding to that layer, and the blue edges represent
shared faces of different orders r < q between pairs of connected cliques. Thus, each layer reflects the topology of a
network of cliques of order q. In the side parts of the figure, the pairwise networks corresponding to the networks of
cliques at the level q are highlighted in the dark red, while the light red networks show the entire original consensus
networks. In the MDD group, there are no cliques of order q > 9. For the HC group, we show the zoomed clique
networks of orders q = 10 and q = 11. For compactness, we show only those topology levels (q = 1, 2, 9, 10, 11)
where there are qualitative differences between the groups; an illustration of all levels is provided in the
Supplementary Material S1.

the fact that the order of the largest clique qmax was 9 in the
MDD group and 11 in the HC group.

The general trend in the change of the components of
the first and second structure vectors for both groups is a
monotonous decrease in their magnitudes with increasing q.
This trend is violated in the HC group at the level q = 10,

where the FSV shows a sharp increase. The essential increase
in the number of q-connected components at this level
indicates a relatively large number of cliques of order q ≥ 10
(see also the increase in the number of cliques for q =

10 and 11 in the dependence g(q) in Fig. 3), and that many
of them are connected by common faces of order r = 9

197174 VOLUME 12, 2024
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TABLE 2. Top-10 hubs with the highest topological dimension for the HC and MDD groups with their rank (rank:HC and rank:MDD) and topological
dimensions (dimQHC and dimQMDD) in the HC and MDD consensus networks. Some of the nodes are present in both top-10 lists (they are marked with
blue color), and some are present in only one of the top-10 lists of the groups — this results in 15 rows in the table. Nodes specific to the HC group are
marked with green color, those specific to the MDD group are marked with red color.

FIGURE 3. The components of three structure vectors (FSV, SSV, TSV), topological entropy, number of cliques
and common faces plotted against the topology level q for the consensus networks of the MDD and HC
groups. Asterisks denote q levels for which characteristics are statistically significantly different between
groups: ’*’ — p < 0.05, ’**’ — p < 0.025, ’***’ — p < 0.01, ’****’ — p < 0.001. The shaded regions indicate the
mean ± SD of the corresponding permutation distributions.

(see also the dependence of the number of common faces f (q)
in Fig. 3), thus forming a small number of the components

at the level q = 9. When moving to the level q = 10,
these cliques become disconnected and form a larger number
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TABLE 3. The composition of the cliques containing the substantia nigra
(pars compacta) region in the consensus networks of the MDD and HC
groups. For this region, a significant difference in topological dimension
was found between the groups. This region is involved in three cliques for
the MDD group, while it is involved in only one clique for the HC group.

TABLE 4. Statistical significance of the modulus of difference between
the HC and MDD groups of the first, second, and third structure vectors
estimated by the permutation-based procedure.

of components. Meanwhile, there are no cliques of this
dimension in MDD.

The significant effects in the third structure vector show
that the degree of connectedness among cliques is higher in
the HC group at levels q = 2, 8, 9, and 10. In general, this
means that there are more cliques of the specified orders
and higher in the consensus network of the HC group, but
they form larger higher-order connected structures, which is
reflected in the smaller number of q-connected components.

We found no significant effects for the topological entropy
measure (see Fig. 3). At the same time, an important feature
of the topological entropy dependence is the position of its
minimum, since it indicates the geometric forms through
which the nodes are mostly interconnected. We can see that
for the MDD consensus network these are 6-cliques. For
the HC group, there are two local minima: the first one
corresponds to the 5-cliques and the second one—to the
10-cliques. Thus, in the HC group, the network nodes are
more connected through higher dimensional structures.

C. HIGHER-ORDER NETWORK STRUCTURES
The previous analysis showed that the main differences in
the properties of higher-order interactions in the functional
networks of the groups start at the level q = 9. In order
to disentangle which patterns of structural organization of
the networks lead to such differences, we constructed and
analyzed q-connected components at the level q = 9 for
the HC and MDD groups (see Fig. 4). There are three
q-connected components in the consensus network of the
HC group and one q-connected component in the consensus
network of the MDD group. Thus, the HC group exhibits a
richer and more diverse composition of higher-order network
structures.

Fig. 4 shows that the q-connected components rep-
resent functionally closely interconnected brain regions.
Interestingly, the presented components are characterized

by a rather high degree of localization, i.e. they contain
predominantly regions from neighboring brain areas. The
first and second q-connected components (q = 9) of the HC
group overlap to a greater extent and contain the following
regions: areas of the occipital and temporal lobes, cerebellum,
and vermis. The third component includes the precentral
and postcentral gyri, supplementary motor area, paracentral
lobule, and parietal areas. The only q-connected component
(q = 9) of the MDD group contains areas of the limbic
system, cerebellum, occipital, and temporal lobes.

It can be seen that the differences between the groups in
higher-order network structures are not only in the number
and size of such structures, but also in their composition,
i.e., their localization in the brain. The main distinctions
between the components of the MDD and HC groups
are the participation of areas of the limbic system in the
MDD component, as well as the absence of the pre- and
postcentral gyri, the supplementary motor area, and most of
the occipital, parietal, and cerebellar areas. This conclusion is
also supported by the analysis of the topological dimensions
of brain regions in Section III-B1.

Notably, different regions within the components of the HC
group are characterized by different degrees of involvement in
the cliques (see in Fig. 4 the color scale on the connectograms
corresponding to the local topological dimension of the
nodes). Some regions are involved in a large number of
cliques—a maximum of 12—and are therefore important
hubs for the formation of higher-order structures in the
network. These are mainly areas of the occipital and parietal
cortex, as well as the cerebellum. At the same time, some
nodes are involved in only a few cliques—in terms of network
organization, they are at the ‘‘periphery’’ of the network.

Thus, the differences between the q-connected components
of the groups reflect the disruptions in higher-order network
organization in the MDD group.

D. HYPOACTIVATED AND HYPERACTIVATED
SUBNETWORKS IN BRAIN FNS
In order to reveal the disrupted brain subnetworks in theMDD
group, we contrasted the described q-connected components
for q = 9 with the consensus networks of the groups
(for details, see Section II-D) and thus discovered the
hypoactivated and hyperactivated subnetworks in the MDD
group (see Fig. 5). Specifically, the consensus network of the
MDD group lacks the connections present in the hypoacti-
vated subnetwork, preventing the formation of higher-order
structures. In contrast, connections from the hyperactivated
subnetwork are redundant in the MDD group’s consensus
network compared to the HC group’s consensus network,
resulting in a higher-order redundant structure.

The hypoactivated subnetwork involves the following
regions: areas of the occipital, temporal, parietal lobes,
cerebellum and vermis, and the precentral and postcentral
gyri (for details, see Fig. 5 and tables in Supplementary
Material S3). The hyperactivated subnetwork includes: areas
of the temporal lobe and cerebellum, hippocampus, and
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FIGURE 4. Dark red subnetworks in the brain illustrate q-connected components at the level q = 9 for the
HC and MDD groups (superior and side views); the light red networks show the entire original consensus
networks. A q-connected component is any clique of order ≥ q or a set of such cliques connected via
common faces of order r ≥ q. If cliques in a set are connected via a common face of order r < q, such
cliques are considered as separate components. At the level q = 9, there are three q-connected components
in the consensus network of the HC group and one q-connected component in the consensus network of
the MDD group. These q-connected components are shown separately in the corresponding connectograms.
The color in the connectograms indicates a local topological dimension (dimQ) for the regions from the
considered q-connected components; the local topological dimension is calculated considering only the
cliques included in the considered q-connected components. The list of brain region abbreviations can be
found in Section VI. The composition of all components is detailed in the tables in the Supplementary
Material S2.

parahippocampal gyrus. These results support the conclu-
sions of Section III-C.
The local degree of a node reflects the level of disruption

of a region (see the color scale in Fig. 5). The higher the
local degree of a node, the more disrupted connections are

associated with that region— such nodes represent disrupted
hubs. They are the most critical elements in the breakdown
of the formation of normal higher-order network structures in
the brain. In the hypoactivated subnetwork, the following are
the most important disrupted hubs with local degree D ≥ 5:
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FIGURE 5. Hypoactivated and hyperactivated connections for the MDD group in the q-connected components at the level
q = 9. Hypoactivated connections are present in the q-connected component of the HC group, but are missing in the
consensus network of the MDD group. Hyperactivated connections are present in the q-connected component of the MDD
group, but are missing in the consensus network of the HC group. For ease of comparison, the connectograms include all
regions (nodes) belonging to either the hypoactivated or hyperactivated subnetwork. The color in the connectograms
indicates a node local degree measure for the regions in the hypoactivated and hyperactivated subnetworks; the node local
degree is calculated considering only the connections included in the corresponding subnetwork, so the same region has
different node degrees in the two given subnetworks. The composition of the hypoactivated and hyperactivated
subnetworks is detailed in the tables in the Supplementary Material S3.

left inferior occipital gyrus (D = 11), lobule VI of vermis
(D = 10), right calcarine (D = 8), left inferior temporal
gyrus (D = 7), left precentral gyrus (D = 6), right inferior
occipital gyrus (D = 6), right lobule IV, V of the cerebellar
hemisphere (D = 6), left calcarine (D = 5), and right
lobule VI of the cerebellar hemisphere (D = 5). In the
hyperactivated subnetwork, the major disrupted hubs (D ≥ 3)
are: right parahippocampal gyrus (D = 5), left hippocampus
(D = 4), and left middle temporal gyrus (D = 3).
Thus, this section presents the main results of the

analysis of the Q-measures of the functional networks of the
MDD group, as well as the emerging higher-order network
structures and the characteristics of these structures in terms
of hypoactivation and hyperactivation of brain subnetworks.

IV. DISCUSSION
In the present study, we employed Q-analysis to investigate
disruptions in the functional brain networks associated with
major depressive disorder (MDD) from a fundamentally
novel perspective. Unlike traditional analyses that focus on
individual nodes and pairwise connections, our approach
examines higher-order interactions (HOIs) involving mul-
tiple brain regions simultaneously. Our analysis revealed
disruptions in the brain network of MDD patients, where
dysfunctions in pairwise interactions, reflected in hypo- and
hyperactivated subnetworks, cascade into perturbations in
more complex, higher-order structures, preventing normal
cooperative functioning across the brain.

Traditional analysis at the level of pairwise interactions
provides valuable insights into which individual connections
are disrupted but cannot reveal the extent of damage to
larger, more integrated network structures. Although our
previous studies demonstrated significant alterations at the
pairwise level [9], [10], [29], [32], they lacked a broader
view of the structural network abnormalities that may
impair cognitive functions. Higher-order structures represent
functionally closely connected brain regions that work
in concert to facilitate complex cognitive and behavioral
processes [13], [39]. Disruptions at this level indicate a
fundamental impairment in the brain’s ability to integrate
information across multiple regions, which may underpin the
cognitive and emotional deficits observed in MDD.

A. COMPARISON WITH OTHER APPROACHES FOR
RECONSTRUCTING HOIS
Several methodologies exist for reconstructing HOIs from
brain activity signals. One approach involves using measures
and algorithms that estimate the strength of interactions
between multiple brain regions simultaneously, such as
O-Information and partial entropy decomposition [40], [41],
[42] or LASSO-based methods [43], [44]. While these
methods can effectively capture complex interactions in
the form of hyperedges, they are often hampered by high
computational complexity and challenges in interpreting
hypergraphs. To address interpretability, different types
of hypergraph expansions are utilized [45], [46], e.g.,
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graph models like line and high-order graphs have been
employed [44], [47], though this simplification can result in
information loss [48].

Another approach involves calculating the ‘‘correlation of
correlations’’, effectively treating higher-order interactions
as correlations between already computed pairwise correla-
tions [49], [50]. This method, however, introduces entangle-
ment and complicates the interpretation and explainability of
the results.

The representation of HOIs by cliques, as used in our
study, offers distinct advantages in terms of simplicity and
interpretability. By transitioning from pairwise interactions
to higher-order structures using pairwise correlation esti-
mates, cliques effectively capture functionally cohesive brain
regions without the substantial computational burden and
interpretive challenges associated with other methods. This
approach has proven particularly valuable in clinical appli-
cations, as demonstrated in studies of schizophrenia [51],
neurodegeneration [12], and attention deficit hyperactivity
disorder (ADHD) [52].

Recent developments in the field have also explored
directed hypergraph approaches, which attempt to incorpo-
rate the directionality of information flow in higher-order
interactions; in particular, such an approach has been applied
to the identification of MDD [53]. In addition, researchers
have successfully appliedHOI analysis to various neuroimag-
ing modalities, including EEG data [54], demonstrating the
versatility of higher-order approaches in capturing complex
neural dynamics that can be used to diagnose various
neurological disorders. These advances suggest that while
pairwise analyses have historically dominated the field,
modern higher-order methods are increasingly recognized as
essential tools for understanding brain organization in both
health and disease.

B. ADVANTAGES AND LIMITATIONS OF Q-ANALYSIS
Q-analysis proves to be an effective tool for describing the
higher-order structures (cliques) due to its combinatorial
nature [16], [23], [33]. It facilitates the identification of global
characteristics, such as structure vectors and entropy, before
delving into specific topology levels for a more detailed
examination. Importantly, Q-analysis retains all information
without loss, making it well-suited for functional networks
where all-to-all connections within cliques imply strong
functional integration. It can capture both large and small
network structures formed by connected cliques. Our use
of multilayer decomposition further enhances this analysis,
allowing us to visualize and understand how different
topology levels contribute to the overall network structure.

However, Q-analysis has its limitations. It primarily detects
HOIs that satisfy the clique property, meaning all nodes
within a clique must be fully interconnected. Consequently,
large-scale brain networks that do not form complete cliques
may be partially or entirely overlooked by Q-analysis. This
inherent constraint suggests that traditional methods, such as
Independent Component Analysis (ICA) [55], might be more

appropriate for analyzing certain large-scale brain networks
that do not conform to the clique structure. Nonetheless, our
introduction of multilayer decomposition within Q-analysis
allows for a more nuanced exploration of network structures
across various topology levels, mitigating some of these
limitations.

C. HIGHER-ORDER INTERACTIONS AND NETWORK
DISRUPTIONS IN MDD
To our knowledge, this study represents the first application
of Q-analysis to MDD, providing novel insights into the
higher-order organizational disruptions that characterize the
disorder. Our findings reveal that individuals with MDD
exhibit reduced topological diversity and complexity in their
functional brain networks. Specifically, the MDD group
demonstrated a lower maximum topology level (qmax = 9)
compared to healthy controls (qmax = 11), alongside an
increased number of isolated edges and chains at the pairwise
level and a diminished number of cliques and inter-clique
connections at higher topology levels.

Furthermore, significant alterations were observed in
the topological dimensions of specific brain regions. The
substantia nigra, for instance, exhibited a higher topological
dimension in the MDD group, participating in more cliques
compared to the HC group. This finding, along with the
marked differences in hub regions between groups, under-
scores the reorganization of functional networks in MDD.
Additionally, the consensus network analysis at the q =

9 level highlighted a loss of distinct, high-level functional
subnetworks in the MDD group, further illustrating the
compromised integration within their brain networks.

Finally, by comparing the q-connected components with
the consensus networks of each group, we identified dis-
rupted subnetworks and disrupted hubs in the MDD group.
Specifically, the hypoactivated subnetwork included the hubs
located in the areas of the occipital, temporal, and parietal
lobes, as well as the cerebellum, vermis, and pre- and
postcentral gyri. Meanwhile, the hyperactivated subnetwork
involved the disrupted hubs in the regions of the temporal lobe
and cerebellum, hippocampus, and parahippocampal gyrus.
In summary, MDD shows stronger involvement of limbic
structures such as the substantia nigra, parahippocampal
gyrus, and hippocampus, and weaker involvement of the
occipital and temporal lobes and the cerebellum.

These higher-order findings complement our previous
pairwise analyses by providing a more holistic view of
the network disruptions in MDD. While pairwise analyses
identify specific weakened or strengthened connections, the
Q-analysis elucidates how these perturbations collectively
impact the brain’s ability to form and maintain complex,
integrated network structures that are essential for cognitive
and emotional functioning. This research contributes to the
growing body of knowledge on the role of complex network
structures in mental health disorders and underscores the
potential of Q-analysis as a tool for investigating the intricate
dynamics of brain function. Understanding these disruptions
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in higher-order interactions may lead to more effective
diagnostic tools and therapeutic strategies for MDD.

D. CONTRIBUTION OF THE ANALYSIS TO THE
UNDERSTANDING OF DISRUPTIONS IN MDD
Let us discuss our findings in the context of the known results
on disruptions in the functional brain network in MDD. The
greater involvement of the substantia nigra (SSN) in the
functional network of patients with MDD is a significant
finding that may offer insights into the neurobiological
underpinnings of the disorder. The SSN is traditionally
known for its role in the dopaminergic system, particularly
in the regulation of movement, reward processing, and
motivation [56]. Dysregulation of dopaminergic pathways
has long been associated with mood disorders, including
MDD, suggesting that the increased involvement of the SSN
in the functional brain networks of MDD patients may reflect
alterations in these critical neural circuits [57].
In MDD, there is substantial evidence supporting

the involvement of dopamine-related dysfunction [58].
Dopamine is a neurotransmitter that plays a crucial role
in reward processing, motivation, and the regulation of
mood [59]. The SSN, as a major source of dopaminergic
neurons projecting to various brain regions, including
the striatum and prefrontal cortex, is central to these
processes [60]. The observed higher topological dimension
of the SSN in the MDD group indicates that this region
is more extensively integrated into the brain’s functional
network in these patients, potentially reflecting compensatory
mechanisms or maladaptive changes in response to altered
dopaminergic signalling [61]. This interpretation is supported
by the presence of a clique involving other dopaminergic
brain regions, such as the ventral tegmental area, which was
found only in MDD patients.

The greater involvement of the SSN in the functional
networks of MDD patients could also be related to the
cognitive and affective symptoms characteristic of the dis-
order. The SSN’s increased participation in multiple cliques,
or higher-order network structures, suggests that it may
play a more prominent role in coordinating activity across
different brain regions involved in mood regulation, decision-
making, and emotional processing [62]. This could manifest
as the characteristic symptoms of MDD, such as anhedonia,
reduced motivation, and psychomotor retardation, which are
closely linked to disruptions in dopaminergic pathways [63].
Our results are consistent with classical functional con-

nectivity studies that have shown disrupted connectivity
in several large-scale resting-state networks, including the
default mode network (DMN), salience network (SN), central
executive network (CEN), thalamic, limbic, and cerebellar
regions [64], [65], [66]. The disruptions of the aforemen-
tioned networks have been linked to dysfunctions in several
neurotransmitter systems, with most evidence supporting the
involvement of both dopaminergic and serotonergic afferent
and efferent projections. Dopamine dysregulation has been
related to alterations in the sensorimotor network (SMN) via

the nigrostriatal pathway, the salience and executive networks
via the mesocorticolimbic pathway. Similarly, serotonergic
neurons from the raphe nuclei project to regions of the
SMN, SN, and DMN [67]. In addition, pharmacoMRI
with dopaminergic and antipsychotic drugs has confirmed
the effects of dopamine on the activity and functional
connectivity of all three networks [68]. Data suggest that 5-
HT signalling increases DMN activity while decreasing SMN
activity [69], [70].

Numerous studies highlight the involvement of the hip-
pocampus in the pathophysiology of MDD, as part of
the limbic system, with reductions in gray matter volume
observed in meta-analyses and associated with depressive
symptoms in both the general population and medication-
free patients [71], [72], [73], [74]. In addition, hippocampal
volume has been correlated with depression scores in younger
patients [75] and associated with remission rates [76].
FMRI studies underscore the disrupted hippocampal activ-

ity and connectivity in MDD, with many studies reporting
increased hippocampal activity during negative information
processing [75] and decreased activity during interoceptive
tasks [77]. While there are mixed reports on hippocampal
connectivity [78] —showing both increases and decreases
with other brain regions—network measures such as nodal
efficiency in the left hippocampus have been negatively
correlated with depression severity and positively corre-
lated with improvements in depressive symptoms following
antidepressant treatment [79]. In addition, hippocampal
connectivity patterns have been associated with declarative
memory deficits, a common symptom of depression [80].

Recent research has increasingly focused on demonstrating
structural and functional impairments in MDD. However,
investigations of alterations in higher-order coupling between
structure and function remain limited. Our findings are
consistent with previous studies indicating thatMDD patients
exhibit reduced higher-order coupling in various connections.
In addition, one study observed a local rich-hub organization
in MDD patients characterized by higher-order coupling
in connections between the ventral attention network and
the limbic network compared to healthy controls [81].
Furthermore, a recent study showed that patients with
MDD exhibit increased structural connectivity-functional
connectivity coupling in intermodule connectivity between
the ventral attention and limbic networks [82]. This finding
may suggest that MDD patients have more rigid, less flexible
and less dynamic brain function. The ventral attention
network is primarily involved in the monitoring of salient
events and the processing and regulation of emotions [83],
[84]. It is also known to have strong connections with the
limbic network, which plays a critical role in integrating
emotional information and evaluating rewards [85], [86].

One of our findings concerns the central role of the
cerebellum. In addition to its role in motor control, the
cerebellum is also involved in various cognitive and emo-
tional processes. Research has shown that different areas
of the cerebellum are associated with specific higher-order
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cognitive and emotional processing [87]. These findings are
consistent with previous studies that have highlighted the
critical role of the cerebellum in depression and its potential
connection to core networks [88], [89]. Certain connections
may be associated with clinical symptoms of depression, such
as slower movement and cognitive changes [90]. In addition,
the study suggests that the vermis could serve as a potential
biomarker for the diagnosis of MDD due to its connections
to the hippocampus, orbitofrontal cortex, and thalamus, all
of which are considered critical for mood regulation [91].
In particular, the vermis has been implicated in mediating
emotion and cognition [92].
A separate study reiterates the importance of increased

cerebellar connectivity with the temporal poles and decreased
connectivity with regions within the default mode and
executive control networks in adults diagnosed with major
depression [93]. In addition, the study suggests that adults
with depression have reduced functional connectivity within
the cerebellum (primarily involving right lobule VI, left crus
I, and bilateral lobule VIIb) compared to healthy individuals.

The DMN, known for its involvement in self-referential
activity, episodic memory retrieval, and emotional regulation,
has been consistently associated with dysfunction in depres-
sion [94], [95], [96]. In addition, connectivity between the
cerebellum (including the left crus I and bilateral lobule VIIb)
and the CEN showed a reduction in adults diagnosed with
major depression. The CEN plays a critical role in cognitive
control and decision-making and is known to be impaired
in individuals with depression [95]. Previous research has
highlighted the involvement of specific cerebellar regions
within the CEN in healthy individuals [97].
A recent study used discriminative higher-order network

analysis and identified several brain regions that are affected
in patients with MDD [98]. These regions include the
hippocampus, anterior cingulate gyrus, posterior cingulate
gyrus, orbital frontal cortex, and temporal pole. These
regions are part of the brain’s ‘‘core networks’’, including
the DMN, salience network, and CEN. These networks
support higher cognitive functions and have been implicated
in the pathophysiology of depression. The hippocampus,
as a component of the DMN, may have a potential role in
MDD [99]. The default mode network plays a critical role in
consciousness and memory processing in depression and has
a strong connection to the limbic system [100].

In a separate study, increased node centralities were
observed in MDD patients in the right anterior cingulate
gyrus, left posterior cingulate gyrus, right medial superior
frontal gyrus, bilateral hippocampus, and bilateral parahip-
pocampal gyrus, which are central regions of the DMN [101].
Specifically, the study showed a negative correlation between
the node degree of the right hippocampus and the duration of
depression, suggesting that right hippocampal connectivity
may progressively decrease during disease progression.
As noted above, the hippocampus is involved in memory
retrieval and reward; this brain region may play a central

role in the pathophysiology of MDD [102]. One study
found hippocampal volume loss in first-episode depression
through quantitative meta-analysis [103], and this atrophy
is positively associated with disease duration [104]. The
increased connectivity between regions in the limbic system
suggests that bottom-up affective processing may be overpro-
cessed in MDD [105]. Thus, the obtained results elucidate
from a network perspective the abnormality of the affective
processing system in MDD patients.

Consistent with our research, another study indicates that
from a higher-order perspective, MDD patients show a
significant reduction in the dynamics of five subnetworks,
including the DMN, cognitive control network, bilateral
limbic network, and auditory network [106]. Furthermore,
they suggest that MDD has a limited impact on the detection
of brain communities, but the overlapping brain regions differ
between MDD and HC. In addition, other research suggests
decreased within-network connectivity in MDD compared
to HC in the visual network (VN), sensorimotor network
(SMN), and DMN [107]. Furthermore, this study shows
that three between-network connections also show significant
decreases in MDD: VN-SMN, VN-DAN (dorsal attention
network), and SMN-DAN. Some of the observed variations
may be due to different clinical characteristics and severity
of depression, which may lead to different brain activation
patterns and, consequently, different topological properties
within brain networks.

Although our findings are largely consistent with previous
research, there are some differences between our approach
and existing research. As mentioned above, the application
of Q-analysis to the study of MDD networks provides a
unique perspective on network organization. Consistent with
our findings, numerous studies suggest reduced topological
diversity and complexity in MDD brain networks [108],
[109], [110]. In addition, study [111] found disrupted neural
connections, particularly within the prefrontal, sensorimotor,
and cerebellar networks. However, unlike our approach,
it did not provide specific details regarding hypo- or
hyperactivation of these regions. In addition, most of the
research focuses on prominent neural networks such as the
DMN, SN, and key components of the limbic system [112],
[113], [114]. Also, some studies have focused their approach
on linking peripheral markers of MDD to network dys-
function [115], [116], which changes the perspective of the
approach and may explain the possible inconsistencies in the
results. These methodological discrepancies are due to our
innovative approach, which allows us to identify weakened
or strengthened connections in the organization of brain
networks at the level of higher-order interactions.

The identification of disrupted higher-order structures in
MDD has significant implications for both our understanding
and treatment of the disorder. The revealed reduced topo-
logical diversity and complexity suggests that the brain’s
ability to integrate information across regions is compro-
mised, potentially leading to the cognitive and emotional
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deficits observed in MDD patients. Moreover, the altered
involvement of specific brain regions, such as the increased
role of the substantia nigra and hippocampus alongside the
decreased engagement of the occipital and temporal lobes and
cerebellum, may inform targeted therapeutic strategies aimed
at restoring functional network integrity.

In this section, we compared the developed Q-analysis
approach with other approaches for reconstructing HOIs,
discussed its advantages and limitations, and the revealed
features of higher-order interactions and network disruptions
in MDD. We also discussed in detail the contribution of
the conducted analysis to the understanding of disruptions
in MDD.

V. LIMITATIONS AND FUTURE WORK
As we have mentioned in Section IV-B, the fundamental
limitation of Q-analysis is the inability to detect incompletely
connected subnetworks, which is conditioned by the clique
property. Future studies should use traditional methods, such
as Independent Component Analysis (ICA) [55], to comple-
ment the obtained results with the analysis of large-scale brain
networks that do not conform to the clique structure.

In addition to the limitations of the Q-analysis, there
are other caveats to our study. The naturalistic design of
the study does not allow the influence of medication to be
excluded, as most of the patients were taking different groups
of antidepressants. Future studies should investigate the
topology of functional networks in unmedicated subgroups.

The obtained results may have limited generalizability due
to the sample size and the single-center patient recruitment
strategy. To address this limitation, we have initiated three
international independent replications in Russia, China, and
Portugal.

Moreover, future research should continue to integrate
higher-order network analyses with other methodological
approaches to further elucidate the complex neurobiological
mechanisms of MDD and to develop more effective diagnos-
tic and therapeutic interventions.

VI. CONCLUSION
In summary, our study pioneers the use of Q-analysis to
explore higher-order interactions within functional brain
networks in individuals with major depressive disorder.
We identified significant disruptions in the higher-order
organizational structures of the brain, characterized by
reduced topological diversity and complexity, fewer and less
connected cliques, and altered involvement of key brain
regions in MDD: the increased engagement of the limbic
structures such as the substantia nigra, parahippocampal
gyrus, and hippocampus, and decreased involvement of
the cerebellum, the occipital and temporal lobes. These
findings provide a deeper understanding of the network-level
perturbations underlying MDD and offer complementary
insights to traditional pairwise interaction analyses.

In addition, we note that Q-analysis can be applied to
a wide range of neurological and psychiatric disorders,

as it offers a way to detect and quantify disruptions in the
organization of brain networks that underlie various cognitive
and behavioral impairments. Furthermore, the combinatorial
nature of Q-analysis means that it does not impose strong
assumptions about the network structure, making it adaptable
to different datasets and scales of analysis. It can reveal
subtle changes in network topology that might correspond
to disease states, developmental stages, or responses to
treatment, thus providing a universal tool for neuroscience
research. By shifting the focus from individual connections to
the broader patterns of network interaction, Q-analysis opens
new avenues for exploring the complexity of brain function
and dysfunction in a more comprehensive manner.

ETHICAL STATEMENT
Prior to participation, all individuals provided written
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ical University of Plovdiv (approval number: 2/19.04.2018).

ABBREVIATIONS

The following abbreviations are used in this study:
MDD Major depressive disorder.
HC Healthy control.
fMRI Functional magnetic resonance imaging.
FN Functional network.
HOIs Higher-order interactions.
PreCG Precentral gyrus.
SMA Supplementary motor area.
CAL Calcarine fissure.
IOG Inferior occipital gyrus.
FFG Fusiform gyrus.
PoCG Postcentral gyrus.
SPG Superior parietal gyrus.
PCL Paracentral lobule.
MTG Middle temporal gyrus.
ITG Inferior temporal gyrus.
CER4_5 Lobule IV, V of cerebellar hemisphere.
CER6 Lobule VI of cerebellar hemisphere.
VER4_5 Lobule IV, V of vermis.
VER6 Lobule VI of vermis.
HIP Hippocampus.
PHG Parahippocampal gyrus.
AAL Automatic anatomical labeling atlas.
BOLD Blood-oxygenation-level-dependent.
SSN Substantia nigra.
CEN Central executive network.
DMN Default mode network.
SN Salience network.
VN Visual network.
SMN Sensorimotor network.
DAN Dorsal attention network.
ADHD Attention deficit hyperactivity disorder.
HC Healthy controls.
SD Standard deviation.
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SUPPLEMENTARY INFORMATION
There are three supplementary files:

• SupplementaryS1 file, which contains an illustration of
all levels og the multilayer representation of the original
consensus networks for the HC and MDD groups.

• SupplementaryS2 file, which contains the detailed
composition (the lists of nodes or brain regions) of all
q-connected components at the level q = 9 for the HC
and MDD groups.

• SupplementaryS3 file, which contains the composition
of the hypoactivated and hyperactivated subnetworks for
the MDD group in the q-connected components at the
level q = 9.
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