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Abstract—In this paper, we analyze the brain activity during
the execution by the subject of simple cognitive tasks associ-
ated with visual attention and symbol perception. We obtain
biomarkers of brain activity in the process of solving cognitive
tasks. These biomarkers make it possible to relate the quality
and speed of execution of the tasks offered to the subject with
the brain’s activity of the cortical network. We use a combination
of time-frequency and statistical analysis to calculate activity
characteristics. The results obtained can be used to develop
neural interfaces for training attention and adjusting the learning
process.

Index Terms—Biomarkers,EEG, brain activity, cognitive task

I. INTRODUCTION

The direction of monitoring human cognitive functions in

the learning process is actively developing in world science.

There are many works aimed at identifying neurophysiological

markers characterizing the efficiency of the human brain in

the process of perception and assimilation of information, as

well as the efficiency of memory [1]–[8]. Mostly, the features

of time-frequency and spatial-temporal structures of signals

of brain activity are determined using artificial intelligence

methods and statistical analysis (reduction of dimension, fea-

ture extraction, clustering, etc.) [9]–[14]. But the developed

approaches are characterized by a strong binding to a specific

subject, as well as instability of operation due to the variability

of the properties of neural activity under the influence of

external and internal factors.
The urgency of this problem is connected with the search

for opportunities to increase the efficiency of the educational

process (the efficiency of mastering new information) by using

intelligent systems to optimize the educational load, taking

into account the individual psychophysiological characteristics

of students, their cognitive state and characteristics of memory.

This work was supported by the Russian Science Foundation (Grant No.
19-72-10121) and the Russian Foundation for Basic Research (19-29-14101)
in the part of the EEG data preprocessing.

One of the efficient method to study brain activity is obtain

experimental data by using EEG [15]–[18], MEG [5], [19]–

[21], [21] or fNIRS [22]–[24]. Another way is numerical sim-

ulation of neural network activity by using different neuron’s

models [25]–[29] which allows to investigate the processes

of inter-neuron interaction or collective neural dynamics [30].

EEG-based research on the analysis of brain activity seems to

be especially promising. First of all, this is due to the fact that

EEG, being a relatively inexpensive, affordable, easy-to-use

and safe technology, allows obtaining objective information

about the brain’s work with good time resolution [31]. More-

over, when using EEG, preliminary analysis and optimization

usually allows to significantly reduce the number of electrodes,

as well as the duration of recordings of EEG signals when

solving a specific problem [32]. For example, in [33], it

was shown that the state of the subject upon perception of

an ambiguous visual stimulus can be identified with high

accuracy using signals recorded with only two EEG channels.

The use of EEG for an objective analysis of the cognitive

characteristics of students and personalization of the learning

process through the implementation of feedback based on

the data obtained will significantly improve the quality of

the educational process and the efficiency of learning new

material [31].

Here, we analyze the brain activity during the performance

by the subject of simple cognitive tasks associated with visual

attention and symbol perception. We obtain biomarkers of

brain activity in the process of solving cognitive tasks. These

biomarkers make it possible to relate the quality and speed

of performance of the tasks offered to the subject with the

brain’s activity of the cortical network. We use a combination

of time-frequency and statistical analysis to calculate activity

characteristics. The results obtained can be used to develop

neural interfaces for training attention and adjusting the learn-

ing process.

978-1-6654-4283-1/21/$31.00 ©2021 IEEE

36

20
21

 5
th

 S
ci

en
tif

ic
 S

ch
oo

l D
yn

am
ic

s o
f C

om
pl

ex
 N

et
w

or
ks

 a
nd

 th
ei

r A
pp

lic
at

io
ns

 (D
C

N
A

) |
 9

78
-1

-6
65

4-
42

83
-1

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

D
C

N
A

53
42

7.
20

21
.9

58
70

01



Fp1

F7
F3 Fz F4

F8

FT10

FC6FC2FC1FC5

FT9

T7 T8

TP9

CP5 CP1 CP2 CP6

P8
P4P3 Pz

P7

O1 OZ O2

C3 Cz C4

Fp2
Nz

a

b

Fig. 1. (a) Electrode locations of International 10-10 system for EEG
recording. (b) The ActiCHamp electroencephalograph manufactured by Brain
Products.

II. MATERIALS AND METHODS

The experimental studies involved 10 schoolchildren aged 7

to 10 years without neuropsychological diseases, who did not

take medication. The children and their parents were famil-

iarized in advance with the procedure of the experiment and

the possible inconveniences caused by it had the opportunity

to ask questions of interest and get satisfactory answers to

them. Each of the subjects’ parents completed and signed an

informed consent form for participation in the experiment. All

experimental work was carried out in accordance with the

requirements of the Declaration of Helsinki and approved by

the Ethics Commission of Innopolis University.

The experiment was carried out as follows. The subject was

sitting in a comfortable chair, and a tablet was placed on the

table in front of him (distance from the screen to the eyes

≈ 30-40 cm). The tablet was used both for demonstrating

test questions and for recording answers with a stylus. The

duration of each individual experiment was ≈10-15 minutes,

depending on the speed of the tasks performed by the subjects.

During the experiment, the activity of the brain was

recorded using electroencephalography (EEG). For this, the

equipment at the disposal of the Laboratory of Neuroscience

and Cognitive Technologies was used. EEG signals provide

insight into the electrical activity of the brain.

The EEG activity was recorded using an actiCHamp elec-

troencephalograph manufactured by Brain Products, Germany

(see 1). EEG signals were recorded for 31 channels in accor-

dance with the 10-10 scheme (see 1a). The ground was located

at the site of the Fpz electrode, and the reference electrode was

placed behind the right ear. For EEG registration, active Ag /

AgCl electrodes ActiCAP were used, which were located on

the scalp surface in the sockets of a special EasyCAP cap.

To improve signal quality and provide better conductivity, the

scalp was pretreated with NuPrep abrasive gel, and then the

electrodes were positioned using SuperVisc conductive gel.

During the experiment, the conductivity values were monitored

at each of the EEG electrodes. Typically, the values were 25

< kΩ which is sufficient for the correct operation of active

EEG electrodes.

The well-known Schult table was considered as a task

(see 2a). The completion of this task allows determining the

effectiveness of the test subject’s work and his ability to work,

as well as resistance to external distractions. By default, the

Schulte table is a 5x5 matrix with randomly located numbers

from 1 to 25. By default, the subject should select numbers

from 25 to 1 in the table in descending order by clicking on

them on the tablet. The system registers time intervals between

two consecutive clicks on adjacent numbers. Each test subject

completed N = 5 Schulte tables, the execution of 1 table took

from 50 to 90 s. Between the tables, there was a short break

of 10–20 s.

In the course of the experimental work, EEG signals were

recorded with a sampling frequency of 1000 Hz and filtered

using a bandpass filter (1-70 Hz) and a notch filter (49.5-50.5

Hz). The bandpass filter serves to limit the studied range on

the EEG signals and remove low-frequency activity associated,

for example, with respiration, and high-frequency components

that appear when the electrodes are poorly connected, their

displacement, various external influences, etc. Studies show

that when studying the cognitive activity of the brain, such

frequency ranges as delta (1-4 Hz), theta (4-8 Hz), alpha (8-

14 Hz), beta 1 and 2 (15-40 Hz) ), gamma ( 40-60 Hz).

Thus, the frequency range of the studied EEG signals after

filtering makes it possible to explore all the listed ranges. The

notch filter serves to remove the 50 Hz pickup from the mains,

which inevitably appears on the EEG signals regardless of the

conditions of the experiment.

Thus, filtering EEG signals allows you to get rid of many

interferences, however, various physiological artifacts caused,

for example, by cardiac rhythms, eye movements, facial and

neck muscles, etc., are also a problem in the time-frequency

analysis of EEG signals. The main difficulty here is that the

frequency range of most physiological artifacts overlaps with

the useful frequency ranges of the EEG signal. In this case,

various methods are used related to the decomposition of the

EEG signal (for example, Gram-Schmidt orthogonalization).

One of the most popular methods in the field is Independent

Component Analysis (ICA). When applied to EEG signals,

ICA makes it possible to decompose the entire EEG data

set into a number of independent components. Obviously, the

movements of the eyeball or neck muscles are independent of

the electrical activity of the brain; therefore, the component

containing the artifacts should also be independent of the other

components containing the EEG signals.
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Fig. 2. Typical example task with a Schulte table from part of the test. The
arrows show the sequence of the necessary choices for the correct solution.

As part of the work, the ICA method was applied to the

recorded EEG signals - by decomposing the EEG signals into

a set of components, removing the component with artifacts,

and resumming the remaining components, one can obtain the

original EEG data set with the removed artifacts.

We have analyzed the EEG signals using the continuous

wavelet transform which is now widely used in neuroscience

and neurophysiology. The instant wavelet energy spectrum

En(f, t) =
√

Wn(f, t)2 was calculated for each EEG channel

Xn(t) in the frequency range f ∈ [1, 70] Hz. Here, Wn(f, t)
is the complex-valued wavelet coefficients calculated as

Wn(f, t) =
√

f

+∞∫
−∞

Xn(t)ψ
∗(f, t)dt, (1)

where n = 1, ..., N is the EEG channel number (N = 31 being

the total number of channels used for the analysis) and “*”

defines the complex conjugation. The mother wavelet function

ψ(f, t) is the Morlet wavelet often used for the analysis of

neurophysiological data, defined as

ψ(f, t) =
√
fπ1/4ejω0f(t−t0)ef(t−t0)

2/2, (2)

where ω0 = 2π is the central frequency of the mother Morlet

wavelet.

In this paper, we calculate separately the average energy

in the alpha(8–13 Hz) and beta(15–40 Hz) bands during the

execution of each of the tables.

En
α,β,Δt1,Δt2 =

1

ΔfΔt

∫
t∈Δt1,Δt2

∫
f∈α,β

En(f, t)df. (3)

For each presentation of the table, we calculate the follow-

ing characteristic D(t), which demonstrates the ratio of average

energies in the alpha and beta bands:

D(k) =
En

β

En
α

(4)
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Fig. 3. a The dependence of the average execution time of 5 tables on the
variance of the distribution of the ratio of the average energies in the beta
and alpha ranges for the T7 channel. (b) The distribution of F-value on the
head surface.

here k is the table number during the solution of which the

average energy was calculated.

III. RESULTS

In this work, we analyzed the activity of the brain when

performing simple cognitive tasks related to visual attention

and perception of symbols. We have found biomarkers of brain

activity that can relate the speed of execution of the Schulte

table to the electrical activity of the brain. Figure 3 shows

the dependence of the average execution time of 5 tables on

the variance of the distribution of the ratio of the average

energies in the beta and alpha ranges for the T7 channel.

This relationship was approximated using linear regression.

Statistical testing of the results obtained showed that only the

T7 channel is characterized by significant changes (see Figure

3b, illustrating the distribution of F-value on the head surface).

IV. CONCLUSION

Thus, we obtained biomarkers of brain activity in the

process of solving cognitive tasks. We used a combination

of time-frequency and statistical analysis to calculate activity

characteristics. The results obtained can be used to develop

neural interfaces for training attention and adjusting the learn-

ing process.
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