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Abstract—In the present work we studied blood oxygena-
tion/deoxygenation spatial dynamics related to real and imag-
inary motor activity using functional near-infrared spectroscopy
(fNIRS). We revealed biomarkers based on pronounced hemi-
spheric lateralization of hemodynamical response in the motor
cortex during motor activity. We used these markers to design
a sensing method for classification of movement’s type. The
accuracy of real movements classification was close to 100%,
while for imaginary movements it was lower but still quite
high (about 90%). The proposed system can find application,
for example, in neurorehabilitation after severe brain injuries,
including traumas and strokes.

Index Terms—brain activity, functional near-infrared spec-
troscopy (fNIRS), real and imaginary motor activity

I. INTRODUCTION

It is well-known, that in nonlinear dynamics brain consid-
ered as a very complex dynamical system with huge number
of elements — neurons [1]. The neurons are connected by
synapses and thus form a complex network with nodes and
links. Features of time-spatial activity of this neural network
provide important information about the current state of the
nervous system and cognitive brain ability [2]–[5]. Particular
brain states can be associated with specific activity such as
motor brain activity during either real or imaginary movement
[6]–[11].

Studies on brain activity related to real motor activity and
motor imagery of different limbs can be essential not only
for basic research in neuroscience, but also for applications in
engineering and medicine. For example, this knowledge can
be used in development of brain-computer interfaces (BCIs).
One of the goals of such systems is to improve the quality
of life for post-traumatic and post-stroke patients and to
aid in neurorehabilitation [12]–[14] or to control prostheses
and exoskeletons [15]. One of the basic BCI functions is
online detection of specific features in analyzed signals of
brain activity. Common forms of brain activity used in BCI
are represented by electroencephalography (EEG) [16] and
magnetoencephalography (MEG) [17]. However, some other
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techniques for acquiring information about brain state can be
used in BCI and provide their own benefits.

Functional near-infrared spectroscopy (fNIRS) [18], [19] is
one of such techniques. It is a powerful tool of noninvasive
optical imaging, that successfully used in BCI for registration
of brain activity with further control command formation
[20]–[22]. Benefit of control commands of this type is their
resistance to influence by any muscular activity [23]. Studies
on motor imagery are also very important for designing reha-
bilitation BCI [17], [24]. Motor imagery is a mental process
by which a person simulates a given action with no real motor
activity. Some researchers treat motor imagery as a conscious
application of unconscious preparation for real motor activity
[25]. By now it is known that real and imaginary motor activity
share some common features [26]–[28]. One of such features
is the similarity of cortical layout in the primary motor cortex
M1 between motor execution and motor imagery, which is
quite important for the BCI development.

In this paper, we analyzed blood oxygenation/deoxygenation
spatial dynamics related to real and imaginary motor activity
using fNIRS. In particular, we extracted specific features of
the fNIRS signals related to different types of motor activity,
which can be used in BCIs. We also proposed an universal
method for classification of fNIRS trials obtained during
motor imagery and developed a sensor of motor activity with
possibility to be used in neurorehabilitation systems.

II. MATERIALS AND METHODS

A. Participants and Experimental setup

Twelve healthy volunteers in the age of 22–38 year partic-
ipated in the experiment. All participants were right-handed,
amateur practitioners of physical exercises, non-smokers, with-
out diagnosed diseases of the musculoskeletal system. All vol-
unteers signed written consent that they were informed about
the design of the experiment with its possible inconveniences
and limitations. The experiment was conducted in accordance
with Helsinki Declaration 1964 and was approved by the local
Ethics Committee. All experimental works were carried out
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in the Neuroscience and Cognitive Technology Lab of the
Innopolis University.

The experiment was designed to record a hemodynamic neu-
ronal response in the motor cortex using fNIRS which records
fast changes in the brain activity. The fNIRS signals were
acquired by the NIRScout device manufactured by the NIRx
Company (Germany). The NIRScout system used 8 sources
and 8 detectors placed on the subject’s scalp in the primary
motor cortex area (M1) to record hemodynamic response data
with 7.8125-Hz resolution. Each pair “source–detector”. that
were placed close enough to each other (at about 2-3 cm),
formed a fNIRS channel (a total of 20 channels).

The experiment was performed as follows. The subjects
were sitting in a comfortable chair while performing motor
activity or motor imagery related to left and right hands. Each
action was performed after the corresponding text command
demonstrated on a computer monitor that was placed in
front of the subject’s eyes at a distance of 70–80 cm. Each
experiment included two sessions. In the first session, the
subject performed real movements with left or right hand
according to the commands on the screen. Then, after a short
break, in the second session the subject imagined the same
type of movement according to the commands on the screen.
Each fNIRS trial in each session consisted of the command
presentation indicating the required type of motor activity
(the subject was given 15 s to perform movement during this
command presentation) and the rest interval (15 s from the
end of motor activity till the next command). There were 10
trials for each type of motor activity.

Hand movement consisted of repeated bending/unbending
of fingers to the center of the palm (similar to the clenching
of imaginary ball). The repeated movements were performed
at the pace comfortable for the subject.

B. Data preprocessing

Laser light with two wavelengths, λ1 = 785 nm and
λ2 = 850 nm, was used in the fNIRS device. Light with
these characteristics can pass through most types of tissues
in body, but is highly absorbed in blood by oxyhemoglobin
and deoxyhemoglobin, respectively [29].

Raw fNIRS data need to be preprocessed in order to be
used as indicator of changes in oxygenation of the tissues.
Oxyhemoglobin and deoxyhemoglobin have different light ab-
sorption, so we used modified Beer–Lambert law to calculate
changes in the reflected dual-wavelength light [30]. We also
introduced characteristic H , which reflects relative changes in
oxyhemoglobin and deoxyhemoglobin.

The fNIRS data acquisition and preprocessing were per-
formed with software NIRScout. As a part of preprocessing
we applied the 0.01–0.1 Hz band-pass filter to the raw fNIRS
signals. It is known that band-pass filtering is enough to
remove most physiological artifacts such as Mayer wave (with
a typical frequency close to 0.1 Hz), respiration (close to 0.25
Hz), and heartbeat (close to 1 Hz) [31].

For the further analysis 35-s long trials of fNIRS data were
formed. Each trial included 5-s preparation before the text

command, 15-s motor activity, and 15-s rest interval. The 5-s
interval at the beginning of each trial was used for baseline
correction. Namely, the distribution of HbO/HbR was averaged
over these 5 s and the obtained value was subtracted from the
corresponding trial.

III. RESULTS

A. Data analysis

The characteristic Hi (i = 1, . . . , 20 is the fNIRS channel)
provides information about HbO/HbR dynamics. However, to
compare significance of such dynamics in different areas of
motor cortex we introduced a new characteristic dHi,j .

First, we calculated the value of ⟨Hi⟩T as Hi averaged
for each fNIRS channel, separately for HbO and HbR, across
time interval T ∈ (5, 20) s corresponding to real or imaginary
motor activity:

⟨Hi⟩T =

∫
T

∆Hi dt. (1)

In the previous papers [32], [33], we have introduced the
measure of connectivity based on the reconstruction of func-
tional links between neuronal ensembles in different frequency
bands by comparing spectral components of the EEG signals
belonging to these bands. Here, we extended this approach to
the time domain for analyzing the restoration of connectivity
by similarity of hemodynamic responses in different areas of
the motor cortex. This allows us to identify the cortical region
in M1 with most similar activity for further classification of
motor execution events.

According to the described approach, we calculated matrices
dHi,j of the difference between ⟨H⟩T for all fNIRS channels
i and j (i, j = 1, . . . , 20) for each type of motor activity (real
and imaginary) for both HbO and HbR as:

dHi,j = ⟨Hi⟩T − ⟨Hj⟩T . (2)

It is known [34] that execution of real movement is accom-
panied by increase of oxyhemoglobin (HHbO) and simultane-
ous decrease of deoxyhemoglobin (HHbR) in M1. Therefore,
in the resulting matrices dHi,j we left only absolute values
of dHi,j > 0 for HbO and dHi,j < 0 for HbR. As the result
we constructed the distributions N(dHi,j) of dHi,j for each
20 × 20 matrix obtained for HBO and HbR in the case of
left/right real and imaginary movements. These diagrams are
illustrated by Figure 1a,b.

According to the obtained distributions N(dHi,j) we
introduced cumulative distribution functions FdHi,j (h) =
P (dHi,j ≤ h) which yield the probability for dHi,j to be
smaller than h. The fourth quartile of the F (h) distribution is
the value of h ≥ 0.75. The corresponding cumulative distri-
butions are shown in Figure 1a,b by red curves, while dashed
vertical lines indicate the border of the fourth quartile. We
only considered dH̄i,j values that fall into the fourth quartile
of distributions (F (H̄i,j) ≥ 0.75) because the resulting values
of dH̄i,j were the most significant and thus can be used to
find fNIRS channels suitable for the classifier.
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Fig. 1. Distribution of |dHi,j | values and cumulative distribution function
F for right-handed motor activity: (a) HbO and (b) HbR. The black dashed
lines indicate the border of the fourth quartile (75%) of the distributions.
Distributions of dH across fNIRS channels for right-handed motor activity:
(c) HbO and (d) HbR.

For better illustration of laterality Figure 1c,d shows distri-
butions of dH across fNIRS channels for right-handed motor
activity: it is clear, that values of dH are much higher for
channels in the left hemisphere (channels 1− 10).

B. Classification algorithm

Obtained results allowed us to propose the online algo-
rithm for binary classification of brain activity during real
and imagery motor executions. The proposed algorithm for
processing fNIRS data contained the following main steps.

1) For each considered channel i and type of motor ac-
tivity (right/left hand, execution/imagery) we subtracted
spatial oxyhemoglobin (HbO) (Hi

HbO) and deoxyhe-
moglobin (HbR) (Hi

HbR) distributions for the right hemi-
sphere (Hj

R, fNIRS channels j of interest from right
hemisphere) from the corresponding distribution for the
left hemisphere (Hi

L, symmetrical channels i from left
hemisphere). We calculated differences for individual
symmetrical channels in the left and right hemispheres
as

∆Hi
HbO = Hi

HbO, L −Hj
HbO, R, (3)

∆Hi
HbR = Hi

HbR, L −Hj
HbR, R. (4)

2) Then, we averaged ∆Hi
HbO and ∆Hi

HbOR over the time
interval corresponding to motor activity T ∈ (5, 20) s to
find ⟨∆Hi

HbO⟩T and ⟨∆Hi
HbO⟩T as

⟨∆Hi
HbO⟩T =

∫
T

∆Hi
HbO dt, (5)

⟨∆Hi
HbR⟩T =

∫
T

∆Hi
HbR dt. (6)

3) For each separate fNIRS signal trial, we calculated char-
acteristics CR and CL taking into account the following
criteria for each considered symmetric fNIRS channels
in the left and right hemispheres.

(i) If ⟨∆Hi
HbO⟩T > 0 and ⟨∆Hi

HbR⟩T < 0 was true
for one of the channels i, then CR := CR + 1.

(ii) If ⟨∆Hi
HbO⟩T < 0 and ⟨∆Hi

HbR⟩T > 0 was true
for one of the channels i, then CL := CL + 1 .

4) Finally, we made a decision according to the following
criteria.

(i) If CR > CL, then right-hand (real or imaginary)
motor activity takes place.

(ii) If CR < CL, then left-hand (real or imaginary)
activity takes place.

(iii) If CR = CL, then the type of activity is uncertain.
We applied the classification algorithm in our fNIRS-based

experimental system for online classification of real and imag-
inary motor actions. We used the proposed classifier with
six fNIRS channels i = {2, 7, 8} in the left hemisphere and
j = {12, 17, 18} symmetric channels in the right hemisphere.
Notably, in the majority of cases the type of motor action (both
real and imagery) in all subjects was correctly identified by
the data from only three fNIRS channels.

IV. CONCLUSION

In this paper, we have carried out the analysis of fNIRS
data acquired during real and imaginary movements. Distinct
spatial dynamics in the motor cortex when performing motor
actions (real or imaginary) with the left or right hand exhibited
pronounced laterality between two hemispheres. This allowed
us to reveal hemodynamic biomarkers for classification of the
type of movement. The proposed fNIRS-based sensor provided
close to 100% recognition accuracy in the detection of real
movements, while the classification accuracy of motor imagery
is a little worse and reached 90%.

The important advantage of the proposed method is the
possibility to efficiently classify different types of movement,
both real and imaginary, without recalculation of the system
parameters. This essential feature of the developed sensor
results from pronounced laterality of the hemodynamic brain
response to motor activity.

The knowledge of the hemodynamic behavior in the motor
cortex during real and imaginary motor activity along with
approaches for its detection can be helpful not only for
fundamental studies on human motor-related tasks but also
for the development of fNIRS-based BCIs.

ACKNOWLEDGMENT

This work was supported by President’s Program (Project
MD-1921.2020.9).

105

Authorized licensed use limited to: Carleton University. Downloaded on November 02,2020 at 19:24:27 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] S. Herculano-Houzel, “The human brain in numbers: a linearly scaled-up
primate brain,” Front. Human Neurosci. 3(11), p. 31, 2009.

[2] E. Niedermeyer and L. S. Fernando, Electroencephalography: Ba-
sic Principles, Clinical Applications, and Related Fields, Lippincott
Williams & Wilkins, 2004.

[3] M. Breakspear, “Dynamic models of large-scale brain activity,” Nature
Neuroscience 20(3), p. 340, 2017.

[4] V. A. Maksimenko, A. E. Runnova, N. S. Frolov, V. V. Makarov,
V. Nedaivozov, A. A. Koronovskii, A. Pisarchik, and A. E. Hramov,
“Multiscale neural connectivity during human sensory processing in the
brain,” Physical Review E 97(5), p. 052405, 2018.

[5] V. A. Maksimenko, N. S. Frolov, A. E. Hramov, A. E. Runnova,
V. V. Grubov, J. Kurths, and A. N. Pisarchik, “Neural interactions
in a spatially-distributed cortical network during perceptual decision-
making,” Frontiers in Behavioral Neuroscience 13, p. 220, 2019.

[6] P. Chholak, A. Pisarchik, S. Kurkin, V. Maksimenko, and A. Hramov,
“Neuronal pathway and signal modulation for motor communication,”
Cybernetics and Physics 8(3), pp. 106–113, 2019.

[7] V. Khorev, V. Maksimenko, E. Pitsik, A. Runnova, S. Kurkin, and
A. Hramov, “Analysis of motor activity using electromyogram signals,”
Informatsionno-Upravliaiushchie Sistemy (3), pp. 114–120, 2019.

[8] V. Khorev, A. Badarin, V. Antipov, V. Maksimenko, and S. Kurkin,
“Eeg activity during balance platform test in humans,” Cybernetics and
Physics 8(3), pp. 132–136, 2019.

[9] S. Kurkin, V. Maksimenko, and E. Pitsik, “Approaches for the improve-
ment of motor-related patterns classification in eeg signals,” in 2019
3rd School on Dynamics of Complex Networks and their Application in
Intellectual Robotics (DCNAIR), pp. 109–111, IEEE, 2019.

[10] S. Kurkin, P. Chholak, V. Maksimenko, and A. Pisarchik, “Machine
learning approaches for classification of imaginary movement type by
meg data for neurorehabilitation,” in 2019 3rd School on Dynamics
of Complex Networks and their Application in Intellectual Robotics
(DCNAIR), pp. 106–108, IEEE, 2019.

[11] M. M. Danziger, O. I. Moskalenko, S. A. Kurkin, X. Zhang, S. Havlin,
and S. Boccaletti, “Explosive synchronization coexists with classical
synchronization in the kuramoto model,” Chaos: An Interdisciplinary
Journal of Nonlinear Science 26(6), p. 065307, 2016.

[12] E. Buch, C. Weber, L. G. Cohen, C. Braun, M. A. Dimyan, T. Ard,
J. Mellinger, A. Caria, S. Soekadar, A. Fourkas, et al., “Think to move:
a neuromagnetic brain-computer interface (BCI) system for chronic
stroke,” Stroke 39(3), pp. 910–917, 2008.

[13] W.-P. Teo and E. Chew, “Is motor-imagery brain-computer interface
feasible in stroke rehabilitation?,” PM R 6(8), pp. 723–728, 2014.

[14] U. Chaudhary, N. Birbaumer, and A. Ramos-Murguialday, “Brain-
computer interfaces for communication and rehabilitation,” Nature Re-
views Neurology 12(9), p. 513, 2016.

[15] M. R. Tucker, J. Olivier, A. Pagel, H. Bleuler, M. Bouri, O. Lambercy,
J. del R Millán, R. Riener, H. Vallery, and R. Gassert, “Control strategies
for active lower extremity prosthetics and orthotics: a review,” Journal
of Neuroengineering and Rehabilitation 12(1), p. 1, 2015.

[16] E. A. Curran and M. J. Stokes, “Learning to control brain activity: A
review of the production and control of EEG components for driving
brain–computer interface (BCI) systems,” Brain and Cognition 51(3),
pp. 326–336, 2003.

[17] P. Chholak, G. Niso, V. A. Maksimenko, S. A. Kurkin, N. S. Frolov,
E. N. Pitsik, A. E. Hramov, and A. N. Pisarchik, “Visual and kines-
thetic modes affect motor imagery classification in untrained subjects,”
Scientific Reports 9(1), pp. 1–12, 2019.

[18] A. Abdalmalak, D. Milej, L. Norton, D. Debicki, T. Gofton, M. Diop,
A. M. Owen, and K. S. Lawrence, “Single-session communication with
a locked-in patient by functional near-infrared spectroscopy,” Neuropho-
tonics 4(4), p. 040501, 2017.

[19] A. Abdalmalak, D. Milej, M. Diop, M. Shokouhi, L. Naci, A. M. Owen,
and K. S. Lawrence, “Can time-resolved NIRS provide the sensitivity
to detect brain activity during motor imagery consistently?,” Biomedical
Optics Express 8(4), pp. 2162–2172, 2017.

[20] Y. Tomita, F.-B. Vialatte, G. Dreyfus, Y. Mitsukura, H. Bakardjian, and
A. Cichocki, “Bimodal BCI using simultaneously NIRS and EEG,” IEEE
Transactions on Biomedical Engineering 61(4), pp. 1274–1284, 2014.

[21] L. C. Schudlo and T. Chau, “Towards a ternary NIRS-BCI: single-trial
classification of verbal fluency task, Stroop task and unconstrained rest,”
Journal of Neural Engineering 12(6), p. 066008, 2015.

[22] S. D. Power, A. Kushki, and T. Chau, “Automatic single-trial discrim-
ination of mental arithmetic, mental singing and the no-control state
from prefrontal activity: toward a three-state NIRS-BCI,” BMC Research
Notes 5(1), p. 141, 2012.

[23] L. F. Nicolas-Alonso and J. Gomez-Gil, “Brain computer interfaces, a
review,” Sensors 12(2), pp. 1211–1279, 2012.

[24] S. Lemm, C. Schafer, and G. Curio, “Bci competition 2003-data set iii:
probabilistic modeling of sensorimotor/spl mu/rhythms for classification
of imaginary hand movements,” IEEE Transactions on Biomedical
Engineering 51(6), pp. 1077–1080, 2004.

[25] M. Jeannerod, “Mental imagery in the motor context,” Neuropsycholo-
gia 33(11), pp. 1419–1432, 1995.

[26] J. Munzert, B. Lorey, and K. Zentgraf, “Cognitive motor processes: the
role of motor imagery in the study of motor representations,” Brain
Research Reviews 60(2), pp. 306–326, 2009.

[27] N. Sharma, P. S. Jones, T. Carpenter, and J.-C. Baron, “Mapping the
involvement of BA 4a and 4p during motor imagery,” Neuroimage 41(1),
pp. 92–99, 2008.

[28] A. Solodkin, P. Hlustik, E. E. Chen, and S. L. Small, “Fine modulation in
network activation during motor execution and motor imagery,” Cerebral
Cortex 14(11), pp. 1246–1255, 2004.

[29] H. Ayaz, P. A. Shewokis, A. Curtin, M. Izzetoglu, K. Izzetoglu, and
B. Onaral, “Using MazeSuite and functional near infrared spectroscopy
to study learning in spatial navigation,” JoVE (Journal of Visualized
Experiments) (56), p. e3443, 2011.

[30] M. Cope, The development of a near infrared spectroscopy system and
its application for non invasive monitoring of cerebral blood and tissue
oxygenation in the newborn infants. PhD thesis, University of London,
1991.

[31] N. Naseer and K.-S. Hong, “fNIRS-based brain-computer interfaces: a
review,” Frontiers in Human Neuroscience 9, p. 3, 2015.

[32] N. S. Frolov, V. A. Maksimenko, M. V. Khramova, A. N. Pisarchik,
and A. E. Hramov, “Dynamics of functional connectivity in multilayer
cortical brain network during sensory information processing,” European
Physical Journal Special Topics 228(11), pp. 2381–2389, 2019.
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