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ABSTRACT

The paper considers the phenomena of competition in multiplex network whose structure evolves corresponding
to dynamics of it’s elements, forming closed loop of self-learning with the aim to reach the optimal topology.
Numerical analysis of proposed model shows that it is possible to obtain scale-invariant structures for correspond-
ing parameters as well as the structures with homogeneous distribution of connections in the layers. Revealed
phenomena emerges as the consequence of the self-organization processes related to structure-dynamical self-
learning based on homeostasis and homophily, as well as the result of the competition between the network’s
layers for optimal topology. It was shown that in the mode of partial and cluster synchronization the network
reaches scale-free topology of complex nature that is different from layer to layer. However, in the mode of global
synchronization the homogeneous topologies on all layer of the network are observed. This phenomenon is tightly
connected with the competitive processes that represent themselves as the natural mechanism of reaching the
optimal topology of the links in variety of real-world systems.
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1. INTRODUCTION

Many real world structures of different nature can be described as graphs or networks, where the units are
the nodes of the network and the relationships between them represent the connections or interactions between
nodes. This approach to study of the evolutionary processes in network’s structure allows to obtain fundamental
knowledge about the processes that take place in technological,1–4 biological,5–7 social8,9 and urban10–12 systems,
and also is capable to increase our understanding of functioning of the neural networks of the brain,13–16 which
also may be useful in fields of robotics and designing of intelligent robotic systems.17,18

The interest to studying the network structures of the real world causes the active development of variety of
methods and emergence of new theories and approaches. One of most modern and effective approach to study
this issue is to build a complex (or multiplex) network model, where each layer contains identical set of nodes
that are connected with different types of links (see Fig. 1). This model is widely used to describe the networks
where topology of the links has a nonstationary character, which in combination with it’s flexibility allows to
describe various systems in different fields of nature.19,20 In particular, in field of neuroscience this approach is
used to study synchronization between the neurons on local scale as well as the global synchronization between
the different regions of the brain.21–24

The recent studies revealed that, despite the fundamental differences between the above mentioned systems,
the multiplex approach revealed that they have a certain number of similar properties: (a) the power-law distri-
bution of weights of the connections between the nodes; (b) coexistence of the module structures on macroscopic
scale. Recent studies has shown that these properties are caused by the self-organization processes that also
take place in the real-world complex networks. These properties represents themselves as the consequence of
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Figure 1. The architecture of multilayer network with identical set of nodes on each layer and different topologies of the
connections between them. The competition between the layers occurs in the self-learning process and manifests itself in
emergence of specific topological patterns.

self-learning, i. e. changing topological properties of the network under influence of the two fundamental mecha-
nisms.25 First is the homophily26 — the tendency of the units to reinforce their connections with other units of
the network which behave similarly. The second is homeostasis,27 that stands for the limitation of the resources
for each node of the network for sustain its connections. Emergence and coexistence of these two mechanisms
provides competition between the layers for the optimal topology and affects intra-layer pattern formation in
adaptive multiplex network.

In our study we focus on competition between layers of self-learning multiplex network for optimal topology
and formation of specific intra-layer patterns observed in systems of real world. We consider the multiplex network
model of Kuramoto oscillators28 that proved itself as an effective approach to describe dynamical processes in
many existing systems.29,30

2. METHODS

This paper considers the structure and dynamics of the multiplex network based on classic Kuramoto model
consisting of M = 2 layers with N = 500 nodes on each layer. Dynamical state of u-th node on layer l is defined
by

ϕ̇l
u = ωl

u + λ

N∑
j=1

wl
ujsin(ϕl

u − ϕl
j), (1)

where ωl
u is natural frequency of node u on layer l chosen randomly in range [-π; π], λ is a coupling strength,

wl
uj — the weight of the link between two nodes u and j on layer l that behaves in accordance with equation∑N
j 6=i w

l
ij = 1, i. e. sum of all incoming intra-layer connections of the node remains constant in time, which is

mathematical reflection of homeostasis. At the same time, the weight of the connection between two nodes u
and j evolves in time according to:

˙wl
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where the time dependent value pluj is defined by
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3. RESULTS
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Figure 2. Two-parameter dependencies of the order parameters rlayer (a) and rlocal (b) from the control parameters:
coupling strength λ and self-learning time T .

In order to reveal the mechanism of self-learning based on combination of homeostasis and homophily prin-
ciples the numerical analysis of dynamical processes in developed model with changing the control parameters
— self-learning time T and coupling strength λ — was conducted. The characteristic of averaged level of
synchronization of phase oscillators inside the layer rlayer was introduced:

rlayer =
1

MN

M∑
l=1

∣∣∣∣∣
N∑

u=1

eiϕ
l
u

∣∣∣∣∣ , (4)

and rlocal that defines the level of synchronization between any two nodes in the network on each layer,
averaged over all pairs of coupled elements:

rlocal =
1

MN
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N∑
u=1
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The total difference between adjacency matrices of the layers was also calculated; this parameter allows to
characterize the inequality in the layers topologies:

wd =

N∑
u=1

N∑
j=1

∣∣w1
uj − w2

uj

∣∣ , (6)

Fig. 2 represents two-parameter dependencies of order parameters from λ and T . The small values of control
parameters are corresponding to the mode of asynchronous dynamics — both averaged on all layers rlayer and
averaged degree of synchronization between all coupled elements in the network rlocal take small value. However,
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Figure 3. Degree distribution of connection’s weights of first (a) and second (b) layers of the network with λ = 1.6 and T
= 50

with growing of the time parameter T the differences between the order parameters begin to appear. One
can see that parameter rlayer (see Fig. 2,a) shows weak dependence from T , changing only with increasing of
coupling strength λ. At the same time, rlocal (see Fig. 2, b) grows much faster, which indicates of enhance of
the synchronization between connected nodes during the self-learning time.

Increasing couple strength leads to establishing of the mode of partial (or temporal) synchronization inside
the network’s layers. This mode corresponds to small values of rlayer and high level of local synchronization of
elements rlocal, which is also indicates of emergence of synchronized clusters inside the network.

In order to obtain the confirmation of results described above, we show the probability distribution of weights
of connections for both layers with λ = 1.6 and T = 50 (see Fig. 3), where the order parameters are significantly
different (rlayer<rlocal). The distribution obeys a power-law, which means that with current values of control
parameters the network structure reaches scale-free topology, that is inherent in the absolute majority of real
networks. Observed local maximum and minimum that are deviating from the general trend are corresponding
to the nodes that are part of the strongly connected inside but weakly interacting with each other homogenous
clusters, which represents modularity property of real-world systems.

4. CONCLUSION

The study of the model of self-learning multiplex network that demonstrates competitive interaction between
the layers was conducted and various forms of collective dynamics of the elements were revealed. In the mode
of partial and cluster synchronization the dynamical process of self-learning leads to formation of free-scale
topologies with complex structure that are different on each layer, which is connected with competition between
the layers. At the same time in the mode of global synchronous dynamics the network is characterized by the
appearance of a homogeneous topology on the layers. The further research of the principles of competition and
self-learning in complex networks will allow to enhance understanding of processes that take place in real systems.
Moreover, revealed patterns may be used in various applicative technologies including artificial intelligent and
robotics.
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representation of membrane potential and cytosolic calcium concentration dynamics in beta cells,” Chaos
Solitons Fractals 80, 76–82 (2015).

[6] Andreev, A. V., Makarov, V. V., Runnova, A. E., Pisarchik, A. N., and Hramov, A. E., “Coherence resonance
in stimulated neuronal network,” Chaos Solitons & Fractals 106, 80 – 85 (2018).

[7] Sitnikova, E., Hramov, A. E., Grubov, V., and Koronovsky, A. A., “Time-frequency characteristics and
dynamics of sleep spindles in wag/rij rats with absence epilepsy,” Brain Research 1543, 290–299 (2014).

[8] Battiston, F., Nicosia, V., Latora, V., and Miguel, M. S., “Layered social influence promotes multiculturality
in the axelrod model,” Sci. Rep. 7 (2017).

[9] Magnani, M. and Rossi, L., “The ml-model for multi-layer social networks,” in [2011 International Confer-
ence on Advances in Social Networks Analysis and Mining ], 5–12 (2011).
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