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ABSTRACT

In the present paper, the possibility of classification by artificial neural networks of a certain architecture of
ambiguous images is investigated using the example of the Necker cube from the experimentally obtained EEG
recording data of several operators. The possibilities of artificial neural network classification of ambiguous
images are investigated in the different frequency ranges of EEG recording signals.
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1. INTRODUCTION

At present, the dynamics of neuronal networks of human brain is attracted the attention of researchers of
natural sciences and humanities.1,2 The multidisciplinary approach will come closer to understanding the brain
mysteries and a better understanding of the neural mechanisms underlying its dynamics, open prospects in
the field of medicine and neuroscience in the near future. The study of various aspects of the functioning of
the human brain is usually based on objective data acquired in the course of psycho-physiological and cognitive
experimental work3,5–7 The most convenient and low-cost method of recording brain signals in cognitive research
today remains EEG. A study of nonlinear processes in the brain neural network during perception of “ambiguous”
(also known as bi- or multistable) images is very important for the understanding of both the visual recognition of
objects and the decision-making process in human brain.8,9 Despite the considerable efforts of many researchers,
the basic mechanisms underlying the interpretation of such the images are not yet clear enough. At present, we
only know that perception is the result of nonlinear processes which take place in the distributed neural network
of the occipital, parietal and frontal cortical areas of the brain.10,11 However, the question remains how the
interpretation of the image affects the human EEG. Earlier we demonstrate the efficiency of artificial neural
network method in the classification of EEG oscillations.12,13 It is well-known that using the different frequency
bands of EEG signals leads to find additional information on brain dynamics.14–17 This article shows the results
of using bandpass filtering of experimental EEG data to improve their classification based on the artificial neural
networks.

2. EXPERIMENTAL SETUP

In our physiological experiment with EEG activity registration we used a set of images based on the well known
bistable object, the Necker cube,18 as a visual stimulus. The cube with transparent faces and all visible ribs is
treated a three-dimensional object due to a specific position of the cube ribs. Bistability in perception consists
in interpretation of this 3D-object as being oriented in two different sides, either left or right oriented cube,
depending on the ribs intensities. Figure 1, a shows various examples of the Necker cube image with different
parameter I, being the brightness of the cube wires converging in the right upper inner corner. The brightness of
the wires converging in the left lower inner corner is defined as (1 − I). The values I = 1 and I = 0 correspond,
respectively, to 0 (black) and 255 (white) pixels’ luminance of the middle lines, using the 8-bit grayscale palette
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for visual stimulus presentation. Therefore, we can define parameter as I = g/255 where g is the the brightness
level of the middle lines in used 8-bit grayscale palette. It should be noted that the contrast of the six visible outer
cube edges was fixed to 1. The experimental studies were performed in accordance with the ethical standards19

and approved by the local research ethics committee of Yuri Gagarin State Technical University of Saratov.

Forty healthy subjects from a group of unpaid volunteers, male and female, between the ages of 18 and 45 with
normal or corrected-to-normal visual acuity participated in the experiments. All persons have provided informed
consent before participating in the experiment. The purpose of these experiments is a study of unconscious
decision on ambiguous image interpretation.

The experimental procedure was performed as follows. The Necker cube images with different wireframe
contrasts were demonstrated for a short time, each lasting between 0.2 and 0.7 seconds, interrupted by a back-
ground abstract picture for 2.5—3.5 seconds. The subject was instructed to press either a left or a right key
depending on his/her interpretation of the cube orientation at each demonstration. The use of the background
images allowed neutralization of possible negative secondary effects which may arise from the previous Necker
cube image. The whole experiment lasted about 40 min for each subject.
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Figure 1. (a) Examples of Necker cube images with different rib contrast I. (b) International EEG electrode placement
scheme “10 – 20”. (c) Typical EEG recordings from electroencephalograph Encephalan-EEGR-19/26 during recognition
of visual stimulus — Necker cubes.

During the experiment, the Necker cube images with different frame contrasts were randomly exhibited,
each for about 100 times, with simultaneous recording of multi-channel EEGs using the electroencephalograph-
recorder Encephalan-EEGR-19/26 (Russia) with a two-button input device. The monopolar registration method
and classical ten-twenty electrode system were used (Fig. 1, b). Figure 1, c shows an example of typical EEG
data set during the Necker cube images exhibition.

3. METHODS

It is known that artificial neural networks are often used to solve non-linear problems when an analytical solution
is difficult to obtain.20In our work we focus on the method of supervised learning, is traditionally chosen to solve
this type of problems of pattern recognition and classification. In the work, the classification of EEG images is
carried out with the help of feedforward artificial neural network with error back propagation (Figure 2 a) of
two types: (i) radial basis function (Figure 2 b) and (ii) multilayer perceptron (Figure 2 c), which showed the
best results in the previous studies.12,13 The differences of these artificial neural networks are in the different
functions of activation of neurons and the number of hidden layers.20 Thus, in the case of using radial basis
function it is always one hidden layer of radial elements, each of which reproduces the Gaussian response surface,
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and the multilayer perceptron can have several hidden layers with activation functions such as hyperbolic tangent,
sigmoid, etc.

The band-pass filtering of the initial data was carried out using a Butterworth filter implemented with Matlab
functions:

H(ω) =
1

1 +
√

(ω/ωc)2n
(1)

where ωc is the boundary frequency, n is the filter order.
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Figure 2. Scheme of feedforward artificial neuronal network with error back propagation (a), radial basis function ANN
(b) and myltilayer perceptron (c).

4. RESULTS

In our experimental studies we separated all Necker cube images on the ”left” and ”right” in accordance with the
apparent position of the front face of the cube. EEG data corresponding to Necker cubes of various intensities are
represented in the form of images that are recorded at a frequency of 250 Hz, corresponding to the decision time
of the operator about the cube class (1 second). Samples of data with a capacity of 24 images. The band-pass
filtering of the initial data in the bands 1–4 Hz, 8–12 Hz, 15–20 Hz and 25–45 Hz was carried out and saved in
files corresponding to each frequency band.

Half of the data, chosen randomly, was used for training. The remaining half part — for the control and
test samples. Using the data of the entire set of EEG signals (31 channels), the best results of classification
were shown by radial basis function networks with linear neurons in the input and output layers, radial synaptic
functions and exponential activation functions of 251 middle layer neurons and multilayer perceptron networks
with 15 neurons in the hidden layer with the activation function hyperbolic tangent with an input layer with
linear and output layer with logistic activation functions.

Recognition results of EEG data filtered in different bands for two types of neural networks with radial basis
function (a) and multilayer perceptron (b) are presented on Figure 3.

Artificial neural networks with the radial basis function type show the best recognition quality for all frequency
ranges of filtration in comparison with multilayer perceptrons. For the data studied, better recognition occurs
when information filtered at low frequencies is used. As the filtering frequency increases, the recognition becomes

Proc. of SPIE Vol. 10717  107171O-3

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 4/30/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



0

20

40

60

80

100

1_4 8_12 15_20 25_45

Efficiency, %

0

20

40

60

80

100

1_4 8_12 15_20 25_45

Efficiency, %

Filtration frequency bands, HzFiltration frequency bands, Hz

b
a

Figure 3. Artificial neuronal network classification efficiency of filtered EEG data (a) for case of perception of the left
cube and (b) for case of perception of the right cube in the different frequency bands.

noticeably worse. Visual comparison of the type of EEG signals filtered in the range of 1–4 Hz. (Figure 4) allows
to reveal their significant differences for cubes of different classes (left (a) and right (b)).
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Figure 4. The averaged values of EEG data filtered for the 1–4 Hz range for occipital EEG channels (O1, O2, P3, P4 and
Pz) (a) for case of perception of the left cube and (b) for case of perception of the right cube.

5. CONCLUSION

In this work, the features of the classification of various states in the human brain related to the perception
of ambiguous images were studied. For this, artificial neuronal networks were used which previously showed
a good quality of classification of multichannel EEG data (at the level of 80-90%), in this study, the initial
data was filtered in the ranges 1–4 Hz, 8–12 Hz, 15–20 Hz and 25–45 Hz. The obtained results show that for
the investigated data the best recognition occurs when using the information filtered at frequencies of 1–4 Hz,
approximately corresponding to the gamma - rhythm of the brain (95-98%). With the increase in the filtering
frequency, the recognition significantly deteriorates: up to 65-90% in the range corresponding to the alfa-rhythm,
and up to 53–80% in the beta-rhythm range. Visual comparison of the type of EEG signals filtered in the range
of 1-4 Hz. allows to reveal their significant differences for cubes of different classes. The best results are shown
by the artificial neuronal network with radial basis functions. In general, it can be concluded that low-frequency
filtering of multi-channel EEG data is necessary to improve the quality of their classification when analyzing
processes in neural network of the brain, associated with the perception of ambiguous images. Moreover, we
believe that the value of our results is not limited to studies of brain activity during the perception of ambiguous
images. The application of data filtering will be useful for analyzing a wide range of processes in the human
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and animal brain using multichannel EEG and MEG data, for example to create on-line recognition systems for
brain-computer interfaces.21–24
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