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coherent resonance in the 
distributed cortical network during 
sensory information processing
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Neuronal brain network is a distributed computing system, whose architecture is dynamically adjusted 
to provide optimal performance of sensory processing. A small amount of visual information needed 
effortlessly be processed, activates neural activity in occipital and parietal areas. Conversely, a visual 
task which requires sustained attention to process a large amount of sensory information, involves a 
set of long-distance connections between parietal and frontal areas coordinating the activity of these 
distant brain regions. We demonstrate that while neural interactions result in coherence, the strongest 
connection is achieved through coherence resonance induced by adjusting intrinsic brain noise.

It is well-known known that brain dynamically adjusts the structure of its functional neuronal network to 
enhance the efficiency of sensory processing under increasing cognitive demand1,2. This mechanism is described 
in the framework of the global workspace theory, which implies that conscious perception requires coherent 
activity of multiple distributed brain regions3,4. In this context, perception and preliminary processing of visual 
information is performed by the fronto-parietal network5,6. The mechanisms underlying the emergence of neural 
connections between remote regions of the brain are still unknown and remain a widely debated problem in neu-
roscience. There are several well-known theories which are about to explain how neural ensembles communicate 
in the brain. In particular, Fries7 hypothesized that neuronal communication is subserved by neuronal coherence. 
According to his theory, activated neuron groups communicate during temporal windows when they are coher-
ent. Furthermore, Gregoriou et al.8 suggested that the mechanism of neuronal communication is implemented 
through high-frequency gamma-band oscillations. The authors showed that time-shifted coupling at gamma 
frequencies may optimize the post-synaptic impact of spikes from one area upon the other, and, by this, improve 
cross-area communication. Lisman and Jensen9 demonstrated that along with gamma frequencies, theta frequen-
cies also play important role in neuronal communication. They found that gamma and theta frequency oscilla-
tions occur in the same brain regions and interact with each other coordinating communication between brain 
regions. Finally, it was concluded that neuronal communication is simultaneously conducted at different fre-
quency bands and requires coherence10. This requirement for efficient communication known as Communication 
Through Coherence (CTC) implies that a postsynaptic neural group, receiving input signals from several presyn-
aptic groups, responds primarily to those group with which it is more coherent. In the absence of the coherence, 
the inputs arrive at random phases of the excitability cycle and therefore have a very low connectivity efficiency.

Although the important role of the coherence mechanism for communication between remote brain regions 
was highlighted11, the understanding of how CTC helps the brain to perform cognitive tasks still remains an 
enduring challenge of modern neuroscience12. In this respect, we suppose that the improvement of neuronal 
communication can be achieved through coherence resonance (CR) which appears in the neuronal network at 
a certain level of noise. CR in neuronal networks was predicted by numerical simulations of different neural 
models13–15. CR in the brain implies the existence of intrinsic brain noise caused by internal thermal fluctuations 
of membrane conductance mediated by random opening and closing ion channels16,17. We hypothesize that the 
brain in some way adjusts this noise according to cognitive demand in order to increase signal-to-noise ratio.

Let us consider the Hodgkin-Huxley neuronal network model, where the dynamics of each neuron is affected 
by intrinsic noise. Let, the values of Spow and Iext represent the intensity of noise and external stimulus, respectively. 
In the absence of noise, the behavior of the neural ensemble is only regulated by the external signal.
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Here, we are most interested in the neuronal network behavior near the excitation threshold. The coherence of 
the neuronal activity in the model cortical network was estimated by the correlation time τc  (See Eq. 18). 
Figure 1A illustrates the dependence of τc on the noise intensity Spow and the external signal amplitude Iext. In the 
absence of noise all the neurons are silent below the excitation threshold ( μ< .I 6 8ext A/cm2) due to the absence 
of the random fluctuations enabling switching of the neuron’s activity from the silent state (fixed point) to the 
spiking activity (limit cycle). Increasing Iext above excitation threshold results in a monotonous growth of the 
maximal correlation time τc (purple curve in Fig. 1A).

Introduction of low-intensity noise ( = .S 0 1pow ) reduces network’s coherence above the excitation threshold 
(red curve in Fig. 1A). However, network’s behavior remains qualitatively similar: coherence grows monotonically 
with increasing Iext. At the same time, strong intrinsic noise ( > .S 2 3pow ) shifts excitation threshold to the lower 
values of Iext and considerably reduces network’s coherence above the threshold (yellow and blue curves in 
Fig. 1A). This is due to the irregular single neuron dynamics caused by high-intensity intrinsic noise enabling 
frequent and random neuronal excitations18,19. In the particular range of the noise intensity ( . > > .S1 9 2 3pow ) 
the correlation time changes non-monotonically: it reaches the maximal value for a certain Iext and decreases with 
the further growth of the external signal amplitude. In the neighborhood of the excitation threshold optimal 
intensity of intrinsic noise subserves the increase of network’s coherence by analogy with the mechanisms 
revealed in the previous numerical studies on coherent resonance in the networks of excitable units20–24. In this 
case noise maintains coherent neuronal interaction by frequent switching of single neurons to the spiking behav-
ior. Further increase of external signal amplitude reduces the constructive effect of noise and, therefore, causes 
network’s coherence collapse.

The changes in network’s dynamics in the absence and the presence of intrinsic noise are illustrated in 
Fig. 1B,C, respectively, by the probability density function (PDF) of interspike intervals (ISI) at corresponding 
spike amplitudes. The network coherence can be estimated via PDF; the more pronounced PDF peak indicates 
higher regularity. The figures show the network behavior for three values of the external stimulus amplitude: 
slightly above the excitation threshold (8 μA/cm2), at the optimal amplitude corresponding to maximum τc 
(9.3 μA/cm2), and above the optimal amplitude (10.4 μA/cm2). In the absence of intrinsic noise (Fig. 1B), an 
increase in the external stimulus intensity causes the transition from a slightly incoherent collective behavior (at 

μ=I 8ext A/cm2) to a regular spike generation (at μ= .I 10 4ext A/cm2) characterized by homogeneity of both the 
spike amplitude and the inter-spike interval (ISI). The presence of intrinsic noise crucially changes the collective 
behavior in the neural network. As seen from Fig. 1C, strong heterogeneity of ISI and spike amplitudes is observed 
at small ( μ=I 8ext A/cm2) and high ( μ= .I 10 4ext A/cm2) amplitudes with maximum PDF at 0.22 and 0.41, 
respectively, whereas the most regular collective dynamics is observed at the intermediate stimulus amplitude 
( μ= .I 9 3ext A/cm2), where the highest PDF maximum (0.5) occurs.

Thus, one can see that optimal value of Iext contributes to coherent network dynamics and launches neural 
mechanisms of stimulus perception and processing.

Increasing Iext in a model neuron leads to increasing firing rate of it25. According to the results of neurophysio-
logical studies, increasing image contrast also leads to increasing firing rate of neurons in visual cortex26–30. Thus, 

Figure 1. Results of the Hodgkin-Huxley network model analysis. (A) Correlation time τc versus the external 
signal intensity Iext in the absence (purple curve) and in the presence of intrinsic noise for different values of the 
noise intensity Spow (see legend). Macroscopic activity of the model cortical network under increasing Iext in the 
absence (B) and in the presence (C) of intrinsic noise. The upper rows in (B and C) display typical shapes of the 
averaged action potential signal Varr, while the lower plots show PDFs of interspike intervals ISI corresponding 
to different spike amplitudes V.
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increasing Iext in simulation can be associated with increasing of visual stimulus contrast in the neurophysiolog-
ical experiment.

The above numerical results predict that intrinsic noise causes a resonant behavior of the stimulus-related 
brain response at the external signal amplitude slightly above the neural excitation threshold. This gives us hope 
for experimental discovery of this resonance effect induced by intrinsic brain noise by analyzing stimulus-related 
brain response to visual stimuli near the perception threshold.

In accordance with the foregoing, we explore visual stimuli, a set of Mona Liza portraits, with different contrast 
level I (see Fig. 2A). Since this picture contains a lot of small details, the increasing contrast allows the observer 
to distinguish more and more details, so that finally the Mona Liza portrait will be completely recognized. The 
image recognition passes through several levels of perception, which include a low (or basic) level corresponding 
to perception of the Mona Liza silhouette and high perception levels related to the detailed recognition of facial 
features and background. Thus, the presented visual stimuli may have multiple perception thresholds.

For quantitative estimation of the coherence, we calculate the correlation time of the EEG signals. A larger 
correlation time of a particular EEG signal indicates a stronger coherent behavior of the corresponding neural 
population. Based on the numerical results, we suppose that the correlation time will exhibit a local maximum 
when I passes through a perception threshold. According to this, global network coherence can be defined as the 
number of EEG signals exhibiting maximal correlation time at a given contrast level. The dependence of this 
measure on the image contrast is shown in Fig. 2B, where different curves correspond to different subjects. One 
can see that global network coherence maximizes at low values of the image contrast ( < .I 0 1) and in the values 
of . < < .I0 3 0 7.

In the former case (area I), the local maxima in the coherence are observed for all participants in a narrow 
range. It corresponds to the neural coherence induced by low-level perception of Mona Lisa silhouette. This result 
is confirmed by the coherent neural activity in occipital and parietal areas (see Fig. 2C). In the latter case (area 
III), the local maxima are distributed over a wide range of the contrast level. When the contrast is increased, an 
additional amount of visual information induces a sharp maximum in global network coherence. Intrinsic brain 
noise, individual for every subject, defines the position of the local maxima. The lower panel in Fig. 2B evidences 
that each subject exhibits a single local maxima in area III. Notably, the peaks in area III are much higher then in 
area I, i.e., the size of the neural network involved in sensory processing is maximized in area III. In Fig. 2C this 
case is characterized by the coherent behavior of frontal and occipital-parietal brain networks. Finally, the excita-
tion of coherent dynamics of the distributed network is observed for certain contrast levels (area III). For other 
areas, where contrast values are less (area II) and higher (area IV) than the contrasts in area III, the distributed 
brain structure is not excited and the sensory processing engages the visual area.

Having in mind that coherence is a key mechanism for neural communication, we suggest that an increase 
in coherence in frontal and occipito-parietal areas contributes their effective interaction in different frequency 
bands. To prove this hypothesis, we reconstruct the brain network from multivariate EEG signals using wavelet 
bicoherence. This approach allows finding a link between a pair of brain regions in terms of synchronization 
between corresponding EEG signals in a particular frequency band. In Fig. 3 we show typical network structures 
in areas II–IV by drawing the links between EEG channels with high coherence in alpha (red links) and beta 
(blue links) frequency bands. Having compared these areas, one can see that in both bands the maximum num-
ber of links appears in area III (middle column) associated with resonant neural response to the visual stimulus. 
Network structure contains multiple links connecting frontal and parietal brain regions.

It is known that brain noise affects all nervous system functions, from perception of sensory signals to gen-
eration of motor responses17. In sensory processing, brain noise is usually associated with variability of neural 
responses to identical visual stimuli and affects visual perception at different stages. Before visual information is 
being processed in the brain, it is affected by sensory noise occurring in sensory signals and sensory receptors. 
It should be noted that visual information also contains noise caused by photons arriving to photoreceptor cells 
in the retina at a random rate governed by a Poisson process. Then, the noise in sensory receptors is amplified 
and converted into electrical signals. Sensory noise can be considered as external noise. With this in mind, the 
effect of external noise was studied by analyzing brain response to visual stimuli with different amount of noise. 
This allowed to experimentally observe stochastic resonance of the brain response by changing the external noise 
amplitude31. An increase in the signal detection efficiency in the presence of external noise was experimentally 
observed by Simonotto et al.32. The authors demonstrated that subjects exhibited the highest perception perfor-
mance for some optimal (not zero) level of the external noise intensity. The obtained results contribute to the 
theory of beneficial effects of noise on sensory processing33.

Unlike external noise, the effect of intrinsic brain noise is purely studied, because the parameters of this kind 
of noise are controlled by the brain itself and cannot be varied by the experimentator. At the same time, the effect 
of intrinsic brain noise was studied in different neural models14. The obtained numerical results evidence that 
the optimal brain noise amplitude causes the most coherent network response to the external signal. The effect 
of intrinsic brain noise is actively studied in cellular systems. For example, Paszek et al.34 reported that intrinsic 
noise resulting in heterogeneity between individual cells contributes coordination of cell population responses 
to perturbation. Kellogg et al.35 showed that intrinsic biochemical noise improves oscillations and entrainment 
of single cells. Intrinsic noise in the brain neural network is cellular noise caused by stochastic processes which 
take place in neurons at the biochemical and biophysical level. They include protein production and degradation, 
opening and closing ion channels. Since neurons perform highly nonlinear operations, small biochemical and 
electrochemical fluctuations may significantly alter whole-cell responses16. Along with cellular noise there exists 
synaptic noise which appears when the neurons receive an intense synaptic bombardment from thousands of 
synapses36.

https://doi.org/10.1038/s41598-019-54577-1


4Scientific RepoRtS |         (2019) 9:18325  | https://doi.org/10.1038/s41598-019-54577-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

According to our study, intrinsic brain noise which influences neural brain activity on microscopic level has 
a beneficial effect on a macroscopic level. Namely, it coordinates responses of different brain areas and makes 
them to cooperate for efficient processing of sensory information. The questions then are whether parameters of 
intrinsic brain noise are constant or evolve in time and which mechanisms underlie variation of its parameters.

First, intrinsic brain noise is supposed to be unique characteristic of a subject, which defines within subjects 
variability during simple cognitive task accomplishing37. At the same time, the recent work suggests that percep-
tual abilities can be improved by cognitive training accompanied by the reduction of noise correlation38. Thus, 
according to the recent result, indistinct brain noise being individual characteristic of a subject can vary as a 
result of cognitive training in order to optimize the efficiency of the task-related brain response. The possibility to 

Figure 2. Experimental results demonstrating coherence resonance near perception thresholds. (A) Schematic 
illustration of the experimental protocol. (B) (Upper panel) Number of EEG channels with maximal correlation 
time versus image contrast for different subjects (each curve corresponds to one participant in the experiment). 
The most local maxima are concentrated in areas I and III corresponding to image recognition and portrait 
identification, respectively. (Lower panel) Distributions of the coherent channel among participants. (C) Brain 
coherence for different image contrasts: (I) = .I 0 1, (II) = .I 0 4, (III) = .I 0 7, and (IV) = .I 0 8 for one typical 
subject.
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change the noise structure gradually by the training is not surprising. It is known that cognitive training can even 
induce morphological changes in the brain39.

The more interesting question is whether or not the brain noise parameters are instantly adjusted by the brain 
when cognitive demand is increased. If it is true, then the reasonable question is how to control brain noise in 
order to help a person to process sensory information in a most efficient way, during the accomplishment of cog-
nitive tasks. The first work on this topic was published in 2018 by Huidobro et al.40. The authors used optogenetic 
brain stimulation to vary the noise level in neuronal population in barrel cortex of mice. As a result, they found 
that noise stimulation increases the neuronal multiunit-activity response evoked by whiskers stimulation. This 
finding suggests that optimal non-zero intensity of noise stimulation could produce improvements in soma-
tosensory perception. Some months later, van der Groen et al.41 applied this idea in humans. They added noise 
directly to the visual cortex using transcranial random noise stimulation (tRNS) while participants accomplished 
dot-motion discrimination task. It was shown that adding an optimal amount of noise bilaterally to the visual 
cortex can enhance perceptual decision-making.

Having summarized, the experimental and theoretical studies provide substantial evidence for the beneficial 
effect of intrinsic brain noise on the efficiency of sensory processing and cognitive ability. At the same time, 
the effect of noise is observed for neuronal ensembles in particular task-related areas, mostly in visual cortex. 
According to our study, intrinsic brain noise contributes not only for enhancing neuronal response in particular 
brain areas, but also provides pathways for neural communication between remote brain regions. In this con-
text, our study is about to bridge the gap between neural noise paradigm and neural communication theories 
(Communication Through Coherence and Global Workspace Theory). Our results confirm other studies claim-
ing that effective visual sensory processing in the brain requires neural communication within the frontoparietal 
cortical network and that the neural communication requires coherence. In addition, we suppose that the coher-
ence can be achieved through the coherent resonance subserved by the presence of intrinsic brain noise. Taking 
into account that the present study is based on the small group of participants, the future studies will have to 
confirm this proof-of-concept exploiting a large sample of subjects and conservative statistical models.

Methods
participants. Twenty healthy unpaid volunteers, 12 males and 8 females, between the ages of 20 and 43 with 
normal or corrected-to-normal visual acuity participated in the experiments. All of them provided informed writ-
ten consent before participating. The experimental studies were performed in accordance with the Declaration 
of Helsinki and approved by the local research Ethics Committee of the Yuri Gagarin State Technical University 
of Saratov.

experimental procedure. In our experiments, we used the Mona Liza portrait as a visual stimulus pre-
sented to every participant (Fig. 1). The color images with different brightness values I were demonstrated during 
60-s time intervals on the 24″ BenQ LCD monitor with a resolution of 1920 × 1080 pixels and a refresh rate of 
60 Hz. The monitor was located at a distance of 70–80 cm with a visual angle of approximately 0.25 rad. To draw 
away the observer’s attention and provide some time for rest, there were 20-s time windows between subsequent 
demonstrations of the Mona Liza portraits.

All participants were instructed to focus their attention on the pictures during each presentation. The whole 
experiment lasted around 15 min for each participant, including 120-s recordings of the brain background activ-
ity before and after the stimuli presentations. During the experimental sessions, the pictures with different bright-
ness I were randomly presented and electrical brain activity was simultaneously recorded using the amplifier BE 
Plus LTM, manufactured by EB Neuro S.p.a., Florence Italy (www.ebneuro.com). The monopolar registration 
method and classical 10–20 electrode system were used.

Figure 3. Structure of brain connectivity in alpha (8–12 Hz; red links) and beta (15–30 Hz; blue links) bands for 
different image contrasts: (A) = .I 0 1 (left column), (B) = .I 0 4 (middle column), and (C) = .I 0 7 (right 
column). The link strengths are estimated via wavelet bicoherence.
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In the experiment, we used 10 different values of I from 0.1 to 1.0 with a step of 0.1. The values of =I 0 and 
=I 1 correspond, respectively, to 0% and 100% of natural pixels’ luminance of the picture.

connectivity. The brain connectivity was revealed from the analysis of EEG signals recorded by =M 19 
electrodes (see Table 1) placed on standard positions of the 10–20 international system (Fig. 2) using continuous 
wavelet transformation. From each time series x t( )p  from p-th electrode, we calculated the wavelet energy spec-
trum in the frequency range ∈f [0, 30] Hz as follows

∫ ψ=
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where ψ f t( , ) is a mother wavelet function and “*” denotes complex conjugation. As a mother wavelet function, 
we choose the Morlet wavelet, often used for the analysis of neurophysiological data, defined as
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which we averaged over a full length of each i-th stimulus presentation (τ = 60 si ). As a result, we obtained the 
coefficients for i-th stimulus:

∫ ∆ϕ=
τ

A f t dtcos ( , ) ,
(5)i

∫ ϕ= ∆
τ

B f t dtsin ( , ) ,
(6)i

and calculated the degree of coherence between every pair of EEG signals during i-th stimulus presentation, as 
the amplitude of mutual wavelet spectrum:

σ = + .τf A B( ) (7)
2 2

i

This function takes values between 0 and 1. If σ =τf( ) 0
i

, then there is no phase coherence between the signals 
at frequency f, otherwise, the coherence takes place.

Next, we averaged the values of σ τf( )
i
 over α (8–12 Hz) and β (15–30 Hz) frequency bands. Finally, we calcu-

lated the coherence between every pair of EEG signals during visual perception in the α and β frequency bands 
as

Parameter Value

Time interval of background EEG recording 120 sec

Time interval of each visual stimuli presentation 60 sec

Time interval between visual stimuli presentations 20 sec

Number of presented visual stimuli 10

Total duration of the experimental session 920 sec

Location of EEG scalp electrodes International 10–20 system

EEG recording sampling rate 250 Hz

EEG recording filtering 1–30 Hz

Considered EEG channels O1, O2, P3, P4, Pz, C3, C4, Cz, F3, F4, Fz, T3, T4, T5, T6, F7, F8, Fp1, Fp2

Considered EEG bands α-waves (8–12 Hz), β-waves (15–30 Hz)

Table 1. Parameters of the Experiment.
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numerical model. Our numerical model based on the Hodgkin-Huxley (HH) neurons describes a simpli-
fied bottom-up process of visual stimulus processing. It is known, that a visual sensory input excites thalamic 
neurons, that in turn activate larger neuronal populations of visual cortex. In the numerical simulations we con-
sidered a small network of =N 5ext  neurons in the thalamus and a larger network of =N 50 neurons in the visual 
cortex. The thalamic neurons were biased by the external current Iext associated with visual stimulus contrast. 
Within both thalamic and cortical networks all neurons were connected to each other, while the thalamic neurons 
were linked unidirectionally to the cortical neurons with a 30% probability. The network dynamics was evaluated 
by analyzing the event-related potentials averaged over all cortical neurons.

As mentioned above, each network unit was described by the physiological Hodgkin-Huxley model
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where μ=C 1m F/cm3 is the capacity of cell membrane, I j
ext is an external bias current injected into j-th neuron in 

the network, Vj is the membrane potential of j-th neuron. The coefficients =g 120 mS/cmNa
max 2, 

=g 36 mS/cmK
max 2 and = .g 0 3 mS/cmL

max 2 respectively denote the maximal sodium, potassium and leakage 
conductance when all ion channels are open. =V 50 mVNa , = −V 77 mVK  and = − .V 54 4 mVL  are the reversal 
potentials for sodium, potassium and leak channels, respectively. m, n and h represent the mean ratios of open 
gates of specific ion channels. n4 and m3h are the mean portions of open potassium and sodium ion channels 
within a membrane patch. The dynamics of the gating variables ( =x m n h, , ) is described as follows
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and ξ t( )x  is independent zero mean Gaussian white noise, whose autocorrelation functions are
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Here, ρ=N SNa Na  and ρ=N SK K  represent the total number of sodium and potassium channels within mem-
brane patch (ρ μ= 60Na m−2 and ρ μ= 18K m−2 being sodium and potassium channel densities, respectively) 
and S is the membrane patch area of each neuron. Here, = −S 10 S pow

, where Spow defines the level of noise in the 
model HH-neuron. The larger values of Spow determine higher noise intensity and vice versa.

In Eq. (9), Ij
syn is the total synaptic current received by neuron j. In this work, for simplicity we consider syn-

aptic coupling via chemical synapses only, so that the synaptic current takes the following form

∑ σ= − −
∈

I g t t E V( )( ),
(16)

j
syn

k neigh j
c

k
rev j

( )
0

where the function σ(t) describes temporal evolution of the synaptic conductance, gc is the maximal conductance 
of the synaptic channel and t k

0  is the time at which the neighboring presynaptic k-th neuron fires. We suppose that 
σ = Θτ−t t( ) e ( )t/ syn  is proportional to the Heaviside step function Θ t( ) and τ = 3 mssyn .

The macroscopic network dynamics was analyzed by considering the stimulus-related potential Vavr averaged 
over the cortical neurons
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∑= .
=

V V N/
(17)avr

i

N

i
1

Following ref. 42, coherence of neuronal activity was estimated by the correlation time

∫τ τ τ= C d( ) ,
(18)c

T

T 2max

0

where =T 200 ms0  is the transient time, =T 2000 msmax  is the maximal simulation time and τC( ) is the autocor-
relation function defined as

τ
τ

=
〈 − 〈 〉 + − 〈 〉 〉

〈 − 〈 〉 〉
C V t V V t V

V t V
( ) ( ( ) ) ( ( ) )

( ( ) )
,

(19)
avr avr avr arv

avr avr
2

where 〈…〉 is the time average after transients. The larger the τc, the better the regularity (or coherence).
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