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Abstract—We have analyzed EEG signals of children during
cognitive load of specific type in order to estimate level of atten-
tion during this task. EEG signals were recorded in accordance
with proposed design of experiment. For obtained EEG data we
have analyzed behavioral characteristics as well as EEG-related
characteristics. We have found that behavioural characteristic
changes through the task, so may the attention level. We have
also found that cognitive task completion is accompanied by
appearance of spatial structure — specific distribution of wavelet
energy across cortex, which partially changes during completion
of the task as well. We believe that changes in attention
level are tied to changes in energy distribution, so we suggest
this distribution to be used as the marker for attention state
estimation.

Index Terms—electroencephalogram, cognitive load, oscillatory
patterns, attention, continuous wavelet analysis, frequency ranges

I. INTRODUCTION

The reliable and objective assessment of intelligence and
related functions — such as attention — has been a topic of
increasing interest of contemporary neuroscience. It is known
that intelligence can be measured according to the mental
speed of information processing, usually defined through re-
action time during elementary cognitive task processing. It is
expected that these mental abilities in performing cognitive
tasks are associated with the brain’s electrical neural activity.

Modern studies on brain activity attract researchers from
various fields of science due to interdisciplinary nature of
problem. Considerable progress in development of experimen-
tal and data processing methods provides instruments for vast
and detailed studies of specific phenomena in brain neural
network. Recent interdisciplinary works in this field combine
approaches of mathematics, physics and nonlinear dynamics
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with neurophysiological and biological view on the processes
in brain neural structures [1]–[11].

The most common method to obtain information about brain
activity is electroencephalogram (EEG) [12]. EEG is widely
used to study electric activity in different parts of brain in
its normal or pathological state. EEG recording procedure
suggests placing special electrodes on scalp and recording
EEG signals as sum of electric currents generated by group of
neurons [13]. EEG signal being a product of complex neuronal
network is characterized by complex time-frequency structure
with number of specific frequency ranges, oscillatory patterns,
noise components (artifacts), etc. [14] It is well-known, that
there is a strong connection between EEG time-frequency
structure and functional state of organizm [15]. This can be
used in studies on specific states, for example, during cognitive
task performance [16]–[20].

One of the common ways to estimate subjects intelligence
is to measure the mental speed, i.e. the speed of information
processing [21]. For this purpose, elementary cognitive tasks
(ECTs) are used and the reaction time to perform them is stud-
ied. One of the most popular types of ECT is so-called paper-
and-pencil test due to simplicity of its implementation and
subsequent data analysis [22]. Elementary ECTs are based on
the Hick paradigm [23]: there is a linear correlation between
the amount of processed information and the reaction time
of the subject. The reaction time in its turn can be estimated
with Sternberg memory scanning task [24], according to which
the reaction time increases linearly with the memory set size.
Thus, there is a direct correlation between mental speed and
mental abilities (intelligence), i.e., more intelligent individuals
exhibit lower reaction time and therefore higher speed of
information processing.

Combination of ECTs and simultaneous EEG recording is a
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promising approach. Studies suggest, that there are particular
EEG features correlated with intelligence, attention and other
brain characteristics [4], [9], [25]. EEG-based method for
estimation of subjects intelligence and attention level would
find social application, for instance, in education.

In this work we analyzed EEG signals of children recorded
during specific cognitive task — Schulte test. We analyzed
behavioural characteristics – time intervals required for subject
to find each consequtive number in Schulte table as well as
EEG-related characteristics — wavelet energies averaged over
alpha and beta frequency ranges. We also performed statistical
analysis of these characteristics with help of ANOVA to find
features that can be used to evaluate level of attention and its
dynamics during task completion.

II. METHODS

Ten healthy children (7-10 years), right-handed, with nor-
mal or corrected-to-normal visual acuity participated at the
experiment. All of them were asked to maintain a healthy
life regime with an 8-hrs night rest during 48 hrs prior
the experiment. Parents of each volunteer provided informed
written consent before participating in the experiment. The
experimental procedure was performed in accordance with the
Helsinki’s Declaration.

For EEG recording we used electroencephalo-
graph“actiCHamp” by Brain Products (Germany). EEG
was recorded for 31 channels according to “10-10” system
with ground electrode placed in the “Fpz” position on the
forehead and one reference electrode on the right mastoid.
For EEG signal recording we used “ActiCap” — active
Ag/AgCl electrodes (one for each EEG channel) placed on
the scalp with the help of special cap. To increase the skin
conductivity we treated scalp skin with abrasive “NuPrep”
gel before the experiment and placed EEG electrodes on
conductive “SuperVisc” gel. After the electrodes were placed,
we monitored the impedance to get best possible quality of
EEG recordings. Common impedance values were < 25 kΩ
which is quite sufficient for active EEG electrodes. EEG
signals were recorded with sampling rate of 1000 Hz and
filtered by band-pass filter (cutoff frequencies at 0.016 Hz
and 70 Hz), as well as 50-Hz notch filter.

Experiment was performed using tablet computer with pen-
cil. Experimental design suggested that the subject performed
specific cognitive task and EEG signals were recorded during
this process. Cognitive task was to accomplish Schulte test —
simplified version of Zahlen-Verbindungs-Test (ZVT), widely
used in Russia. Schulte test consisted of matrices (tables)
of 5 ∗ 5 randomly arranged numbers from 1 to 25. The
subject was asked to find numbers in a descending order
from 25 to 1 by pointing each found number with a pencil.
We registered time intervals ∆tm between picking subsequent
numbers (m = 1, 2...25). All participants completed R = 5
tables (50-90 s for each table) under direct supervision of a
professional psychologist. Between tables the subject had a
short break for 10-20 s.

For detailed time-frequency analysis of EEG signals contin-
uous wavelet transform (CWT) was used [5], [26]. During re-
cent interdisciplinary studies this method recommended itself
as a powerful instrument for analysis of experimental biolog-
ical data and obtaining essential information about complex
dynamics of physiological systems including brain [27], [28].

The CWT is computed as convolution of EEG signal x(t)
with wavelet basis ϕs,τ :

Wn(s, τ) =
1√
s

∫ ∞
−∞

xn(t)ϕ∗s,τ (t)dt, (1)

where n = 1, 2... N is the number of EEG channel (N = 31)
and “*” stands for complex conjugation. Each function ϕs,τ
from the basis can be obtained from one function ϕ0 called
mother wavelet:

ϕs,τ (t) =
1√
s
ϕ0

(
t− t0
s

)
, (2)

where s — time scale responsible for extension/compression
of mother wavelet, t0 — time shift of mother wavelet. In the
present study complex Morlet mother wavelet was used since
it has recommended itself in studies on neurophysiological
data:

ϕ0(η) = π−
1
4 ejω0ηe−

η2

2 , (3)

where parameter ω0 = 2π is the central frequency of Morlet
wavelet, η = t−t0

s .
One of the common ways to interpret CWT results is to

consider wavelet energy:

E(f, τ) = |W (f, τ)|2 (4)

Surface of CWT energy (wavelet spectrum) provides infor-
mation about time-frequency structure of the signal, such as
length of some pronounced oscillatory patterns and their main
frequencies.

Wavelet energy spectrum is commonly analyzed in number
of specific frequency bands: delta, theta, alpha, beta . Energy
in beta (15-30 Hz) and alpha (8-13 Hz) bands is especially im-
portant since it is often used to characterize cognitive processes
including attention and its stability. For these two particular
frequency bands averaged wavelet energy was calculated as:

Eα,β(t) =
1

∆fα,β

∫
f∈fα,β

E(f, t)df, (5)

where ∆fα,β — width of alpha and beta frequency ranges
correspondingly.

The wavelet analysis of EEG recordings was performed
with developed C/Cuda software for increasing computation
performance [29].

For statistical analysis we used ANOVA (ANalysis Of
VAriance), which is widely used to analyze the differences
among group means in a sample.
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Fig. 1. Dependence of time interval’s length ∆tm (mean and standard error)
on sequence number m.

III. RESULTS

In the first part of our work we compared distributions
of time intervals ∆tm in two subsequent Schulte tables. We
had chosen table number (two tables overall) and sequence
number m = 2, 3...25 as two factors for ANOVA. While there
are 25 overall numbers with 25 corresponding time intervals
in each table, we rejected ∆t1 and considered only 24 time
intervals. This was done because ∆t1 was determined not
only by searching process of number “25” but also by initial
preparation for the task, thus ∆t1 varied greatly in the group
of subjects.

Statistical analysis showed that average length of time inter-
vals ∆tm has no significant variation between the first and the
second Schulte tables (F (1, 6) = 5.76, p = 0.053). However,
the length of specific time interval ∆tm significantly depends
on sequence number m (F (23, 138) = 2.085, p = 0.005).
These results are shown on Fig. 1.

At the same time, dependence of ∆tm on two joint factors
(table number and sequence number m) is not significant
(F (23, 138) = 0, 636, p = 0.897). These results lead to safe
assumption that time interval required to find the next number
in sequence depends significantly only on sequence number
m and not on table number.

In the second part we analyzed distributions of characteris-
tics Eα,β , averaged over each time interval ∆tm. In this case
we had chosen sequence number m = 2, 3...25 and channel
number n = 1, 2...31 as two factors for ANOVA.

We found that for Eα there is a significant dependence on
sequence number m (F (23, 128) = 1.840, p = 0.017) (see
Fig. 2a) and on channel number n (F (30, 180) = 7.6, p <
0.001) (see Fig. 2b), however, joint influence of these two fac-
tors is not significant (F (690, 4140) = 0.5, p = 0.851). These
results can imply that some characteristic spatial distribution
of wavelet energy Eα is formed in cortex during the search of
each number in Schulte table. The form of this distribution is
not dependent on sequence number m and yet the mean value
of Eα changes from number to number.

For Eβ analysis showed that dependence on sequence num-
ber m is not significant (F (23, 128) = 1.4, p = 0.117) (see
Fig. 3a) and dependence on channel number n is significant
(F (30, 180) = 3.5, p < 0.001) (see Fig. 3b). At the same
time, joint influence of m and n factors is not significant
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Fig. 2. Dependence of Eα (mean and standard error) on sequence number
m (a) and channel number n (b).
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Fig. 3. Dependence of Eβ (mean and standard error) on sequence number
m (a) and channel number n (b).

(F (690, 4140) = 1.05, p = 0.175). These results suggest that
as in case of Eα characteristic spatial distribution of wavelet
energy Eβ is formed in cortex during the search of each
number in Schulte table, however, the form of this distribution
and the mean value of Eβ are not dependent on sequence
number m.

Fig. 2b and Fig. 3b can be used to analyze overall spatial
distribution of wavelet energy in cortex and to estimate areas
of activity. Fig. 2b shows that there is a well-pronounced drop
in level of wavelet energy Eα for channels n = 19, 20, 21 and
n = 24, 25, 26. According to “10-10” system these numbers
correspond to channels in occipital and temporal areas. On
the other hand, distribution of Eβ on Fig. 3b demonstrates
significant maxima for channels n = 9, n = 15, 16, 17, 18 and
n = 25 related to occipital and temporal areas as well. While
high beta-rhythm and low alpha-rhythm activity in occipital
area can be explained by heavy load on visual cortex caused
by Schulte test, activity in temporal areas seems to be more
attractive for studying. For instance, it is known [30], [31]
that during visual non-verbal tasks in children alpha-rhythm
activity decreases and beta-rhythm activity simultaneously
increases in temporal areas.

Significant increase in high-frequency activity is observed
when mental activity includes elements of novelty, while
stereotypic, repeated mental operations are accompanied by
decrease of activity in beta frequency range. Increased beta
activity in the temporal areas probably appears due to the fact
that non-verbal stimuli in our case (Schulte test) are unusual
for children and include an element of novelty [32].
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IV. CONCLUSION

In this paper we analyzed EEG signals of children recorded
during specific cognitive task – Schulte test. We analyzed
behavioural characteristics – time intervals required for subject
to find each consequtive number in table (∆tm) as well
as EEG-related characteristics calculated with help of CWT
— wavelet energies averaged over alpha and beta frequency
ranges (Eα,β). We performed statistical analysis of these
characteristics with help of ANOVA. We have found that be-
havioural characteristic ∆tm changes through the task, which
leads to assumption that some performance charateristics (such
as attention) can change during completion of the task as well.
We have also found that cognitive task completion is accompa-
nied by appearance of spatial structure — specific distribution
of Eα and Eβ energies across cortex. Results of statistical
analysis showed that this spatial structure partially changes
during completion of the task. We believe that changes in
attention level are connected to changes in energy distribution
and, as the result, to changes in brain activity signals. We
suggest this distribution to be used as the marker for attention
state estimation.

Knowledge on attention state estimation can be helpful for
further fundamental studies on cognitive load and attention
state. Obtained results can also be applied, for example, in
development of teaching assistant system for children.
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