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ABSTRACT

It is known that brain performs cognitive functions through the activation of a distributed cortical network,
which includes remote cortical regions. With this in mind we have analyzed the spatio-temporal cortical activity
based on multichannel EEG recordings during accomplishing cognitive task. As the result, we have revealed
typical spatio-temporal structures related to the different levels of cognitive task complexity.
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1. INTRODUCTION

The study of brain activity during the accomplishing of cognitive tasks is one of the most interesting and
challenging topics in neuroscience. Different features of the neuronal activity are known to be associated with
the complex psychophysiological processes and cognitive functions, such as attention,1 memory,2 intelligence,3

decision-making.4 The neuronal activity features can be studied with the help of noninvasive techniques, e.g.
electroencephalography (EEG) and magnetoencephalography (MEG). For instance, the recent works reported
the classification of brain states associated with the state of uncertainty and decision-making by using MEG.5

Also, recent work described the analysis of human motivation based on the consideration of EEG trials.6 The
reported possibility to use noninvasive EEG recordings for the human condition evaluation is important for the
development of the brain-computer interfaces (BCI) enabling the monitoring and control of the brain states.7,8

The recorded EEG signals consist of the different rhythms and the brain noise9 that take part in the formation
of certain cognitive functions. During the accomplishing of the complex cognitive tasks, a distributed functional
cortical network is activated, involving the neurons from various remote areas of the brain and synchronize their
activity in the different frequency bands.10,11

In this work we performed a spatio-temporal analysis of the cortical activity in the α- and β-frequency bands
during the cognitive task accomplishing. The cognitive task implied a classification of the ambiguous visual
stimuli (Necker cubes) according to their interpretations. This task is the example of a decision-making task
which requires the subject to make a decision based on the available sensory information. Usually, the perceptual
decision-making task is not viewed as a classical cognitive domain like attention or memory. At the same time,
this is mostly true for near-threshold stimuli12 or unambiguous stimuli. In our experiments, we used ambiguous
visual stimuli,whose classification caused uncertainty in decision-making when ambiguity is high.5 Finally, in
agreement with the recent work,4 the Necker cube interpretation was considered as a cognitive decision process.
The choice of the α- and β-frequency bands was attributable to their established role in the sensory information
processing13 and decision-making.14
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2. METHODS

2.1 Experimental procedure

Ten healthy subjects (5 males and 5 females), between the ages of 26 and 35 with normal or corrected-to-normal
visual acuity participated in the experiments. All of them provided informed written consent before participating
in the experiment. The experimental studies were performed in accordance with the Declaration of Helsinki and
approved by the local research ethics committee of the Innopolis University.

The Necker cube was used as the visual stimuli.15 It represents itself a cube with transparent faces and
visible edges; an observer without any perception abnormalities sees the Necker cube as a 3D-object due to the
specific position of the cube’s edges. Bistability in perception consists in the interpretation of this 3D-object as
to be either left- or right-oriented depending on the constrast of different inner edges of the cube. The contrast
a ∈ [0, 1] of the three middle lines centered in the left middle corner was used as a control parameter. The
values a = 1 and a = 0 correspond, respectively, to 0 (black) and 255 (white) pixels’ luminance of the middle
lines. If a is close to 0 or 1, such a Necker cube is easily interpreted as either right-oriented or left-oriented. For
a ∼ 0.5, identifying the orientation of the Necker cube becomes difficult, since such an image has a high level of
ambiguity. During the experiment, the subject was randomly shown 400 cubes of Necker with different values
of the parameter a.

Participants of the experiment were instructed to press either the left or right key depending on the first
impression of the orientation of the Necker cube. Since the perception of the current cube can be influenced
by previously demonstrated Necker cubes, the length of the visual stimulus representation varied in the range
of 1 − 1.5 s. Also, a random change in the control parameter a also prevented the stabilization of perception.
In addition, abstract images were exhibited for about γ = 3.0− 5.0 between demonstrations of the Necker cube
image to eliminate the “memory effect”.

The EEG signals were recorded using the monopolar registration method and the classical extended ten–ten
electrode system. We recorded 31 signals with two reference electrodes A1 and A2 on the earlobes and a ground
electrode N just above the forehead. The signals were acquired via the cup adhesive Ag/AgCl electrodes placed
on the “Tien–20” paste (Weaver and Company, Colorado, USA). Immediately before the experiments started,
we performed all necessary procedures to increase skin conductivity and reduce its resistance using the abrasive
“NuPrep” gel (Weaver and Company, Colorado, USA). The impedance was monitored after the electrodes were
installed and measured throughout the experiments. Usually, the impedance values varied within a 2–5 kΩ
interval. The electroencephalograph “Encephalan-EEG-19/26” (Medicom MTD company, Taganrog, Russian
Federation) with multiple EEG channels and a two-button input device (keypad) was used for amplification and
analog-to-digital conversion of the EEG signals. The raw EEG signals were filtered by a band-pass filter with
cut-off points at 1 Hz (HP) and 100 Hz (LP) and by a 50-Hz notch filter by embedded a hardware-software data
acquisition complex.

2.2 Signal analysis

We analyzed the EEG signals power in α- and β-frequency bands, using the continuous wavelet transformation.
The wavelet power spectrum En(f, t) = (Wn(f, t))2 was calculated for each EEG channel Xn(t) in the frequency
range 1 − 30 Hz including both α and β ranges. Here, Wn(f, t) is the complex-valued wavelet coefficients
calculated as

Wn(f, t) =
√
f

t+4/f∫
t−4/f

Xn(t)ψ∗(f, t)dt, (1)

where n = 1, ..., N is the EEG chanel number (N = 31 is the total number of chanels used for the analysis)
and “*” defines the complex conjugation. The mother wavelet function ψ(f, t) is the Morlet wavelet16 which is
defined as

ψ(f, t) =
√
fπ1/4ejω0f(t−t0)ef(t−t0)2/2, (2)
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where ω0 = 2π is the wavelet parameter.17

For α- and β-frequency bands the wavelet amplitudes Enα(t) and Enβ (t) were calculated as

Enα,β(t) =
1

∆fα,β

∫
∆fα,β

En(f ′, t)df ′, (3)

where ∆fα = 8 − 12 Hz, ∆fβ = 15 − 30 Hz. The time-series of the wavelet power (3) was calculated for the
whole time of the experimental session and then was split into the time segments τ ipre = 0.5 s and τ ipost = 0.5 s,
before and after the i-th visual stimulus presentation.

〈Enα,β〉τ ipre,τ ipost
=

∫
τ ipre,τ

i
post

Enα,β(t′)dt′. (4)

For each stimulus ambiguity the difference between 〈Enα,β〉τ ipre and 〈Enα,β〉τ ipost
for the n-th EEG sensor was

analyzed statistically via the paired samples t-test based on 20 trials.

3. RESULTS

In the framework of this study, the complexity of the considered task was associated with the ambiguity of the
visual stimulus. To investigate the effect of visual stimulus complexity, all Necker cubes were divided into two
groups (each group included 80 stimuli - 20 for each value of parameter a):

• Low ambiguity (LA) stimuli, including the Necker cube images with a ∈ {0.15, 0.25, 0.75, 0.85}

• High ambiguity (HA) stimuli, including the Necker cube images with a ∈ {0.40, 0.45, 0.55, 0.60}

Changes in electrical activity of the brain induced by the visual sensory information processing were analyzed
(see methods) and the EEG channels showing significant changes (increase or decrease) in spectral energy in the
alpha and beta frequency ranges were identified. Figure 1 shows the difference D between the number of EEG
channels where Eα increases and those where Eα decreases for LA and HA stimuli after the presentation of the
visual stimulus.
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Figure 1. Difference D (group mean±SE) between the number of EEG channels, where α-band energy (Eα) increases and
those where Eα decreases versus stimuli ambiguity (LA, HA)

The median values of D = −1.75 for LA stimuli and D = −2.5 for HA stimuli, indicating a predominance of
EEG channels in which energy of the α-band decreases after presentation of the visual stimulus.
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Figure 2. Plot of EEG channels (group mean) reflecting Eα decrease for all subjects for LA (a) and HA (b) stimuli

A repeated measures ANOVA is used to compare the differences of D between time points (before and after
the presentation of the visual stimulus), as well as for the level of ambiguity of the images presented (LA and HA).
ANOVA with Greenhouse-Geissser correction shows a significant difference in the value of D after the stimulus
is demonstrated relative to the value of D before the image is presented (F1,9 = 8.28, p = 0.018) however the
difference between LA and HA stimuli is negligible (F1,9 = 0.25, p = 0.877). Wilcoxon signed rank test for the
related samples did not revealed significant change between LA and RA groups.

Therefore, after the presentation of the visual stimulus, the number of channels showing a decrease of energy
in the α range increases regardless of the level of ambiguity of the stimulus, which indicates a decrease of the
activity in the α range during the processing of visual information.

Figure 2 shows EEG channels exhibiting the effect of decreasing alpha-band activity for LA (a) and HA
(b) stimuli after presentation of the visual stimulus. The higher value of N means that more subjects show a
decrease in the energy of the α-range in this particular area. It can be seen that the distribution reaches the
highest values for the parietal region (P3, Pz, P4).

Then we have considered the energy changes in the β-range. Figure 3 shows the difference D between
the number of EEG channels where Eβ increases and those where Eβ decreases for LA and HA stimuli after
presentation of the visual stimulus.

Wilcoxon signed rank test for related samples shown significantly changes for LA and HA after visual stimulus
demonstration (p = 0.032). Thus, according to our results, unlike α-band energy, the energy in β-band changes
in different way for different stimuli ambiguity. For HA stimuli, the number of channels demonstrating increase
of β-band energy exceeds one corresponding to LA stimuli.
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Figure 3. Difference D (group mean±SE) between the number of EEG channels, where β-band energy (Eβ) increases and
those where Eβ decreases versus stimuli ambiguity (LA, HA)
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Figure 4. Plot of EEG channels (group mean) reflecting Eβ increase for all subjects for LA (a) and HA (b) stimuli

In addition, for the ambiguity of the visual stimulus, the localization of EEG channels demonstrating an
increase in energy in the beta range is different (Figure 4). For LA stimuli (b) β-band energy increases in the
parietal area (P3, Pz, P4 EEG channels). For HA stimuli (c) the β-band energy increases mostly in frontal area
(Fp1, Fpz, Fp2 EEG channels), as well as in parietal area (Cp3, Cpz, Cp4 EEG channels).
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4. CONCLUSION

The features of neural activity of the brain in the α- and β-frequency band during the processing of visual
information of varying complexity were analyzed. During the analysis, it was found that the behavior of the
α-rhythm remains unchanged for both simple visual stimuli and complex ones and consists in the destruction of
the α-rhythm energy in the parietal region of the brain. Unlike the dynamics of the α-rhythm, the behavior of the
β-rhythm differs when processing visual information of varying complexity. When processing visual information
with a low level of ambiguity, there is an increase of β-rhythm energy in the parietal area. When processing
visual information with a high level of ambiguity, β-rhythm energy increased in the frontal and parietal areas of
the brain.
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