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Abstract—Methods of noisy signal filtration using a discrete wavelet transform (DWT) with real basis sets of
the Daubechies family are compared to methods employing a double-density dual-tree complex wavelet
transform (DDCWT) with excess (nonorthonormalized) basis sets. Recommendations concerning the
choice of filter parameters for minimization of the error of noisy signal filtration are formulated.
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In recent years, methods of wavelet filtration have
proved to be a reliable tool for digital processing of
experimental data so as to rapidly clean noisy signals
and images from additive noise and random fluctua-
tions, including localized disturbances [1–5]. For this
purpose, approaches based on orthonormalized wave-
let basis sets such as functions of the Daubechies fam-
ily, pyramid expansion algorithms, and subband cod-
ing [2] are used in various applications. These
approaches have clear advantages, including high
speed (providing online processing of audio and video
signals) and signal expansion with a minimum number
of coefficients, which provides more accurate repre-
sentation and, which is especially important, correct
reconstruction of signals after the filtration of noises
[4]. However, progress in computing technologies led
to a change in priorities. so that the quality of signal
filtration (assessed by the root-mean-square (rms)
error level [6, 7] or other criteria related to specific fea-
tures of particular signals [8]) became important
rather than the speed of data processing.

The aforementioned circumstances stimulated
considerable interest in methods employing frames
representing excess (nonorthonormalized) wavelet
basis sets [2, 3]. These methods reduce distortions of
the reconstructed informative signals in cases in which
the filtration removes some essential coefficients of
expansion or when the presence of significant back-
ground noise decreases the accuracy of signal presen-
tation in the wavelet basis set [4]. Although various

functions can be used as wavelet basis sets, complex
wavelets are preferred such that eliminate main disad-
vantages of the standard method of filtration based on
the discrete wavelet transform (DWT). These draw-
backs include the absence of invariance with respect to
shift of the basis set function, an oscillating character
of expansion coefficients in the vicinity of singulari-
ties, and the appearance of artifacts in the signal
reconstructed upon correction of the wavelet expan-
sion coefficients [9]. It has been established [10, 11]
that, for eliminating these disadvantages, it is effective
to use complex functions with real and imaginary parts
related through the Hilbert transform–that is, analytic
or almost analytic wavelets. However, the choice of a
“good” basis set does not guarantee that filtration
based on this wavelet would ensure the reduction of
error since the quality of signal cleaning from noise
significantly depends on filter parameters such as the
threshold-function setting and signal-to-noise ratio
(SNR).

The present Letter puts an emphasis on tuning the
parameters of wavelet filters employing complex basis
sets and shows that their effective application requires
proper control of the threshold level.

Traditionally, the wavelet coefficients are corrected
by selecting one of two variants, “hard” and “soft,” of
threshold-function setting [6, 7]. In the former case of
hard threshold setting, the coefficients not exceeding
threshold C value are set zero, while in the case of soft



642

TECHNICAL PHYSICS LETTERS  Vol. 43  No. 7  2017

YASEEN et al.

Fig. 1. Test-signal filtration based on a traditional DWT:
(a) initial signal; (b) noisy signal (SNR = 0 dB); (c, d) sig-
nal upon filtration with soft and hard variants of threshold-
function setting, respectively, for the D20 wavelet basis set
of the Daubechies family); (e, f) rms error of filtration E vs.
threshold level C and SNR, respectively, as calculated for
(1) soft and (2) hard variants of threshold-function setting.
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setting all coefficients are modified but to different
degrees:

(1)

The latter variant of filtration allows us to avoid the
y(x) function discontinuities that lead to additional
distortions of the reconstructed signal. According to
conclusions that were drawn in previous investigations
[7], the soft variant of threshold-function setting is
preferred for the digital filtration of signals and
images.

It is a more complicated task to select the optimum
threshold level. Despite some recommendations being
known, they have been mostly formulated for DWT-
based filters, and their application to complex basis
sets does not provide minimization of the filtration
error. In order to illustrate this, let us consider the
method of filtration based on the double-density dual-
tree complex wavelet transform (DDCWT) [12, 13],
which differs from the DWT in using two wavelet
functions ψi with real and imaginary parts related
through the Hilbert transform. As a result, “detailing”
wavelet-expansion coefficients are completely retained
upon scale change, while the “approximating” coeffi-
cients (in expansion over scaling functions ϕ) are two-
fold rarefied. The scaling transformations are defined
by the following relations:

(2)

where the filter coefficients are set according to tables
calculated in [12].

For the comparative analysis of parameters ensur-
ing the best quality of filtration, we have considered a
test example of harmonic oscillations with additive
white noise of large intensity (SNR = 0 dB). First, the
model signal filtration was performed by a method
based on the traditional DWT with Daubechies wave-
lets (Fig. 1). As can be seen, the quality of filtration
using the soft variant of threshold-function setting is
higher than that for the hard variant (cf. Figs. 1c, 1d).
Calculations confirmed this conclusion both for the
given example (Fig. 1e) and for other SNR values
(Fig. 1f). These results are quite to be expected and
agree with conclusions drawn in other investigations.
However, one important circumstance to be noted is
that the advantage of selecting threshold function (1)
is only manifested for small C (fig. 1e). Once the
threshold is chosen on a greater level, the situation
dramatically changes and the hard variant of thresh-
old-function setting will become preferred.
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The calculation illustrated in Fig. 1 did not stipu-
late optimization of the choice of wavelet basis set in
the Daubechies family. Now let us consider the next
task and minimize the error of filtration by tuning the
filter parameters (wavelet basis set and threshold level
C). Figure 2 shows the obtained results, according to
which a minimum rms error of 0.68 corresponds to the
use of Daubechies wavelet set D7 at a threshold level of
C = 1.22. Note that, for the convenience of compari-
son, Fig. 2 (in contrast to Fig. 1) presents normalized
values of the rms error of filtration.

Then, analogous calculations were performed for
the same signal filtered by the DDCWT method. The
quality of filtration can be visually assessed by com-
paring Figs. 2c and 2d, which shows the advantages of
the algorithm employing the complex wavelet basis
set. According to calculations performed for various
threshold levels, the minimum rms error 0.63 was
achieved for C = 0.6. Therefore, the DDCWT method
not only provides for a decrease in the error of filtra-
tion, but also reduces the optimum threshold level
approximately by half. Note that, if the threshold level
were set according to the conventional recommenda-
tions developed for the DWT method (choice of a uni-
versal threshold, setting C using the SURE procedure,
etc. [7]), the advantages of the DDCWT would not be
provided and, moreover, the results could be even
worse than those obtained by the standard DWT
method. As can be seen from Fig. 2e, the DDCWT
algorithm with a threshold optimum for the DWT
(C = 1.22) leads to greater error of filtration. Note that
the complex wavelet basis sets are especially effective
at high noise levels, while the results of low noise fil-
tration are comparable to those obtained by the stan-
dard DWT method (Fig. 2f).

Analogous comparison of the two filtration meth-
ods was also carried out for some other signals, in par-
ticular, for audio signals with additive noise. Despite
individual specific features in the behavior of the error
of filtration depending on the selected threshold level,
the established qualitative correspondence was
observed in all test examples. In particular, the general
conclusions of the effectiveness of about twofold
reduction in the optimum threshold level calculated
for the DWT method with soft variant of threshold-
function setting were confirmed. This decrease is
among the important advantages of the DDCWT
method, since it allows using a lower degree of correc-
tion of the most informative wavelet-expansion coeffi-
cients, thus reducing the risk of introducing accidental
distortions at the stage of signal synthesis.
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