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ABSTRACT

The method for calculation of zero conditional Lyapunov exponent from time series has been proposed. Such
method is shown to define the degree of synchronization of the regime realized in the system. It has been
applied to real experimental neurophysiological time series represented by electroencephalograms of WAG/Rij
rats having genetic predisposition to absence-epilepsy. The degree of synchronization in epileptic brain has been
found.
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1. INTRODUCTION

Lyapunov exponents are the powerful tool for the analysis of the complex system dynamics.1–4 They can
be used for identification of the transition between different regimes, e.g., from periodic and quasi-periodic
oscillations to the chaotic ones,5,6 from chaotic dynamics to the hyperchaotic ones,7 for revelation of the presence
of hyperbolic attractor,3,8 as well as for the different types of the synchronous regime detection (see, e.g.9–13).

To calculate the spectrum of Lyapunov exponents different methods and procedures have been proposed.14–17

At the same time, the most part of them can be used only in such case when the evolution operator of the system
under study is known explicitly (see, e.g.4,16–18). At the same time, sometimes we deal with the experimental
time series that demands the modification of the standard methods and algorithms for the experimental time
series analysis. Several methods allowing to calculate one or two highest Lyapunov exponents from time series
are known at present.2,17,19–23 They are usually used for identification of the presence of chaos in autonomous
systems whereas they are almost inapplicable for the analysis of synchronization in coupled or non-autonomous
systems due to impossibility of the calculation of the lower Lyapunov exponents from time series.

Among the spectrum of Lyapunov exponent of non-autonomous or coupled dynamical systems the so-called
zero conditional Lyapunov exponent plays a crucial role for the analysis of synchronization. In particular, the
transition of such Lyapunov exponent in the field of the negative values may be considered as a precursor
of the phase synchronization regime onset in periodical systems subjected to the noise influence and chaotic
oscillators24,25 whereas the absolute value of such Lyapunov exponent can characterize the degree of the phase
synchronization regime realized in the system under study. Therefore the estimation of such Lyapunov exponent
from time series is an important task of nonlinear dynamics.

Recently we have proposed the method for estimation of the zero conditional Lyapunov exponent from time
series and shown its validity on the model systems of nonlinear dynamics.26 In present paper we make the
modification of such method and apply it to real experimental neurophysiological time series.
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2. DATA AND METHODS

2.1 Method description

The main idea of the method for estimation of zero conditional Lyapunov exponent from time series proposed
in Ref.26 consists in the approximation of the probability density of the shifted phase difference x = ∆φ − ψ
(where ψ = const) of interacting systems being in the phase synchronization regime by the distribution

ρ(x) = A exp[− 2

D
(εx− Ωx3

3
)], (1)

obtained for the circlemap being the simple discrete model of synchronization phenomenon

xn+1 = xn + 2Ω(1− cosxn)− ε+ ξn, mod 2π (2)

where xn plays the role of the phase difference, ξn is the noise term (⟨ξn⟩ = 0, ⟨ξnξm⟩ = Dδ(n−m)), Ω and
ε are the control parameters, D is the noise variance, A is a normalization factor.25 The value of conditional
Lyapunov exponent in such case can be calculated by the formula

Λ0(ε) =

∫ x2

x1

ρ(x) ln |1 + 2Ωx|dx, (3)

at that the values of x1 and x2 should be found empirically from the form of ρ(x), and Ω-parameter should be
defined by approximation of the distribution.

2.2 EEG data and wavelet transform

As the real experimental neurophysiological time series we have used electroencephalograms (EEG) of WAG/Rij
rats having genetic predisposition to absence-epilepsy. We have analyzed EEG signals registered from four dif-
ferent fields of epileptic brain (occipital cortex, frontal cortex, reticular (RTN) and ventroposteromedial (VPM)
nuclei of the thalamus). All experimental work with EEG recordings has been done by experienced neurophysi-
ologists from the Moscow Institute of Higher Nervous Activity and Neurophysiology.

In Fig. 1 fragments of EEG signals registered from different fields of epileptic brain of WAG/Rij rat have been
shown. It is clearly seen the presence of spike-wave discharges being the patterns of the synchronous activity in
epileptic brain.27

To define the degree of synchronization between different fields of epileptic brain we should reveal, first of all,
the patterns of the synchronous regime from EEG signals. For these purposes the continuous wavelet transform
should be used.28 Continuous wavelet transform is given by

W (s, t0) =
1√
s

+∞∫
−∞

x(t)ψ∗
(
t− t0
s

)
dt, (4)

where x(t) is the signal under study, ψ(η) = (1/ 4
√
π) exp(jΩ0η) exp

(
−η2/2

)
is the Morlet complex mother wavelet

function, Ω0 = 2π is parameter of the wavelet, time scale s corresponds to the width of the wavelet function ψ,
t0 is the shift of wavelet along the time axis, the symbol “*” denotes the complex conjugation.29,30 The time
scale s is usually used instead of the frequency f of Fourier transform. In the case of the use of the complex
Morlet wavelet function with parameter Ω = 2π they are inversely proportional to each other, i.e. s = 1/f .

The use of the complex wavelet basis allows characterizing the system dynamics on the different time scales
s, at that the absolute value |W (s, t0)| indicates the presence and intensity of the time scale s mode in the time
series x(t), whereas its argument ϕ(s, t) = argW (s, t) is a phase naturally introduced for every time scale.

To reveal the presence of spike-wave discharges in epileptic EEG it is necessary to calculate the instantaneous
energy distributions E(s, t) = |W (s, t)|2 averaged over the range of time scales s ∈ (s1, s2), i.e.

⟨E(t)⟩ =
∫ s2

s1

E(s, t)ds, (5)
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Figure 1. Fragments of EEG signals registered from different fields of epileptic brain: (a) occipital cortex, (b) frontal cortex,
(c) reticular nucleus of thalamus (RTN), (d) ventroposteromedial nucleus of thalamus (VPM). Spike-wave discharges in
EEG signals are schematically marked by grey rectangles

at that the boundaries of time scales should correspond to the frequency range 7-15 Hz which is typical for the
spike-wave discharges.28 If the value of ⟨E(t)⟩ exceeded a certain threshold ∆E = 0.5, the spike-wave discharge
is realized in the system.

To define the degree of synchronization between different fields of epileptic brain we should apply the method
described in subsection 2.1 to the time series of the phase difference ∆ϕ = ϕ1(s, t)−ϕ2(s, t) between two different
fields 1 and 2 corresponding to the time intervals of the spike-wave discharges realization. At that, the phase
difference should be calculated on the time scale s = smax ∈ (s1, s2) corresponding to the maximal value of the
instantaneous energy distribution E(s, t) computed by the EEG signal, for example, from the frontal cortex of
epileptic brain. Our calculations show that in all considered cases in the time intervals corresponding to the
spike-wave discharges the phase locking condition

|∆ϕ| < const (6)

is satisfied that makes possible to apply the method considered in Sec.2.1 to the analyzed signals.

In Fig. 2,a the time dependence of the phase difference calculated between the EEG signals from RTN and
VPN fields of epileptic brain of WAG/Rij rat during the spike-wave discharges is shown. Fig. 2,b illustrates
the probability density distribution obtained for such phase difference and its approximation by the analytical
formula (1). It is clearly seen that despite of the presence of heavy tails in the phase difference distribution
the analytical relation is a good approximation of the distribution obtained experimentally. The value of zero
conditional Lyapunov exponent calculated in such a way by formula (3) is about −0.23 that testifies a high enough
degree of the phase synchronization realized in epileptic brain. It should be noted that degree of synchronization
being realized between the other fields of the brain cortex and thalamus is a little lower in comparison with the
considered case.
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Figure 2. (a) Time dependence of the phase difference ∆ϕ calculated between EEG signals corresponding to RTN and
VPN fields of the brain of WAG/Rij rat during the spike-wave discharges. (b) Distribution of the phase differences and
its approximation by analytica relation (1). The parameters of approximation are the following: A = 0.0016, Ω = 0.09,
ε = 0.148, D = 0.038, x1 = 3, x2 = 1

3. CONCLUSIONS

In present paper we have proposed the method for estimation of the value of zero conditional Lyapunov
exponent from time series. We have shown that such exponent can characterize the degree of the phase syn-
chronization realized in the system. We have applied such method to real experimental neurophysiological time
series and defined the degree of synchronization in epileptic brain.
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