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Abstract—30% of epileptic patients are resistant to drug
therapy. A prospective treatment strategy for refractory epilepsy
patients is a brain-computer interface (BCI) in which the epileptic
seizures are modulated either by the preprogrammed stimulation
schedules (open loop) or via the closed-loop stimulation. The
closed-loop BCI implies that seizures are automatically detected
and that the detection triggers stimulation which subsequently
aborts seizures. Up to now, this experimental treatment is only
able to reduce seizures duration, while the ultimate aim is their
complete abolishment. We have developed a closed-loop BCI
aimed to predict and prevent spike-wave discharges, the elec-
trophysiological anchor of absence seizures, in a genetic absence
rat model; it predicted 45% of the seizures while the remaining
ones were detected. When we evaluated the combination of
the prediction and seizure detection with closed-loop electrical
stimulation, a 72% decrease of seizure activity duration was
achieved.

Index Terms—brain-computer interface, seizure prediction,
brain stimulation

I. INTRODUCTION

Epilepsy is a neurological disease characterized by sponta-
neous seizures. At the moment, around 50 million people in
the world suffer from different types of epilepsy. Epileptic
seizures are associated with the formation of patterns of
rhythmic brain activity, involving neural populations located in
different brain areas. One of the most common ways to prevent
epilepsy is to use medical drugs. These medications affect
through a variety of mechanisms, often acting to suppression
channels. Although the development of antiepileptic drugs
began more than 20 years ago, so far one-third of patients
are not amenable to this type of treatment. For these patients,
it seems effective to use the brain-computer interface (BCI)
based on the destruction of pathological neural activity by
the stimulation [1]. At the moment, several methods allow
effective suppression of epileptic seizures using electric [2],
magnetic [3] and optogenetic stimulations [4].

The stimulation can be activated following the predeter-
mined stimulation protocol without analyzing brain activity.
This action is the characteristic feature of the open-loop

control using an antiepileptic device. This means that there is
no direct feedback between the brain state and the stimulation
protocol [5].

It is obvious that to be more effective, the stimulation should
be performed following the peculiarities of the current brain
state. It can be implemented in the BCI operating on the
principle of closed-loop control, where the monitoring of the
brain state is carried out using the signals of electrical brain
activity. One of the first “closed-loop” clinical trials, was the
responsive neurostimulator (RNS) designed by Neuropace Inc.
(CA, USA) [6]. It contained implanted electrodes for recording
the intracranial EEG served as an input for the algorithm
which determined when a seizure has started. The triggered
focal electrical stimulation was sent to a specific brain area to
interrupt the seizure.

The further development of antiepileptic BCIs should be
aimed at a search of biomarkers of neural activity, allowing
to predict the occurrence of epileptic seizures, as well as
a search for the most effective stimulation parameters for
the destruction of pathological activity with the least impact
on the normal brain functioning [1]. Although algorithms
are enabling the seizure detection with the high sensitivity
and specificity [7], the prediction of the seizures is a more
challenging task, since the preictal activity might not differ
from the normal behavior. For instance, the developed algo-
rithms can predict seizures with a high sensitivity but their
specificity is too low to be used in clinics [8]. According to
the recent works [9], [10], the development of efficient systems
for predicting epileptic seizures remains a challenging task of
modern neuroscience.

To address this issue we propose a closed-loop BCI for the
seizure prediction and prevention and test it in-vivo in rats.
The developed BCI correctly predicts 45% seizures and the
number of false predictions varies from 20 to 100 per hour for
the different animals. Finally, having evaluated the proposed
BCI, a 72% decrease in seizure activity duration has been
achieved.978-1-7281-4707-9/20/$31.00 ©2020 IEEE



II. METHODS

A. Animals

Male 6–7 months WAG/Rij rats (body weight ca 354 gr)
were used as experimental subjects. The rats were born and
raised at the department of Biological Psychology, Donders
Centre for Cognition, Radboud University Nijmegen, the
Netherlands. Before surgery they were housed in pairs, after
surgery they were singly housed (High Makrolon cages with
Enviro Dri bedding material and cage enrichment). Rats were
always kept on a 12:12 light cycle (light off phase between
8.30 h and 20.30 h), with food and water ad libitum. All
efforts were done to restrict the number of rats and to make the
discomfort for the rats as minimal as possible. All procedures
were carried out in accordance with the Ethical Committee
on Animal Experimentation of Radboud University Nijmegen
(RU-DEC).

B. Surgery

The stereotactical surgery was performed under isoflurane
anesthesia. All rats were implanted with a tripolar electrode
set (Plastic One MS 333/2a) and two bipolar electrode sets
(Plastic One MS 303/11). All electrode sets consisted of
stainless steel wires, isolated with polyimide, diameter 0.2
mm. Only the tip of each electrode wire was un-isolated.
The first electrode set comprised a thalamic (A/P: -3.6 mm,
M/L: -2.4 mm, H: 6.4 mm) EEG electrode, and a reference
and earth to the cerebellum. The first bipolar electrode was
used to record the EEG in layer 5/6 of the somatosensory
cortex ( (A/P: both electrodes -0.5, M/L: 4.5 and 5.0, H: 4.5
and 5.0 ), the second electrode set was a bipolar stimulation
electrode , coordinates were A/P: 2.0 mm, M/L: 4.4 mm, H:
4.1 mm and A/P: -3.0 mm, M/L: 4.8 mm, H: 2.95 mm. All
coordinates were according the stereotactic atlas of Paxinos
and Watson (1998). The electrodes were fixed to the skull with
dental cement (Simplex Rapid, Kemdent, Purton, Swindon,
Wiltsher, UK). The animals received injection with Atropine
(0.05 ml intramuscular) and Rimadyl (0.14 ml subcutaneous)
preoperative and postoperative Rimadyl (24 and 48 hours after
surgery, 0.14 ml subcutaneous). Rats were allowed 14 days
recovery before any electrophysiological experiments were
performed.

C. ECoG recording

Rats were habituated to the Plexiglas recording cage
(20x35x25 cm) and cables for at least 16 hours: the leads
were attached to a swivel-contact to allow registration and
stimulation in the freely moving animal. A physiological
amplifier (TD 90087, Radboud University, Nijmegen, Elec-
tronic Research Group) amplified the EEG signals which were
filtered by a band pass filter with cut-off points at 1(HP) and
100(LP) and a 50 Hz Notch filter. Differential EEG recordings
were made form the two cortical sites and the thalamus. The
EEG signals were digitalized by WINDAQ-recording-system
(DATAQ-Instruments Inc., Akron, OH, USA) with a constant
sample rate of 500 Hz. A Passive Infrared Registration (PIR)
system registered the movements of the rat (RK2000DPC

LuNAR PR Ceiling Mount, Rokonet RISCO Group S.A.,
Drogenbos, BE). The EEG was recorded for a base-line period
between 9.00 and 16.00, next the threshold for electrical
cortical stimulation for SWD interruption was determined by
finding the intensity at which three subsequent SWD were
aborted by the 1 sec train 130 Hz pulses. This intensity was
used in the seizure prevention experiment.

D. ECoG analysis

The time-frequency decomposition of the each ECoG signal
Xi(t) was performed using a continuous wavelet analysis

Ai(s, t) =
1√
f

t+s∫
t−s

Xi(t
′)ψ∗(

t− t′

s
)dt′, (1)

with the specially designed mother complex function

ψ(η) = π1/4Exp[iω0η]Exp

[
−10η4

2

]
, (2)

where s = 1/f [Hz−1] is the timescale, f is the linear
frequency [Hz]. The used mother wavelet function is the mod-
ification of the well-known Morlet wavelet [11]. The power
spectrum Wi(s, t) = |A2

i (s, t)| was calculated during a 600-ms
window for the frequency range 3-20 Hz. The algorithm was
implemented in real time with the time step ∆t = 0.005 s –
small enough to provide high-quality signal decomposition in
the considered frequency range. The resulted measure W (s, t)
was found as a product of the spectra obtained for the all ECoG
recordings W (s, t) = W1(s, t) ×W1(s, t) ×W1(s, t) at the
every moment of time. The values W∆sj (t) , corresponding
to the spectral energy of the timescales ∆sj , were given by
the equation

W∆sj (t) =
1

∆sj

∫
s∈∆sj

1

τ

t∫
t−τ

W (s, t0)dsdt0, j = 1, 3, (3)

where the integration was performed both over the range of
timescales and the time interval τ = 500 ms chosen experi-
mentally considering the minimal duration of the precursor.

E. Seizure prediction

In order to automatically recognize the precursor and to
reduce the number of false alarms caused by any other
patterns of synchronized neuronal activity, the three ranges
of timescales corresponding to the common patterns of syn-
chronic neuron activity: ∆s1 (the range of sleep spindles 7–20
Hz), ∆s2 (the range 5–10 Hz of theta/alpha–precursors), ∆s3

(the range of low-frequency oscillations (delta-precursors) 3–5
Hz) were considered [12]. For these ranges the values of mean
energy (3) were calculated

In Fig. 1, b the rectangular windows, each of length τ
and width ∆s1 ,∆s2 , ∆s3 shown by the dotted, solid and
dashed lines, respectively, correspond to the areas of values
on the time-frequency plane (s, t) over which W∆s1,2,3(t) are
calculated at the moment of time t = t∗ . During the online
calculation the current moment of time t was located at the
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Fig. 1. The range of the timescales, corresponding to the preictal period
and SWD onset is shaded (a). A detailed illustration of the surface W (s, t)
preictally and during SWD onset (b). The rectangular windows correspond to
the areas of parameters (s, t), for which the value of W (s, t) is averaged.
(c) The values W∆si in every moment of time correspond to the W (s, t),
averaged over the rectangle of the width ∆si, respectively. Wth is the
threshold energy value, used for the prediction. ∆t is the time between the
detected precursor activity and the onset of SWD.

right-hand side of a rectangles, so, the algorithm stored half
of second prehistory and used it for averaging. Since the new
amount of data came from the hardware the rectangles shifted
to the right with the step δt = 1/SR , where SR = 200 Hz
is the sample rate, and the quantities W∆s1,2,3(t) were then
calculated for the next moment of time. In Fig. 1 one can see
that value of the mean energy W∆s2(t) during the precursor
activity becomes larger than W∆s1,3(t) and, moreover, exceeds
the same value corresponding to the background activity. So,
setting the threshold value Wth we can automatically detect
the precursor with the help of three conditions:
• condition 1: W∆s2 > W∆sth ;
• condition 2: W∆s2 > W∆s3 ;
• condition 3: W∆s2 > W∆s1 .

The conditions (2) and (3) were used to distinguish the
precursor events from sleep spindles and low-frequency delta
activity. Similar to the seizure, these types of activities are also
induced by synchronous neuronal dynamics, but have higher
(up to 20 Hz) and lower (up to 5 Hz) frequencies, respectively.

F. stimulation

The stimulus generator was controlled by the custom soft-
ware, allowed to read and apply the set of the pulse parameters
(e.g. duration, frequency, intensity) from a text file . In order
to minimize the idle time, once the precursor was detected,
the prediction algorithm immediately activated the additional
thread responsible for the establishment of the connection

with the stimulator and sending a precursor detection marker.
The precursor detection marker was a s pulse sent to the
Acquisition hardware via the LPT-port. The thread existed for
one second and blocked the signals coming from the prediction
algorithm. It prevented the rat from an additional stimulation
caused by the artifacts that appeared in the cortical EEG during
the delivery of the first pulse train.

G. Estimation of the brain response

III. RESULTS

At the first step the prediction algorithm was implemented
by comparing the wavelet spectral energy in the 5–10 Hz
frequency band with the predefined threshold (condition 1).
The algorithm’s seizure prediction performance was evaluated
with EEG recordings (four hours in duration) of WAG/Rij rats.
It was found that the algorithm correctly predicted on average
88% of the SWD (Fig. 2, a). For the individual animal this
value varied in the range 80–100% (Fig. 2, b), The remaining
SWDs were (early) detected. At the same time, a high number
of false positive predictions was noticed; they mainly occurred
during light slow wave sleep, a state of alertness, in which
neurons are slightly hyperpolarized and at high risk for seizure
generation. Only few false alarms were generated during active
wakefulness, passive wakefulness and deep slow wave sleep
(Fig. 2, e). Despite the high sensitivity of the algorithm, it was
not implemented in the closed-loop stimulation to prevent the
rat against the large number of false stimulations.
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Fig. 2. Percentage of predicted and detected SWDs within the 4 hours
recording of the group of six WAG/Rij rats (group (a) and individual (b)
data). (c) number of false positives across different states of alertness. For
each rat and each state of alertness, 5 segments of 50 seconds duration were
randomly selected in each recording for quantification of the number of false
alarms.

At the second step the prediction algorithm was extended to
reduce the number of false positives. The extension was based
on the simultaneous consideration of the wavelet energies of
two other frequency bands, associated with synchronized brain



activity: ∆s2 (7–20 Hz, the range of sleep spindles, which in
rats have a broad frequency spectrum), and ∆s3 (the range
of low-frequency oscillations (high (3–5) Hz delta, light slow
wave sleep). The precursors were now automatically detected
with the help of a set of logical conditions (for details see
the Methods section and Fig.1). This resulted in a significant
reduction of the false alarm rate of 83%±3.3% (F (1, 10) =
321.35, p < 0.001) (Fig. 3, a). As the result, the number of
false detections varied from 10 to 130 per hour (Fig. 3, b).
The mean percentage of the predicted SWDs was decreased
to 45% when compared to the initial version (Fig. 3, a). At the
same time, for 4/6 animals the percentage of predicted SWDs
exceeds 50% (Fig. 3, d).
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Fig. 3. (a) the relative decrease in the false positives rate (left pannel) between
the first algorithm (gray) and the second algorithm (red). (b) number of false
positives for each individual rat generated by the revised algorithm within the
1 hour baseline of the 6 WAG/Rij rats. (c) mean and (d) individual percentage
of correctly predicted and correctly detected SWDs by the algorithm including
two additional critera (conditions 2 and 3). The data are from an one hour
baseline recording of 6 WAG/Rij rats.

Finally, the latter version of the prediction algorithm was
implemented in a closed-loop deep-brain stimulation system.
In this system the ECoGs of freely moving rats, recorded from
two cortical and a thalamic site, were fed via an amplifier to
a data acquisition system. They were analyzed in terms of
synchrony in real time by the prediction algorithm. Whenever
the level of synchrony exceeded a preset threshold value
(condition 1), and the two other criteria (conditions 2 and
3) were met (see Methods for details), a marker was set
in a free channel of the acquisition system and a constant
current stimulator was triggered to deliver a low intensity 1
sec pulse train of 130 Hz to the rat. The wavelet energy within
this frequency band drastically dropped during and following
130 Hz stimulation, indicating that this electrical pulse train
efficiently desynchronized the EEG and thereby successfully
prevented the generation of a hypersynchronous SWD (Fig. 4).

The preset detection threshold value was determined for
each individual rat and varied between 0.10 and 0.40. We
assumed that a pulse train of 130 Hz should prevent SWDs.
This assumption was based on our previous work, in which it
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Fig. 4. The seizure prevention by means of electrical stimulation with the
pulse duration: the EEG signals, taken from postero/lateral thalamus (PO) and
cortex layers 4 and 5 (a), the distributions of the wavelet energy W (s, t) (b)
and the pulse train (c) (the structure of pulse is also shown in detail).

was established that this pulse train was rather effective (close
to 90%) in interrupting ongoing SWDs. A comparison of SWD
activity between an one hour baseline recording in which no
stimulation was applied, and SWD activity during an one hour
stimulation session showed that SWD activity was reduced
by 72±10% (F (1, 5) = 48.52, p < 0.001) (Fig.5, a). The
reduction in SWD activity can be attributed to a combination
of SWD prediction and prevention (in 45% of cases) and SWD
detection and interruption. To support the conclusion that the
reduction was not just the result of detection and disruption,
we refer to the individual data of two rats in whom seizures
were reduced by 98% and 100%, showing that total prevention
of SWD activity by prediction and stimulation is feasible.

change of

SWD activity, %

20

100

60

Baseline
Stimulation

change of

activity level, %

20

100

60

140

group group

*

(a) (b)

ns

Fig. 5. The total duration of the epileptic activity(a) and the behavioral activity
(b) during the baseline and the stimulation session, averaged over the group
of rats. The error bars show the standard error of the mean of the group.

In order to establish whether the remaining false positive



detections, which also triggered the delivery of the electrical
pulse train, might have affected the behavior of the animals, we
compared the activity of rats between baseline and stimulation
hour. The behavioral activity was measured by a passive
infrared registration (PIR) device. There was no significant
difference in activity of the rats between the baseline and
stimulation session (Fig. 5, b) (F (1, 5) = 0.476, p = 0.521),
suggesting that the decrease in SWD activity induced by
stimulation cannot be explained by an increase in behavioral
activity. It is well known that motor activity precludes the
occurrence of SWDs. Furthermore, no other type of aberrant
activity was observed in the EEG recordings of the animals
during or after stimulation, and given the low intensity of
electrical stimulation to prevent and disrupt SWDs and the
relatively short stimulation trains, we presume that this type
of stimulation can be considered a relatively safe intervention
strategy.

IV. CONCLUSION

The developed BCI can be considered as a step toward
closed-loop antiepileptic devices enabling the complete seizure
abolishment in drug-resistant patients. The developed BCI has
high efficiency in reducing not only the duration of epileptic
seizures but also their number. At the same time, the further
use of the BCI to control epileptic activity in humans is limited
due to a large number of false detection. Despite the fact that
additional stimulation did not cause changes in animal activity,
the safety of using BCIs for people requires further efforts to
increase the prediction selectivity and reduce the number of
false detections.
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