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Incorporating brain-computer interfaces (BCIs) into daily life requires reducing the reliance

of decoding algorithms on the calibration or enabling calibration with the minimal burden

on the user. A potential solution could be a pre-trained decoder demonstrating a

reasonable accuracy on the naive operators. Addressing this issue, we considered

ambiguous stimuli classification tasks and trained an artificial neural network to classify

brain responses to the stimuli of low and high ambiguity. We built a pre-trained classifier

utilizing time-frequency features corresponding to the fundamental neurophysiological

processes shared between subjects. To extract these features, we statistically contrasted

electroencephalographic (EEG) spectral power between the classes in the representative

group of subjects. As a result, the pre-trained classifier achieved 74% accuracy on

the data of newly recruited subjects. Analysis of the literature suggested that a pre-

trained classifier could help naive users to start using BCI bypassing training and

further increased accuracy during the feedback session. Thus, our results contribute to

using BCI during paralysis or limb amputation when there is no explicit user-generated

kinematic output to properly train a decoder. In machine learning, our approach may

facilitate the development of transfer learning (TL) methods for addressing the cross-

subject problem. It allows extracting the interpretable feature subspace from the source

data (the representative group of subjects) related to the target data (a naive user),

preventing the negative transfer in the cross-subject tasks.

Keywords: EEG topograms, convolutional neural network, CNN, ambiguous stimuli, pre-trained decoder

1. INTRODUCTION

Machine learning (ML) has become a new standard in brain signals analysis (Hramov et al., 2021).
ML is a model-free approach that successfully operates with data without prior knowledge of its
origin. When the mathematical model of the time series is unknown, ML can build this model
based on training data. Thus, being trained on a representative amount of data, ML enables the
classification, detection, and prediction of the newly acquired data. These aspects of ML meet the
fundamental requirements for brain-computer interfaces (BCIs). First, BCI often utilizes brain
activity biomarkers that barely have an exact mathematical model. Second, brain activity varies
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between and within subjects; therefore, if a model exists, it
changes unpredictably. Finally, ML demands low computational
costs. Once trained, ML analyzes data very fast, even on mobile
computers and smartphones.

In a classical paradigm, BCI operators participate in a
calibration session to accumulate training data (Shenoy et al.,
2006). They perform a series of predefined tasks to produce
brain data, for which their intentions are known. ML uses
this labeled data to learn associations between brain states and
intentions. After the training, operators can control the BCI
and improve their performance through feedback. Numerous
studies used different feedback paradigms and reported their
positive effect on the performance of BCI operators (Barsotti
et al., 2017; Zapała et al., 2018; Abu-Rmileh et al., 2019; Duan
et al., 2021). In the recent study (Duan et al., 2021), the authors
introduced an online data visualization feedback protocol that
intuitively reflects the EEG distribution in real-time. The results
showed favorable training effects in terms of class distinctiveness
and EEG feature discriminancy. Another study (Zapała et al.,
2018) tested different approaches to visual feedback training and
demonstrated positives effects of all of them. In Abu-Rmileh
et al. (2019), the authors proposed using coadaptive feedback
training in which the brain and the machine need to adapt
in order to improve performance. Using this approach for the
motor imagery BCI, the authors demonstrated improving the
performance. Unlike the visual feedback, Barsotti et al. used
vibration-evoked kinaesthetic feedback for motor imagery BCI
and reported improvement of the BCI performance (Barsotti
et al., 2017).

This review includes few recent studies reporting the positive
effect of feedback on BCI operator performance. Their general
idea is that the operator evaluates the correctness of their
intentions in real-time. For instance, in the motor imagery (MI)-
based BCI, a cursor moving to the left or right reflects the
imagery movements of these hands. The feedback session can
improve the decoder performance, but unable to train it from
scratch. To utilize feedback, the decoder should demonstrate a
reasonable accuracy of translating the intentions of the operator
into BCI commands. The classical BCI protocols address this
issue by training the decoder during the calibration session before
starting the feedback and the further test sessions. This approach
assumes that the input points in the calibration set follow the
same probability distribution as the input points in the future
feedback phase. At the same time, this assumption is usually
not satisfied (Sugiyama et al., 2007). For some subjects, this
problem is successfully addressed in a supervised fashion, i.e.,
by using the first trials from the feedback session. An alternative
approach is using an adaptive learning strategy that combines
supervised and unsupervised learning (Lu et al., 2009). As BCIs
transit from laboratory settings into daily life, an important
goal becomes minimizing the reliance of decoding algorithms
on the calibration or enabling calibration with minimal burden
on the user. One of the potential solutions is a pre-trained
ML that demonstrates a reasonable accuracy on the newly-
recruited operators.

We suppose that a pre-trained classifier should use EEG
features corresponding to the fundamental neurophysiological

processes, common for all subjects (Hramov et al., 2017, 2018,
2019; Maksimenko et al., 2018b). To reveal these features, we
propose using statistical testing of the EEG spectral power
between the classes in the representative group of subjects.

We tested our hypothesis using the visual stimuli classification
task, where the convolutional neural network (CNN) classified
two-dimensional EEG scalp topograms corresponding to
processing visual stimuli with low (class 1) and high (class
2) ambiguity. First, we selected time-frequency features using
within-subject statistical contrast between the classes. Thus, we
suggested that revealed biomarkers referred to the fundamental
neural processes shared between subjects. Utilizing these
features, CNN trained on 19 subjects could classify data of a new
participant with 74% accuracy. When we excluded a particular
participant from the feature extraction procedure, the time-
frequency features changed. For both time and frequency bands,
change grew when the statistical significance of features was low.
The classification accuracy remained stable against changes in
the frequency band but decreased when the time-band changed.

These results suggest the effectiveness of our approach to ML
training if the statistical contrast of selected features between the
classes reaches a high significance. Simultaneously, the accuracy
may decrease as the time-bands change due to inter-subject
variability and the coexistence of different neural processes that
rapidly replace each other. We expect that the effect of time-
bands diminishes when considering slow processes during the
resting state.

Finally, we put our results in the context of transfer learning
(TL), a ML paradigm that addresses the cross-subject problem in
BCI. In terms of TL, we referred representative group of subjects
to as the source domain. The remaining test subject represented
the target domain. We demonstrated that our approach enabled
extracting interpretable feature subspace from the source data
related to the target data, preventing the negative transfer in the
cross-subject tasks.

2. METHODS

2.1. Neurophysiological Data
We used experimental data collected in the Neuroscience and
Cognitive Technology Lab at the Innopolis University (Innopolis,
Russia) following the Declaration of Helsinki and the local
Research Ethics Committee. Our recent studies (Maksimenko
et al., 2020b, 2021) provide a detailed description of the
experimental procedures, while the acquired EEG and behavioral
data are available online from Figshare.com (Maksimenko et al.,
2020a).

During the experiment, 20 healthy volunteers (16 men aged
20–36) sat in a comfortable chair with the two-button keypad in
their hands. We repeatedly presented ambiguous stimuli, Necker
cubes on the computer screen in front of them. The stimulus
presentation time varied from 1 to 1.5 s. The pause between
the presentations was 3–5 s. Presentation time and pauses were
randomized through the experiment. We instructed participants
to define the orientation of each stimulus and report their choice
using the joystick. The left and right buttons stood for the left and
the right orientations.
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FIGURE 1 | A set of visual stimuli, Necker cubes, with the contrast of the inner edges, I. The stimuli with I = 0.15, 0.25, 0.4, 0.45 are oriented to the left, while the

stimuli with I = 0.55, 0.6, 0.75, 0.85 are oriented to the right. The inner edges contrast defines a stimulus ambiguity, a that varies from 30 to 90%. a = 30%, 50%

corresponds to the low ambiguity (LA) and a = 80%, 90% - to the high ambiguity (HA).

Figure 1 illustrates the set of visual stimuli—Necker cube
images with the different contrast of the inner edges (Necker,
1832; Kornmeier and Bach, 2005). For each cube, we introduced
parameter I = 0.15, 0.25, 0.4, 0.45, 0.55, 0.6, 0.75, 0.85 defining
the inner edges contrast. It reflected the intensity of three lower-
left lines, while 1−I corresponded to the intensity of three upper-
right lines. The parameter I can be defined as I = 1 − y/255,
where y is the brightness level of three lower-left lines using the
8-bit gray-scale palette. The value of y varies from 0 (black) to 255
(white) (Maksimenko et al., 2018a). Then we introduced stimulus
ambiguity, a in the following way. We supposed that for I = 0,
the stimulus is unambiguously left-oriented, while for I = 0.5, its
features barely reflect the orientation. Varying I from 0 to 0.5, we
increase the ambiguity of the left-oriented cube making it totally
ambiguous at I = 0.5. Thus, setting a = 0 ambiguity for I = 0
and a = 100% ambiguity for I = 0.5, we suggest that stimuli with
I = 0.15, 0.25, 0.4, 0.45 correspond to a = 30%, 50%, 80%, 90%
ambiguity. Similarly, for the right-oriented stimuli, we obtain
that cubes with I = 0.85, 0.75, 0.6, 0.55 also correspond to
a = 30%, 50%, 80%, 90% ambiguity. Finally, to exclude effects
of the stimulus orientation (including the effects associated with
the formation of the motor response), we combined left- and
right-oriented stimuli for each ambiguity.

Similar to our recent study (Kuc et al., 2021), we reduced the
number of experimental conditions considering a = 30%, 50%
as the low ambiguity (LA) stimuli and a = 80%, 90% as high
ambiguity (HA) stimuli. Each group included 100 stimuli (25 per
ambiguity, 50 per orientation). This simplification was based on
our previous studies on the Necker cube images (Maksimenko
et al., 2020b, 2021). It enabled revealing effects of ambiguity and
provided a sufficient number of trials to minimize additional
effects of orientation, a bias of the presentation moment, and the
previously presented stimulus (Maksimenko et al., 2021).

2.2. Data Processing Pipeline
We organized the data processing into three blocks:
preprocessing → feature extraction → training (refer to
Figure 2).

In the preprocessing block, we dealt with the raw
continuously recorded EEG signals. Thus, the preprocessing
procedure included artifacts rejection, segmentation data into
the trials, and wavelet analysis.

• First, we filtered raw EEG signals by a band-pass FIR
filter with cut-off points at 1 and 100 Hz and a 50-Hz
notch filter. Second, we removed Eye-blinking artifacts using

Independent Component Analysis (ICA) in the EEGLAB
software (Delorme and Makeig, 2004). The EEG dataset of 31
channels was decomposed into 31 independent components
using the “runica” function. To determine components
with artifacts, we examined their scalp map projections,
waveforms, and spectra. The components containing Eye-

blinking artifacts usually had the leading positions in the
component array due to high amplitude. They demonstrated
a smoothly decreasing spectrum and their scalp map showed
a strong far-frontal projection. Finally, Eye-blinking artifacts

had the typical waveform; therefore, those segments of EEG

signals were marked by the experienced neurophysiologist
and used for determining the corresponding independent
components. We removed the component with artifacts by
using the Remove component tool.

• Then, we introduced 4-s EEG trials time-locked to the
stimulus onset, including 2-s prestimulus and 2-s post-
stimulus segments. Time-locking EEG signals to the stimulus
onset, we focused on the processes that prevailed after the
stimulus onset. We referred them to as the stimulus processing
stage. In general, stimulus processing involves processing and
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FIGURE 2 | Scheme of the data processing pipeline.

decision-making stages (Siegel et al., 2011). The processing
stage takes place in the occipital cortex during 130–320
ms post-stimulus onset, and the decision-making stage lasts
longer and activates parietal and frontal areas (Mostert et al.,
2015). Thus, while this study focuses on the processing stage,
analysis of the decision-making process may require time-
locking EEG signals to the moment of behavioral response.

• For each trial, we calculated wavelet power (WP) in the
frequency band of 4–40 Hz using the Morlet wavelet. The
Morlet wavelet W(f , t) is the product of a complex sine wave
and a Gaussian function:

W(f , t) = e2iπ ft × e−t2/2σ 2
, (1)

where i is the imaginary operator, f is the frequency in Hz,
t reflects the time in seconds, and σ is the Gaussian width,
defined as

σ = n/2π f . (2)

The parameter n called the number of cycles defines the time-
frequency precision trade-off. For neurophysiology data such
as EEG, and MEG, n varies from 2 to 15 over frequencies
between 2 and 80 Hz (Cohen, 2019). We defined n for each
frequency f as n = f . The wavelet analysis was performed
in Matlab using the Fieldtrip toolbox (Oostenveld et al.,
2011). We considered WP on the 1-s interval, including 0.5-s
prestimulus and 0.5-s post-stimulus segments.

• Finally, we calculated event-related spectral perturbation
(ERSP) by contrasting post-stimulus WP to the prestimulus
WP as

ERSP =
poststimulus WP− prestimulus WP

prestimulus WP
. (3)

The obtained ERSP represent average spectral changes in
response to a stimulus at each time moment during the 0.5-s
post-stimulus epoch and at each frequency (Grandchamp and
Delorme, 2011).

In the feature extraction block, we contrasted ERSP between
two classes (HA and LA stimuli) to specify the time-frequency
ranges providing a significant change of ERSP between classes.
We organized this analysis in the following steps:

• For each subject, we averaged the ERSP over 100 trials
corresponding to HA and LA stimuli. Thus, we obtained
ERSPLA(ch, f , t) and ERSPHA(ch, f , t), where ch = 1 . . . 31 is
the number of EEG channel, f ∈ [4, 40] Hz—frequency, and
t ∈ [−0.5, 0.5] s reflects the time related to the stimulus onset.

• We compared ERSPLA(ch, f , t) and ERSPHA(ch, f , t) in the
group of participants using a paired-samples t-test in
conjunction with the cluster-based correction for multiple
comparisons (Maris and Oostenveld, 2007). Specifically, we
performed t-tests to compare each pair of the (channel,
frequency, and time)-triplets. Elements that passed a threshold
value corresponding to a p-value of 0.01 (two-tailed) were
marked together with their neighboring elements and were
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collected into separate negative and positive clusters. The
minimal number of required neighbors was set to 2. The t-
values within each cluster were summed and rectified. These
values were fed into the permutation framework as the test
statistic. A cluster was considered significant when its p-value
was below 0.025, corresponding to a false alarm rate of 0.01
in a two-tailed test. The number of permutations was 2,000.
Analysis was performed in the Fieldtrip toolbox for Matlab.

• Statistical analysis provided us with the subspaces in the
(channel, frequency, and time) domain where the differences
between ERSPLA(ch, f , t) and ERSPHA(ch, f , t) were significant.
We referred these subspaces to as clusters. For the i-th
cluster, we specified the frequency band [f 1i ; f

2
i ] and the

time interval [t1i ; t
2
i ]. For each stimulus, we averaged ERSP

over this time-frequency range and plotted its distribution
on the scalp topogram using the Fieldtrip toolbox. The final
set of 2-D topograms is available from the public repository
(Maksimenko and Kuc, 2021).

In the training and testing block, we used an ML algorithm
to classify 2-D topograms corresponding to HA and LA
stimuli processing.

• We used a CNN with a Resnet 50 topology (He et al.,
2016). ReLu was an activation function. We implemented
CNN in Python using the TensorFlow library, and Keras
module. Image size was reduced to 224× 224 pixels using the
Image Rescaling procedure (Xiao et al., 2020). We used the
backpropagation method to train CNN.

• As shown above, three scalp topograms characterized neural
activity during the stimulus processing. Each subject perceived
100 LA and 100 HA stimuli; therefore, each subject’s data
included 600 images (300 LA and 300 HA topograms). We
included 11,400 of 19 subjects in the training set. The testing
set consisted of 600 images belonging to one subject (refer to
Figure 3). Thus, CNN did not learn the data of the test subject.
This procedure was repeated 20 times to test CNN for each
subject. Cross-entropy served a loss function.

• Finally, we utilized Adam’s optimizer to select the optimal
parameters of the neural network (Zhang, 2018). To
evaluate the CNN performance, we analyzed the traditional
metrics, accuracy, precision, and recall. The source code is
available online at Google Colab, https://colab.research.google.
com/drive/1VpyiU66Xy6wNLgd_7OR1QbX4fE4iAFw6 from
S. Korchagin under request.

2.3. Data Analysis
To test how the time and frequency ranges changed when
excluding one subject from the feature extraction procedure, we
used a repeated-measures ANOVA. We ran tests separately for
the frequency and time and different clusters. For frequencies,
we defined within-subject factors as the frequency-bounds (f 1i
and f 2i ) and the type of feature extraction procedure (all subjects
included vs. one subject excluded). For times, within-subject
factors included the time-bounds (t1i and t2i ) and the type of
feature extraction procedure. First, we tested the main effects.
For the significant main effects, we performed a post-hoc t-test
to evaluate the effect direction.

For each of subject, we quantified the changes of the frequency
1fi and time 1ti intervals as

1fi =
|(f 1i )ind − (f 1i )com| + |(f 2i )ind − (f 2i )com|

2[(f 2i )com − (f 1i )com]
× 100%, (4)

1ti =
|(t1i )ind − (t1i )com| + |(t2i )ind − (t2i )com|

2[(t2i )com − (t1i )com]
× 100%, (5)

where i is the number of clusters, |...| reflects the absolute
value. The subscript com defines the time-frequency values
obtained when all subjects participated in the statistical analysis.
The subscript ind corresponds to the case when one subject
was excluded.

To test how 1fi and 1ti changed between clusters, we used
a repeated-measures ANOVA. The cluster number (i = 1, 2, 3)
and the type of change (1fi and 1ti) served as within-subject
factors. First, we tested the main effects of all factors and their
interactions. For the significant effects, we performed a post-hoc
t-test to evaluate the effect direction.

To test whether CNN accuracy depended on 1fi and 1ti, we
conducted the multiple regression analysis. We built a separate
regression model for 1fi and 1ti. The CNN accuracy was an
independent variable, and 1fi and 1ti served as predictors.

3. RESULTS

Contrasting ERSP between HA and LA stimuli in the time-
frequency domain, we observed three significant positive clusters
with p < 0.01 as shown in Figure 4A. The first cluster extended
from t11 = 0 s to t21 = 0.150 s post-stimulus onset for the
frequencies ranged from f 11 = 7.25 Hz tof 21 = 8.5 Hz (refer to
Figure 4B). The ERSP in this cluster was higher for HA stimuli
in 18 subjects. The second cluster extended from t12 = 0.02 s to
t22 = 0.2 s post-stimulus onset for the frequencies from f 12 =

23 Hz to f 22 = 23.8 Hz (refer to Figure 4C). According to the
distribution of pairwise differences, this cluster had higher ERSP
for HA stimuli in 17 subjects. The third cluster extended from
t13 = 0.35 s to t23 = 0.42 s. Its frequency range extended from
f 13 = 31 Hz to f 23 = 31.8 Hz (Figure 4D). Sixteen subjects
demonstrated higher ERSP for HA stimuli in this cluster.

We collected the frequency bands [f 1i ; f
2
i ] and the time

intervals [t1i ; t
2
i ] of these clusters. They served as a set of features

containing the most pronounced differences between HA and LA
stimuli in the group of subjects. We used these features to train
CNN. As a result, CNN accuracy varied from 71% to 76% (M =

74%, SD= 1.6%). Precision varied from 70 to 75% (M = 73%, SD
= 1.9%). Recall varied from 63% to 71% (M = 67%, SD= 2.5%).

Second, we tested how the time-frequency ranges of each
cluster changed when excluding one subject from the feature
extraction procedure.

For cluster 1 (Figure 5A), the main effect of the feature
extraction procedure on frequencies was insignificant:
F(1,19) = 2.994, p = 0.1. At the same time, we observed a
significant interaction effect frequency bound * feature extraction
procedure: F(1,19) = 4.8, p = 0.041. The post-hoc analysis revealed
that f 1 remained unchanged: t(19) = 0.639, p = 0.53. In contrast,
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FIGURE 3 | Structure of the training and testing datasets. The training set includes data of 19 subjects, 11,400 images in total. Each subject’s data includes 600

images, 300 LA, and 300 HA topograms. The testing set includes data of the remaining single subject. It consists of 600 images, 300 LA, and 300 HA topograms.

Convolutional neural network (CNN) did not learn the data of the test subject.

f 2 decreased (M = 8.27 Hz, SD= 0.37) when one subject was
excluded from the analysis: t(19) = −2.7, p = 0.14. The main
effect of the feature extraction procedure on time was also
insignificant: F(1,19) = 0.37, p = 0.55. There was a significant
interaction effect time bound * feature extraction procedure:
F(1,19) = 10.9, p = 0.004. The post-hoc analysis revealed that
t11 increased (M = 0.021 s, SD = 0.027) when one subject was
excluded from the analysis: t(19) = 3.41, p < 0.003. In contrast, t22
did not change (M= 0.13 s, SD= 0.03): t(19) = −1.93, p = 0.069.

For cluster 2 (Figure 5B), the main effect of the feature
extraction procedure on frequencies was insignificant: F(1,19)
= 0.101, p = 0.755. At the same time, we observed a
significant interaction effect frequency bound * feature extraction
procedure: F(1,19) = 13.6, p = 0.002. The post-hoc analysis
revealed that f 12 increased (M= 23.12 Hz, SD = 0.12) when one

subject was excluded from the analysis: t(19) = 0.639, p = 0.53.
In contrast, f 22 decreased (M = 23.65 Hz, SD = 0.32), but has
the weak statistical power: t(19) = −2.1, p = 0.49. The main
effect of the feature extraction procedure on time was significant:
F(1,19) = 5.59, p = 0.029. Simultaneously, there was a significant
interaction effect time bound * feature extraction procedure:
F(1,19) = 28.59, p < 0.001. The post-hoc analysis revealed that
t12 increased (M = 0.039 s, SD = 0.014) when one subject was
excluded from the analysis: t(19) = 5.66, p < 0.001. In contrast,
t22 decreased (M = 0.15 s, SD= 0.04): t(19) = −4.08, p = 0.001.

Cluster 3 (Figure 5C) was not observed in four subjects. For
the rest of the subjects, we ran ANOVA in a similar way with
clusters 1 and 2. Again, we found an insignificant main effect
of the feature extraction procedure on frequencies: F(1,15) =

0.004, p = 0.953, and a significant interaction effect frequency
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FIGURE 4 | (A) Boxes show clusters in the time-frequency domain reflecting the significant differences of EEG power, event-related spectral perturbation (ERSP)

between HA and LA stimuli. (B–D) contain information about the time and frequency ranges of each cluster and show ERSP averaged over these time (upper row)

and frequency (bottom row) ranges. ERSP is shown for LA and HA stimuli as the group means and 95% confidence intervals, ∗p < 0.05 via the paired t-test,

corrected via a cluster-based approach with 2000 Monte-Carlo randomizations.

FIGURE 5 | Changes in the frequency (upper row) and time (bottom row) ranges when one subject is excluded from the feature selection procedure. The (A–C)

correspond to different clusters. Frequencies (f i1,2)common and times (ti1,2)common are obtained when including all 20 subjects. The values (f i1,2)individual and (ti1,2)individual
reflect the time-frequency bands obtained when one subject is excluded. (ti1,2)individual are shown as group mean and 95% confidence interval. ∗p < 0.05, via a

repeated measures ANOVA and a post-hoc t-test.
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bound * feature extraction procedure: F(1,15) = 20.01, p < 0.001.
The post-hoc analysis revealed that f 13 increases (M = 31.18 Hz,
SD = 0.17): t(15) = 4.392, p = 0.001. In contrast, f 23 decreased
(M = 31.6 Hz, SD = 0.22) when one subject was excluded from
the analysis: t(19) = −3.419, p = 0.004. Finally, The main effect
of the feature extraction procedure on time was insignificant:
F(1,15) = 0.001, p = 0.971, as well as an interaction effect time
bound * feature extraction procedure: F(1,15) = 0.264, p = 0.615.

For each of 16 subjects having all three clusters, we quantified
the change of the frequency 1fi and time 1ti intervals (refer
to Equation 5 in Methods). First, we tested how these changes
depends on the cluster number. As a result, we reported a
significant main effect of cluster number: F(2,30) = 5.697, p =

0.008, insignificant effect of the change type: F(1,15) = 2.317, p =

0.149, and insignificant effect of their interaction: F(2,30) =

1.621, p = 0.215. Together, these results show that change in
both frequency and time increased with the cluster number
(Figure 6A). At the same time, the change of time and frequency
parameters were similar. Second, we tested whether these
changes predict CNN accuracy. We found, that 1ti statistically
significantly predicted CNN accuracy: F(3,12) = 5.87, p =

0.01,R2 = 0.595. We found that 1t2 (β = −0.462, p = 0.037)
(Figure 6B) and 1t3 (β = −0.524, p = 0.016) (Figure 6C)
significantly predicted CNN accuracy. The value of 1t1 was
unable to predict CNN accuracy (p = 0.711). Finally, 1fi failed
to predict accuracy rate: F(3,12) = 0.745, p = 0.546,R2 = 0.157.

DISCUSSION

In this study, we tested whether CNN trained on some subjects’
data could classify data of a new subject. We used an EEG dataset
obtained during perception of visual stimuli with the LA and
HA degrees and defined LA and HA as two classes. According
to the literature, these two classes exhibit distinctive features
of neural activity. Thus, LA stimuli processing depends on the
stimulus morphology and relied on the bottom-up mechanism.
In contrast, the morphology of HA stimuli has much less
information; therefore, subjects relied on the top-down processes
to unresolved ambiguity of the visual signal (Kuc et al., 2021;
Maksimenko et al., 2021).

We hypothesized that features of LA and HA stimuli
processing referred to the basic neurophysiological
mechanisms, common for a large population of conditionally
healthy subjects (Maksimenko et al., 2020b). To extract
these features, we contrasted electroencephalographic
(EEG) spectral power between LA and HA stimuli in a
group of 20 volunteers. As a result, we observed three
clusters representing significant changes between the
two classes.

• In cluster 1, HA stimuli induced higher anterior theta-band
power for 0.15 s post-stimulus onset. In line with previous
studies, we treated it as a biomarker of top-down control
(de Borst et al., 2012; Lee and D’Esposito, 2012; Cohen and
Van Gaal, 2013), e.g., the prevalence of expectations and prior

experience in ensuring correct perception when the sensory
information is inconclusive (Mathes et al., 2014).

• In cluster 2, HA stimuli induced higher beta-band power over
the occipito-parietal electrodes for 0.02–0.2 s post-stimulus
onset. Previously, Yokota et al. (2014) linked beta-band
activity with the interaction between occipital and parietal
cortical regions, necessary for stimulus disambiguation.

• In cluster 3, HA stimuli induced higher beta-band band power
over the parietal and midline frontal electrodes for 0.35–
0.42 s post-stimulus onset. On the one hand, it might reflect
the conscious processing of the perceptual information or
maintenance of the percept in working memory (Pitts and
Britz, 2011). On the other hand, fronto-parietal beta-band
power might reflect decision-making (Chand and Dhamala,
2017; Spitzer and Haegens, 2017).

Thus, we revealed three time-frequency intervals carrying the
biomarkers of top-down processes needed for HA stimuli
processing. According to the literature, the different types of
neural activity have distinctive topographical properties of the
theta- and beta-band power. Thus, we reduced the feature space
in the time-frequency domain and added features, describing
topographical properties. As a result, each perception was
characterized by three 2D images, illustrating the distribution of
EEG power across the scalp and corresponding to three revealed
significant clusters of neuronal activity.

Convolutional neural network learned to classify HA and LA
stimuli using 2D images of 19 subjects. Then, it analyzed the
data of the remaining subject. Performing this procedure for all
volunteers, we obtained an accuracy rate of 74% ± 1.6 SD. Such
small between-subject variability confirmed the shared nature of
revealed biomarkers in the group.

Further, we tested the stability of the revealed time-frequency
features against the exclusion of subjects on the stage of statistical
testing. As a result, the first and second clusters appeared
regardless of the subject exclusion. In contrast, the third cluster
disappeared when excluding four subjects. All clusters changed
in the way that the new time-frequency bands belonged to the
former ones. We found no systematic shifts, backward or toward,
on the frequency and time axis. These results also confirmed
that the group-level clusters reflect shared features of brain
activity. The first and the second clusters have higher statistical
significance than the third cluster. It explained the absence of the
third cluster when excluding four subjects.

Finally, we estimated how time and frequency bands changed
when excluding a particular subject from the statistical analysis.
We interpreted that degree of change quantified how well this
subject followed group tendency. For both time and frequency
bands, these changes grew with the cluster number. It confirmed
that the high statistical significance of the cluster ensured the
stability of its features against between-subject variability.

Then, we tested whether the degree of change explains the
classification accuracy. We shown that neither frequency nor
time changes in the first cluster did not predict accuracy. For
the second and third clusters, changes in the frequency bands
also did not affect the accuracy. In contrast, changes in the time
intervals of the second and third clusters negatively correlated
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FIGURE 6 | (A) 1fi and 1ti quantify how the frequency and the time band changed when excluding a particular subject from the feature selection procedure, i is the

cluster number. Data are shown as the group mean and 95% confidence interval, ∗p < 0.05, and nsp > 0.05 via ANOVA and a post-hoc t-test. (B) The regression plot

reflects the negative correlation between changes in the time band for cluster 2 and CNN classification accuracy. (C) Regression plot reflects the negative correlation

between changes in the time band for cluster 3 and CNN classification accuracy. Dots show the data of single subjects. The solid line is a regression model. The

shadow area illustrates the 95% confidence interval.

with the accuracy of the CNN-based classifier. We supposed that
accuracy remained stable against changes in the frequency band
but decreased when the time band changed. It might be evidence
that spectral power changed in the frequency domain slower than
in time. When the subject interpreted visual stimulus, different
processes took place in the brain network, and one replaced the
others inducing the dramatic changes in the spectral power.

The research issue under study is usually referred to as the
cross-subject problem (Liu et al., 2020) and addressed in the
framework of the TL approach (Pan and Yang, 2009).

InML, TL is a paradigm that implies storing knowledge gained
while solving one problem (referred to as a source domain) and
applying it to a different but related problem (referred to as a
target domain). For example, knowledge gained while learning
to recognize cars could help to identify trucks. This feature of
the TL enables addressing some critical issues in the BCI field.
As discussed above, BCIs, especially those based on noninvasive
signals, suffer from noise, artifact, and between-subject/within-
subject non-stationarity. It severely hampers building a generic
pattern recognition model, optimal for different subjects, during
different sessions, for different devices and tasks. Using TLmeans
that the decoder, which utilizes data or knowledge from similar or
relevant subjects/sessions/devices/tasks to facilitate learning for a
new subject/session/device/task.

A review study by Wu et al. (2020) describes the recent
advances in using TL for addressing the main issues in EEG-
based BCIs. According to the variations between the source and
the target domains, they formulated four different TL scenarios
for the EEG-based BCIs:

• Cross-subject TL uses data from the group of subjects (the
source domain) to facilitate calibration for a new volunteer

(the target domain). Usually, the task and EEG device are the
same across subjects.

• Cross-session TL uses data from the prior sessions (the source
domain) to facilitate calibration for a new session (the target
domain). For example, data from previous days may facilitate
the current calibration. Usually, the subject, task, and EEG
device remain the same across sessions.

• Cross-device TL uses data from one EEG device (the source
domain) to facilitate calibration for a new device (the target
domain). Usually, the task and subject are the same across
EEG devices.

• Cross-task TL uses data from similar or relevant tasks (the
source domains) to facilitate calibration for a new one (the
target domain). For example, data from left- and right-hand
MI may facilitate calibration of the feet and tongue MI.
Usually, the subject and EEG device are the same across tasks.

These TL scenarios utilize different TLmethods. According to the
recent review byWan et al. (2021), they belong to four groups:

• Domain adaptation aims to improve the models to adapt
to the data distribution in the target domain. It includes
marginal distribution adaptation and conditional distribution
adaptation. They benefit when the marginal or conditional
distributions of the data in the source and target domains
are different. Both methods facilitated EEG analysis in the
cross-subject tasks.

• Subspace learning operates with EEG data as a dimensionality
reduction technique. It aims to transform the source domain
data and the target domain data into a subspace where their
distributions are similar.

• Deep neural network (DNN) TL fine-tunes a pre-trained DNN
model when no significant difference exists between the source
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and target domain. Fine-tuning may touch either the whole
network or its layers. DNN TL is less effective when the
distributions of the source domain and target domain are
different. In this case, researchers resorted to DNN adaptation
(DNA). It adjusts the cost function of the original network by
adding a domain loss to measure the distribution of the source
and target data.

• Improved common spatial patterns algorithms may reduce
the difference of the data distribution between the source and
target domains. They follow the hypothesis that both domains
have features that are distributed similarly between them. A
bulk of literature reported that using either standard or new
CSP algorithms improves TL in EEG studies.

Despite the numerous successful applications of these TL
approaches to EEG data, they all suffer from drawbacks.
From its definition, TL implies transferring the knowledge
between domains based on the relationship between the data.
However, different EEG datasets demonstrate dissimilarity or the
dependence between them is complicated. It causes the problem
of negative transfer in EEG signal analysis. The negative transfer
appears due to source-target data dissimilarity when the transfer
method fails to find the transferable components (Novick,
1988). To avoid negative transfer, Wan et al. recommended
analyzing the transferability between the source and target tasks
before building ML models to guarantee the proper selection
of the data sources and algorithms (Lin and Jung, 2017).
In the DNN TL approaches, the literature review highlights
other limitations. First, DNN methods lack interpretability and
universality. Second, the network structure and parameters may
affect the learning ability of DNNmodels.

One possible solution for preventing the negative transfer is
extracting subspaces. These subspaces may carry the similarities
between domains even if no relations exist between the initial
data. Regarding EEG-based BCIs, we suppose that subspaces
should include the fundamental EEG features shared between
different subjects. For instance, in MI-based BCI, the user
produces control commands utilizing mu-band event related
desynchronization registered in the motor cortex (Grigorev
et al., 2021). Another BCI paradigm uses the steady-state visual
evoked potential (SSVEP) İşcan and Nikulin (2018). During a
periodic stimulation with a frequency above 6 Hz, SSVEP is
generated strongly in the occipital areas of the brain at the
corresponding frequency. Thus, if the target stimulus exhibits
periodic modulation, the occipital SSVEP will be registered once
the user focuses on this stimulus. In a P300-based BCI, a series
of repeating stimuli (e.g., letters) appear on a screen. For item
selection, the user needs to attend to the target stimulus and
ignore the rest. At the end of each sequence, the BCI identifies
which stimulus was attended as P300 is expected to be generated
for the target stimulus if well attended (Arvaneh et al., 2019).
All these protocols of BCIs utilized the fundamental knowledge
about brain functioning shared between different subjects.

If for the traditional BCI protocols the fundamental principles
are known, the further development of BCIs may require
detecting various brain states. For instance, designing the
passive BCIs detecting a particular human state (fatigue,

decreased attention, emotions, etc.) should utilize biomarkers
differentiating these states from others. We suggest that
these biomarkers represent the feature subspace carrying the
statistically significant differences between the states.

Using within-subject statistical analysis, we found this
subspace of features in the form of three time-frequency clusters
with a clear neurophysiological interpretation. We assumed that
these subspaces were shared between the subjects, even between
those whose data were excluded from training. In terms of
the TL, we extracted the subspace in a source domain (the
representative group of subjects) and supposed its relation with
the similar subspace of the target domain (new subject). Finally,
we confirmed that the feature subspace extracted from the
source domain contained one of the target domains. Having
summarized, we supposed that our approach contributes to
developing TL methods for BCI tasks. It enables extracting
interpretable feature subspace from the source data related to
the target data, preventing the negative transfer in the cross-
subject tasks.

Finally, our study has potential limitations. The number of
participants is small; therefore, there is a risk that a single
subject will have features different from those defined for the
group. We expect that including more participants in the
feature selection procedure will diminish this risk. Second,
we considered an unusual BCI protocol that differed from
the traditional paradigms. Unlike most traditional protocols,
e.g., MI, SSVEP, ERP, the EEG features (frequency and time)
were unknown for this task. Thus, we used statistical analysis
to extract the time-frequency subspaces from EEG signals
reflecting the difference between classes. We suggest using
this approach in BCIs that monitor human states involving
complex cognitive processes. Further studies should consider
the traditional BCI protocols to prove the universality of
our approach.

4. CONCLUSION

Having summarized, we confirmed that CNN trained on 19
subjects could classify data of a new participant with 74%
accuracy. We selected time-frequency EEG features using
within-subject statistical contrast between the classes. Thus, we
suggested that CNN utilized EEG biomarkers that referred to
the fundamental neural processes shared between subjects. When
we excluded a particular subject from the feature extraction
procedure, the time-frequency features changed. For both
time and frequency bands, change grew when the statistical
significance of features was low. Finally, CNN accuracy remained
stable against changes in the frequency band but decreased when
the time-band changed.

These results suggest the potential of using our approach to
ML training if the statistical contrast of selected features between
the classes gives a high significance. Simultaneously, one must
be careful about the changes of time-bands occurring due to
inter-subject variability and the coexistence of different neural
processes that rapidly replace each other. We expect that the
effect of time-bands diminishes when considering slow processes
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during the resting state. To control the changes of time-bands, we
advise adjusting time bands using optimization techniques.

Our results contribute to the BCI and ML fields. In the
BCI field, a pre-trained classifier could help inexperienced users
to start using BCI bypassing training and further increased
accuracy during the feedback session. It may facilitate using
BCI in paralysis or limb amputation when there is no explicit
user-generated kinematic output to properly train a decoder. In
the ML field, our approach may facilitate the development of
TL methods for addressing the cross-subject problem. It allows
extracting the interpretable feature subspace from the source
data (the representative group of subjects) related to the target
data (a naive user), preventing the negative transfer in the
cross-subject tasks.
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