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Emergence and control of complex behaviors in driven systems
of interacting qubits with dissipation
A. V. Andreev 1, A. G. Balanov 2✉, T. M. Fromhold3, M. T. Greenaway2, A. E. Hramov1, W. Li 3, V. V. Makarov1 and
A. M. Zagoskin 2,4✉

Progress in the creation of large-scale, artificial quantum coherent structures demands the investigation of their nonequilibrium
dynamics when strong interactions, even between remote parts, are non-perturbative. Analysis of multiparticle quantum
correlations in a large system in the presence of decoherence and external driving is especially topical. Still, the scaling behavior of
dynamics and related emergent phenomena are not yet well understood. We investigate how the dynamics of a driven system of
several quantum elements (e.g., qubits or Rydberg atoms) changes with increasing number of elements. Surprisingly, a two-
element system exhibits chaotic behaviors. For larger system sizes, a highly stochastic, far from equilibrium, hyperchaotic regime
emerges. Its complexity systematically scales with the size of the system, proportionally to the number of elements. Finally, we
demonstrate that these chaotic dynamics can be efficiently controlled by a periodic driving field. The insights provided by our
results indicate the possibility of a reduced description for the behavior of a large quantum system in terms of the transitions
between its qualitatively different dynamical regimes. These transitions are controlled by a relatively small number of parameters,
which may prove useful in the design, characterization, and control of large artificial quantum structures.
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INTRODUCTION
Recent progress in experimental techniques for the fabrication,
control and measurement of quantum coherent systems has
allowed the routine creation of moderate-to-large arrays of
controllable quantum units (e.g., superconducting qubits, trapped
atoms and ions) expected to have revolutionary applications, e.g.,
in sensing, quantum communication and quantum computing1–4.
They also allow the investigation of fundamental physics, such as
the measurement problem5–7, the link between the chaotic
behavior in classical systems and the corresponding dynamics in
their quantum counterparts8–12 and the relative roles of entangle-
ment and thermalization13–17.
The deployment of modern quantum technologies generally

requires both the improvement of unit quantum elements (e.g.,
increasing their decoherence times) and the scaling up of
quantum structures18.
It is known that large systems comprising many functional

elements tend to demonstrate emergent phenomena in their
dynamics, which cannot be observed in smaller systems19,20.
Examples include dynamical phases in driven Bose–Einstein
condensates21, synchronization in micromechanical oscillator
arrays22, and coherent THz emission from layered high-
temperature superconductors23–25. Nevertheless, the emergent
phenomena are commonly neglected when designing and
investigating large-scale coherent structures. This is possibly due
to the absence of a convenient theoretical framework for studying
these novel systems. One important open question to be tackled
is how the dynamics scales with the increase of the system size
(e.g., number of qubits) and what role in its change is played by
emergent phenomena.
We address these questions by studying theoretically the

far-from-equilibrium dynamics of a driven chain of interacting

two-level quantum systems with dissipation and dephasing (Fig.
1a). We find that even a short chain comprising between two and
four elements can demonstrate chaotic behavior. Remarkably, in
systems with five or more elements a phenomenon known as
hyperchaos emerges, a dynamical regime characterized by two or
more positive Lyapunov exponents. Hyperchaos has features that
resemble thermalization even though the system is far from
equilibrium. We show that, in contrast to thermalization, the
deterministic origin of hyperchaos allows it to be controlled either
by tuning of the system parameters or by applying an external
driving force. Our results give new insights into the dynamics of
large artificial quantum coherent structures, which will be
important for the design and control of quantum systems, such
as Rydberg molecules, quantum information processors, simula-
tors, and detectors.

RESULTS
Mathematical model
Here we investigate the dynamics of a one-dimensional (1D) chain
of N qubits driven by an external electromagnetic field in the
presence of decoherence. The system under consideration is
equivalent to a system of Rydberg atoms, by rescaling and
reidentification of parameters26–31. Along with superconducting
structures, Rydberg systems provide a controllable testbed for
studying fundamental quantum dynamics32–34 and for developing
new quantum chemistry35–37. In particular, arrays of Rydberg
atoms can be controlled experimentally with very high preci-
sion38–40. Each atom has a ground state gj i and an electronically
excited high-energy Rydberg state ej i (Fig. 1b). Rydberg states
have large polarizability ~n7 (where n is the principal quantum
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number), which generates strong and long-range interactions
between atoms41.
To model an electromagnetically driven array of qubits

(Rydberg atoms), we use the Hamiltonian

H ¼ PN

j¼1
�δω ej i eh jj þ ΩR

2 ej i gh jj þ gj i eh jj
� �h i

þP

j < k
Vi;j ej i eh jj � ej i eh jk ;

(1)

where δω=ωl−ω0 is the detuning between the laser and
transition frequencies, ΩR is the Rabi frequency (tuned by the
laser field amplitude), and Vi,j characterizes the interaction
between ith and jth qubits.
The dynamics are described by the Liouville–von Neumann

equation for the density matrix ρ,

_ρ ¼ �i H; ρ½ � þ L ρ½ �; (2)

where relaxation and dephasing processes are taken into account
through the appropriate Lindblad operator

L½ρ� ¼ γ
X

j

gj i eh jjρ ej i gh jj �
1
2
f ej i eh jj; ρg

� �

; (3)

with γ to be the decay rate from the excited state to the ground
state. Rydberg atom interactions can range over a few tens of
micrometers, larger than the physical size of the system (The same
is true for superconducting qubits interacting through a resonator
field mode.). Therefore, to simplify the analysis, we can initially
assume that interactions are identical for any pair of qubits, Vi,j= V

(see Fig. 1a, b). For a system of N qubits, ρ has the dimensionality
of its Hilbert space, 2N.
This problem can be greatly simplified by substituting a fully

factorized density matrix approximation, ρ ≈ ∏j⊗ ρj, in Eq. (2).
Here ρj is the (one-particle) density matrix of the jth qubit. This
approximation is justified for a partially quantum coherent system,
for which it has been shown accurately to describe experimental
measurements on qubits, up to the corrections due to two-point
correlations38,42–45. In such a case, the quantum coherence
between spatially separated elements is disrupted, e.g., by local
ambient noise46.
Rewriting the factorized density matrix ρ in terms of the

population inversion of the jth qubit, wj ¼ ðρjÞ11 � ðρjÞ00, and its
coherence, qj ¼ ðρjÞ10 ¼ ðρjÞ�01, yields:

_wj ¼ �2Ω=qj � ðwj þ 1Þ;

_qj ¼ i Δ� c
P

k≠j
ðwk þ 1Þ

" #

qj � 1
2 qj þ i Ω2 wj:

(4)

In Eq. (4), the dimensionless time τ= γt (i.e.
_x � dx=dτ ¼ γ�1dx=dt), Ω=ΩR/γ, Δ= δω/γ, and c= Va/γ, where
a is the lattice constant. In more detail, the derivation of Eq. (4) is
discussed in Section A in Supplementary Information.

Emergence of chaos and hyperchaos
Here we study the dynamical regimes of chains of interacting
qubits. To characterize the complexity (randomness) of the
emergent chaos and hyperchaos, we calculate the full spectrum
of the Lyapunov exponents47.
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Fig. 1 Schematic representation of interacting qubits and the largest Lyapunov exponent dependence on model parameters for the case
of two qubits. a Schematic representation of a circular chain of six interacting quantum units (e.g., Rydberg atoms or qubits), labeled by
integer indexes and coupled via nearest neighbor interactions. b Atomic-level configuration reflected in the model [Eqs. (1)–(3)]. Coherent
laser excitation from the ground state gj i to an excited (“Rydberg”) state ej i with a Rabi frequency ΩR and detuning δω, incoherent
spontaneous decay γ, and the Rydberg interaction when an excited qubit shifts the transition frequency of a neighboring qubit by V.
c Dependence of the largest Lyapunov exponent Λ1 on Δ and Ω calculated for c= 5 for the system of 2 coupled qubits. The color scale
intensity indicates the value of Λ1.
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First we analyze two coupled qubits (N= 2). Previously, it has
been shown that interplay between the energy pumping and
dissipation can eventually trigger self-sustained state population
oscillations in this system and even lead to the emergence of
bistability, when homogeneous and antiferromagnetic states
coexist27. Our investigation reveals another interesting phenom-
enon associated with deterministic chaos, which emerges via a
cascade of period-doubling bifurcations for a periodic oscilla-
tions47. In Fig. 1c, we show a color map illustrating the
dependence of the largest Lyapunov exponent Λ1 on Δ and Ω.
A transition from yellow to black reflects the change from smaller
to larger values of Λ1. The diagram clearly demonstrates the
presence of chaotic dynamics, for which Λ1 > 0, in considerable
areas of the parameter plane shaded by black color. This shows
that the discovered chaos is a robust phenomenon existing in our
system over wide parameter ranges. Notably, for certain
parameter values it coexists with the antiferromagnetic steady
state. The detailed descriptions of the bifurcation transitions and
analysis of the Lyapunov exponents that characterize the stability
of long-term dynamics are presented in Section B in Supplemen-
tary Information.
For N= 3 and 4, the same type of chaotic dynamics exists in the

system. However, surprisingly, for N ≥ 5 a new type of chaotic
dynamics appears, whose stability is characterized by more than
one positive Lyapunov exponent. This type of chaos is known as
hyperchaos48. A map of different dynamical regimes in the (Δ, Ω)
parameter plane is shown in Fig. 2a for N= 5 and c= 5. This
diagram was built by calculating the spectrum of Lyapunov
exponents for the various limit sets that exist in the (Δ, Ω)-plane.
When all the Lyapunov exponents are negative, there is a stable
equilibrium state (white in the diagram). If the largest Lyapunov
exponent equals 0, the oscillations are periodic (cyan). If the
largest two Lyapunov exponents are both 0, the dynamics are
quasiperiodic (red). However, when one or two Lyapunov
exponents are positive, there is chaos (green) or hyperchaos
(black), respectively.
Figure 2b illustrates the bifurcation transitions between the

different dynamical regimes when Ω= 2.5 and Δ changes along
the yellow dashed line in Fig. 2a. The blue curves represent the
evolution of the four largest Lyapunov exponents Λ1 > Λ2 > Λ3 >
Λ4. A number of distinctive phases emerge as we increase Δ from
1 to 9. The stable equilibrium state, which exists for small Δ,
switches to a periodic solution as a result of an Andronov–Hopf
bifurcation at Δ ≈ 1.7, where Λ1 becomes zero. At Δ ≈ 3.55, the
periodic oscillations lose their stability via a Neimark–Sacker

bifurcation, resulting in the onset of quasiperiodic oscillations
(Λ1= Λ2= 0). Increasing Δ further leads to chaotic dynamics.
To better illustrate the transition to the chaotic regime, in Fig. 2c

we present a zoom of the region of Fig. 2b framed by the black
rectangle. The corresponding bifurcation diagram, shown in
Fig. 2d, is constructed by plotting the points corresponding to
the local maxima w1,max in the time evolution of w1(t), calculated
for given Δ. For a particular value of Δ, periodic solutions are
represented by one or few single dots on the graph, while the
complex sets of many points for a specific Δ reflect quasiperiodic
or chaotic dynamics. As Δ increases, the quasiperiodic oscillations
where Λ1= Λ2= 0 (Fig. 2c) are replaced (at Δ ≈ 3.732) by complex
periodic oscillations due to saddle–node bifurcation. These
periodic oscillations are characterized by Λ1= 0 and Λ2,3 < 0 (Fig.
2c) and represented in Fig. 2d by few isolated dots for a fixed Δ.
For Δ≳ 3.744, the periodic solutions undergo a cascade of period-
doubling bifurcations giving rise to chaos with one positive
Lyapunov exponent at Δ ≈ 3.75 (Fig. 2c). The period-doubling
bifurcations do not affect the spectrum of Lyapunov exponents of
the stable solution, since the latter remains periodic. However,
each period-doubling causes additional Lyapunov exponent to
approach zero (Fig. 2c), which manifests itself via doubling of the
number of dots in Fig. 2d. Thus, for N= 5, the bifurcation
mechanism leading to the onset of chaos stays the same as for the
case of N= 2. Further investigation shows that this mechanism is
also present at larger N.
Increasing Δ makes the chaotic oscillations more complicated

and leads to the gradual development of hyperchaos, which
emerges at Δ ≈ 4.4 (see Fig. 2b). This transition is linked to further
instability of already unstable periodic orbits, which form the
skeleton of the chaotic attractor. Accumulation of the correspond-
ing bifurcations causes the second Lyapunov exponent to become
positive.
We find that period-doubling is the most common but not the

only route to chaos exhibited by the system. Figure 2a reveals
some direct transitions from the red region where the dynamics is
quasiperiodic to the green region where the dynamics are chaotic.
This behavior can indicate the mechanism of torus destruction for
the transition to chaos47,49. However, we did not specifically
investigate the effect of this particular mechanism on the
development of hyperchaos.
The dynamics of N= 5 coupled qubits in different dynamical

regimes is exemplified in Fig. 3. Typical periodic solution is
presented in Fig. 3a. Here n= 1,…, 5 denotes the qubit number in
the chain, t is time, and the color scale indicates the value of wn.
All qubits oscillate with the same frequency but with different
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Fig. 2 Hyperchaos in a ring of five qubits. aMap showing areas of (Δ, Ω) space corresponding to different regimes of long-term behavior for
a ring of five qubits. Black denotes areas of hyperchaos with two positive Lyapunov exponents, green is a region of chaos with one positive
Lyapunov exponent, cyan is a periodic regime, red areas correspond to quasiperiodic behavior, and white is a steady-state regime. b Variation
of the four largest Lyapunov exponents with Δ; blue dots correspond to Δ increasing from 1 to 9, red dots to Δ decreasing down to 1. c A
zoom of the region of b within the black rectangle. d Single-parametric bifurcation diagram corresponding to c, in which the vertical positions
of each point correspond to the local maxima of w1(t). For all figures Ω= 2.5.
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phases. However, the phase shift is constant for each pair of
qubits, meaning that they are synchronized. The latter is also
indicated by the clearly periodic pattern in Fig. 3a. The
quasiperiodic regime when Δ= 3.73 is shown in Fig. 3b. Now
the phase shifts between oscillations of different qubits are no
longer constant, and the periodic pattern of the spatio-temporal
dynamics is lost, reflecting the loss of synchronization.
Chaotic oscillations for Δ= 4.05 are illustrated in Fig. 3c. Here

the qubit chain demonstrates erratic behavior, which is in marked
contrast to the ordered dynamics presented in Fig. 3a, b. Figure 3d
shows typical hyperchaotic oscillations calculated for Δ ≈ 4.95. In
this regime, the oscillations in the chain become even more
complicated than the chaotic behavior in Fig. 3c and now
demonstrate no specific time scales in wn(t). The hyperchaotic
behavior persists up to Δ ≈ 8.0, after which it rapidly switches to
chaotic and then periodic solutions. For Δ > 8.53, all oscillations
disappear, and all long-term solutions in the system correspond to
stable equilibrium.
In order to further examine the presence of the multistability in

the dynamics of the chain, we return to the evolution of the
Lyapunov exponents as Δ changes from 9 down to 1. Values of
Λ1,2,3,4 for this case are shown red in Fig. 2b. The plot shows that
the stable homogeneous steady state (Λ1= Λ2= Λ3= Λ4 < 0)
exists down to Δ ≈ 5.491, where it suddenly changes to
hyperchaotic oscillations. Thus, within the interval of Δ between
5.491 and 9.0, the homogeneous fixed point co-exists with
different inhomogeneous regimes, including other types of
equilibria, periodic and quasiperiodic oscillations, chaos, and
hyperchaos (blue graphs in Fig. 2b). Multistability therefore
appears to be a generic phenomenon, existing in chains of
different size.
Analysis of chains with N > 5 reveals that hyperchaos is not only

preserved in the system but also becomes more complicated as
more Lyapunov exponents become positive. The results of our
analysis are summarized in Fig. 4, where the number of positive
Lyapunov exponents, M, is shown as a function of the number of
qubits in the chain. The graph shows an almost linear growth, at a
rate suggesting that adding two or three qubits leads to the
appearance of an additional positive Lyapunov exponent. This
phenomenon originates from a weak correlation between the
oscillations in distant qubits. As a result, the addition of a
subsystem, comprising two or more qubits, is able to demonstrate
chaotic dynamics and adds one more positive value to the
spectrum of the Lyapunov exponents. Since, for a given coupling,
the smallest chaotic subsystem comprises two qubits, their
inclusion produces one more positive Lyapunov exponent. The
number of Lyapunov exponents grows roughly proportionally to
the number N of qubits rather than with the dimensionality 2N of

the Hilbert space of the system. This indicates the possibility of a
reduced description of its dynamics. In such a case, the transitions
between qualitatively different, distinct dynamical regimes are
controlled by a relatively small number of independent dimen-
sionless parameters.
For large N, multiple positive Lyapunov exponents make the

oscillations very complicated, demonstrating broadband contin-
uous spectra, which are similar to random fluctuations in solids50.
In addition, we found out that these hyperchaotic phenomena are
preserved for non-identical qubits and open chains, as well as in
chains with more complex qubit-coupling topology than those
discussed above. The spatial correlations, the spectra of the chain
oscillations calculated for different numbers of qubits, and
Lyapunov analysis of chains with non-identical qubits and more
complex topology are discussed in Sections C and D in
Supplementary Information.
To study the significance of the system’s dimensionality, we

analyze two-dimensional L × L lattices of L2 interacting qubits
(Fig. 5a). As for 1D rings, these square lattices exhibit chaotic (for
2 × 2 lattices) and hyperchaotic behavior (for 3 × 3 and larger
lattices). Figure 5c illustrates the Lyapunov exponents spectrum
for a 3 × 3 square lattice. We observe two areas (2.7 < Δ < 3.8 and
Δ ≈ 5.8) of chaos, one small area of hyperchaos with two positive
Lyapunov exponents (Δ ≈ 4.2), and two areas of hyperchaos with
three positive exponents (4.4 < Δ < 5.3 and 6.05 < Δ < 7.6). There-
fore, for a lattice of 9 qubits, we observe a complicated behavior
with three positive Lyapunov exponents, which is similar behavior
to that we observe for a ring of 9 qubits. We investigate lattices
with several values of L of nodes and find almost linear growth of
the number of positive Lyapunov exponents with increasing the
number of qubits in the lattice (see Fig. 5b). We can conclude that
emergence of hyperchaos does not depend on the dimensionality
of the system.
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Chaos control via a coherent driving field
This dynamical complexity has a deterministic origin, which could
be controlled (suppressed or enhanced) by an applied external
field. Previously, it was demonstrated that a periodic perturbation
can suppress hyperchaos with two positive Lyapunov expo-
nents51,52. Here we apply a periodic modulation to the laser field
amplitude, which modulates the Rabi frequency:

Ω ¼ Ωm½1þM sinð2πftÞ�; (5)

where Ωm is the amplitude of the Rabi frequency, while M and f
are the modulation index and the frequency of modulation,
respectively. We consider the case when N= 15, a large but
practically feasible number of qubits such that the system shows
hyperchaos, characterized by four positive Lyapunov exponents
and a broadband spectrum. Figure 6 presents the 11 largest
conditional Lyapunov exponents (Fig. 6a) and the corresponding
bifurcation diagram (Fig. 6b) calculated for Ωm= 2.5, c= 5, Δ=
5.0, M= 0.684, and f changing from 0 to 2.0.
Due to the periodic modulation, chaos is suppressed in certain

parameter regions. For f between 0.7 and 0.8, we find complex
periodic oscillations characterized by the largest Lyapunov
exponent <0 (see Fig. 6a) and multiple branches in the bifurcation
diagram (Fig. 6b). Within the interval f∈ (0.9, 1.1), we find period-
one oscillations (one maxima per period) and Lyapunov expo-
nents ≪0, corresponding to highly stable regular oscillations in
this regime. In addition, the same controlling signal is able to
significantly increase the complexity of hyperchaotic oscillations
and a corresponding increase in the value of the largest Lyapunov
exponent. For example, when f ≈ 0.3 the largest Lyapunov
exponent becomes almost three time larger than in the case
without the application of the signal (f= 0). Otherwise the number
of positive Lyapunov exponents can be increased by 1 (f= 1.2) or
2 (f= 1.4). Our results demonstrate that periodic modulation of
laser field amplitude can be used as an efficient method to control
very complex hyperchaos in qubit arrays.

DISCUSSION
We have shown that the interplay between dissipation and energy
pumping in quantum systems comprising chains of qubits can
produce highly nontrivial emergent phenomena associated with
the onset of complex chaotic and hyperchaotic oscillations even in
the absence of multi-particle entanglement. The complexity of the
hyperchaos increases with the number of elements in the chain.
The number of positive Lyapunov exponents grows linearly with
the number of qubits, that is, as only log of the dimensionality
of the Hilbert space. This indicates the possibility of a reduced
description of the quantum system by a small (in comparison to
the dimensionality of the Hilbert space) number of dimensionless
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parameters. This observation is consistent with the fact that the
manifold of all quantum states that can be generated by arbitrary
time-dependent local Hamiltonians in a polynomial time occupies
an exponentially small volume in the Hilbert space of the
system53.
Our results demonstrate a mechanism for randomizing the

evolution of coupled qubits, which arises due to dynamical
phenomena far from equilibrium and is thus unrelated to
thermalization processes despite the superficial similarity. The
model we have used is generic and can be applied and
implemented directly in, e.g., chains of qubits or electromagne-
tically driven superconducting qubits. Our results will be
important for the development of large quantum systems, where
multi-point entanglement is neither required nor supported42,43,54.
In particular, they suggest a controllable way of switching
between different dynamical regimes via regular to chaos
transitions either by tuning the parameters of the system or by
applying a controlling signal via modulation of laser field
amplitude, as another approach towards controlling quantum
state dynamics55. Our results are of interest for the development
of quantum random number generators56 and quantum chaotic
cryptography57,58. A natural extension of this research will
consider the effect of interqubit entanglement on the complexity
revealed here and whether it can be utilized for controlling this
far-from-equilibrium behavior.
Another interesting task will be to study how quantum

signatures of classical chaos such as the growth rate of out-of-
time-ordered correlators59 behave in the presence of hyperchaos.
Preliminary results on the integration of the original quantum
model (Eq. (2)), briefly discussed in Section E in Supplementary
Information, indicate that the complexity of chain dynamics
depends highly non-trivially on the parameters of the Hamiltonian
(Eq. (1)). However, a detailed analysis of the dynamical regimes
and their characteristics in the presence of entanglement, and
especially of the question about the universality of these regimes
and parameters that control them, requires extensive further
research, which we hope this paper will stimulate.

METHODS
Lyapunov exponents calculation
The Lyapunov exponents were calculated for the stable limit sets, which
correspond to the solutions of the model equations as time t→∞. Since
we apply the periodic modulation (Eq. (5)) to the system (Eq. (4)), the
Lyapunov exponents we calculate in this case are called conditional and
missing one zero exponent, unlike the common Lyapunov exponents
spectrum60. To determine them, we implement 3N perturbations vectors,
where N is the number of units in the system, and use periodic
Gram–Schmidt orthonormalization of the Lyapunov vectors to avoid a
misalignment of all the vectors along the direction of maximal
expansion61,62.

Bifurcation diagrams
In order to construct a bifurcation diagram, we plot the points
corresponding to the local maxima w1,max in the time evolution of w1(t),
calculated for given Δ and Ω.
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