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DYNAMICS OF SUPERLATTICES

Space Charge Dynamics in a Semiconductor Superlattice
Affected by Titled Magnetic Field and Heating
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Abstract—The transition between different modes of current oscillations in a semiconductor superlattice,
from close-to-harmonic (near the generation onset) to relaxation oscillations, has been investigated. The
transition type is shown to change with an increase in temperature. A period-doubling bifurcation is
observed at low temperatures. With an increase in temperature, the period-doubling bifurcation is observed
at increasingly larger values of the voltage across the superlattice. The doubling bifurcation ceases to
be observed at voltages at which the generation of oscillations of the current through the semiconductor
superlattice is suppressed.
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1. INTRODUCTION
Semiconductor superlattices are structures com-

posed of several thin layers of different semiconductor
materials [1−4]. These semiconductor nanostruc-
tures are of great interest both for practical applica-
tions and for the fundamental science [1, 5−10]. A
voltage across a semiconductor sublattice affects the
space charge dynamics in it, causing generation of
current oscillations due to the formation of electron
domains [3, 11]. At the same time, it was shown in
[12−15] that a tilted magnetic field affects strongly
the electron drift velocities in a superlattice and, as
consequence, the space charge dynamics.

At low voltages, the regions with a higher space
charge density (electron domains) are stable in time.
With an increase in the voltage across the super-
lattice, the electron domains start moving along the
structure. One of the most widespread scenarios
leading to generation of current oscillations in a semi-
conductor superlattice is the normal Andronov−Hopf
bifurcation [16]. In this case, the current oscilla-
tions are close to harmonic if the critical parameter
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(voltage) slightly exceeds the bifurcation value [17].
A further increase in voltage changes significantly
the form of current oscillations. In this paper, we
report the results of studying the bifurcations caused
by the presence of tilted magnetic field and the data
on the effect of temperature on the transition between
different modes of current oscillations in a semicon-
ductor superlattice. It is shown that the space charge
dynamics changes through a period-doubling bifur-
cation at low temperatures, whereas an increase in
temperature leads to suppression of current oscilla-
tions in the superlattice.

2. MODEL FOR CALCULATING
THE SPACE CHARGE DYNAMICS

IN A SEMICONDUCTOR SUPERLATTICE

We will describe the collective space charge dy-
namics in a semiconductor superlattice using the sys-
tem of self-consistent continuity and Poisson equa-
tions [18]:

e
∂n

∂t
= −∂J

∂x
, (1)

∂F

∂x
=

e

ε0εr
(n − nD). (2)

Here n(x, t) is the electron concentration; J(x, t) is
the electric current density; F (x, t) is the current
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Fig. 1. (a−c) Phase portraits reconstructed by the Takens method (delay time τ is a quarter of the oscillation period) and
(d−f) space-time diagrams of the charge carrier concentration; temperature T = 4.2 K, tilted magnetic field B = 15 T (θ = 40◦),
and voltage across the semiconductor superlattice V = 0.565 (a, d), 0.58 (b, e), and 0.6 V (c, f).

strength; nD = 3×1022 m3 is the equilibrium electron
concentration; e > 0 is the elementary charge; and
ε0 and εr = 12.5 are, respectively, the absolute and
relative permittivities.

Within the drift approximation, the current density
can be written as

J = en vd(F ) + eD(F )
∂n

∂x
, (3)

where vd(F ) is the electron drift velocity, calculated
for mean F , and D(F ) is the diffusion coefficient,
introduced in correspondence with [3] as

D(F ) =
vd(F ) d

1 − exp(−eFd/kT )
exp

(
−eFd

kT

)
. (4)

Here, d = 8.3 nm is the superlattice period, T is tem-
perature in kelvins, and k is the Boltzmann constant.
This diffusion coefficient can be disregarded at low
temperatures (few kelvins); at these temperatures and
in the absence of tilted magnetic field, the drift veloc-
ity is determined by the Esaki−Tsu formula [1]. In
the presence of tilted magnetic field, one must use
numerical simulation to obtain drift velocities, e.g.,
in the same way as was described in [15]. The drift
velocity decreases with an increase in temperature,
whereas the tilted magnetic field gives rise to resonant
maxima [14, 15], as a result of which the dynamics of
the system becomes much more complicated. In this
study, we used a tilted magnetic field with induction
B = 15 T and tilt angle θ = 40◦.

Voltage V applied to a semiconductor superlattice
is related to the electric field strength as follows:

V = U +

L∫
0

F dx, (5)

where U is the voltage drop on the contacts (with
allowance for the formation of layers with higher
charge density near the superlattice emitter and lower
charge density near the superlattice collector) and
L = 115.2 nm is the superlattice length. On the
assumption that the emitter and collector contacts
are ohmic and the current density J0 through the
emitter is determined by the contact conductivity
σ = 3788 Ω−1, we have

J(0, t) = σF (0, t). (6)

3. PERIOD-DOUBLING BIFURCATION

Current oscillations in semiconductor superlat-
tices have relaxation character. However, as was
discussed above, at voltages close to the onset of
generation caused by the Andronov−Hopf bifurca-
tion, the current oscillations are close to harmonic.
To analyze the transition from close-to-harmonic to
relaxation oscillations, we will consider the current
dynamics and the dynamics of space-time domains
(regions with high carrier concentration). The tran-
sition between different types of current oscillations
can be demonstrated by projecting phase trajectories
onto the (I(t−τ)) plane (τ is the delay time, equal to a
quarter of the oscillation period), obtained with the aid
of Takens method of delays for reconstructing phase
portraits based on time realizations [19].

Figure 1 shows projections of phase portraits
and spatial and temporal dependences of charge
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Fig. 2. (a−c) Phase portraits reconstructed by the Takens method (delay time τ is a quarter of the oscillation period) and
(d−f) space-time diagrams of the charge carrier concentration; temperature T = 100 K, tilted magnetic field B = 15 T (θ = 40◦),
and voltage across the semiconductor superlattice V = 0.515 (a, d), 0.615 (b, e), and 0.635 V (c, f).

carrier concentration for different voltages across the
semiconductor superlattice at a temperature close to
absolute zero (T = 4.2 K). For low (close to the gener-
ation onset) voltage V = 0.565 V, the current oscilla-
tions are close to harmonic, and a smooth closed line
can be seen in the phase portrait (Fig. 1(a)). Fig-
ure 1(d) demonstrates the motion of high-density
charge carrier domains, which form ordered pat-
terns. However, an increase in voltage to V = 0.58 V
changes the dynamics of current and spatial domains.
As shown in Figs. 1(b) and 1(e), the limiting cycle is
now transformed into a double-period cycle. Hence,
a period-doubling bifurcation occurs in the system.
Note that this process is accompanied by doubling
the oscillation frequency. From the point of view of
space-time patterns, this bifurcation manifests itself
in domain division along the coordinate when passing
the segment from 35 to 80 nm.

One can state that in this case a domain is a com-
bination of two carrier concentration peaks of similar
heights because each oscillation period corresponds
to one pattern in the space-time diagram. With a
further increase in the voltage across the superlat-
tice, the current oscillations even more deviate from
harmonic and become even closer to relaxation-type
oscillations (Fig. 2(c)). In the space-time diagram of
charge carrier concentration, one can see that one of
the peaks in the domain decreases, while the other
increases (Fig. 2(f)). On the whole, this leads to
a decrease in the domain repetition rate (and, as a
consequence, to a decrease in the current oscillation
frequency, which was discussed above) with an in-
crease in the domain height (the current oscillation
amplitude also significantly increases).

Let us consider how an increase in temperature
affects the dynamics of current and space-time do-
mains near the period-doubling bifurcation. Fig-
ure 2 shows projections of phase trajectories onto
the (I(t−τ), I(t)) plane and the space-time diagram
of charge carrier concentration at T = 100 K. It can
be seen that an increase in temperature also gives
rise to a period-doubling bifurcation. However, in
this case, oscillations are transformed from close-
to-harmonic (near the generation onset) (Fig. 2(a))
to close-to-relaxation (Fig. 2(b)), and only after this
transformation a period-doubling bifurcation occurs
(see Fig. 2(c)). Moreover, the voltage across the
superlattice at which the bifurcation is observed is
higher than at T = 4.2 K. From the point of view of
space-time patterns of charge carriers, the transition
between oscillation modes at this temperature occurs
according to another mechanism. In the previous
case (T = 4.2 K), two domains merged into one pat-
tern, which changed until one of the initial domains
greatly exceeded the other; as a result, the period in
the phase portrait for the current was doubled, and a
transition between oscillations of different types oc-
curred. With an increase in temperature and voltage,
the electron domain is split more rapidly, thus leading
to a change in the mode, after which period-doubling
bifurcation occurs. These stages are successively
shown in Figs. 2(d−f). Before the doubling, the cycle
in the phase pattern is not smooth, in contrast to the
case of T = 4.2 K (compare Figs. 1(b) and 2(c)).

4. SUPPRESSION
OF CURRENT OSCILLATIONS

As follows from [15], the amplitude of the res-
onant peaks in the dependence of the drift velocity
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Fig. 3. (a−c) Phase portraits reconstructed by the Takens method (delay time τ is a quarter of the oscillation period) and
(d−f) space-time diagrams of the charge carrier concentration; temperature T = 200 K, tilted magnetic field B = 15 T (θ = 40◦),
and voltage across the semiconductor superlattice V = 0.485 (a, d), 0.565 (b, e), and 0.7 V (c, f).

on the electric field strength may exceed that of the
Esaki−Tsu peak as a result of heating. To gain a
deeper insight into the nature of the transitions be-
tween different modes of current oscillation genera-
tion, let us consider the dynamics of the projection of
phase trajectories onto the (I(t−τ), I(t)) plane and
the behavior of the space-time diagrams of charge
carrier concentration with a change in the voltage
across the semiconductor superlattice (at T = 200 K).
It was mentioned above that the generation of oscil-
lations occurs through a Hopf bifurcation, and the
oscillations are close to harmonic immediately after
the generation onset. This behavior is observed for
all temperatures under consideration (see Figs. 1(a),
2(a), 3(a)); the voltage corresponding to the genera-
tion onset decreases with an increase in temperature
[15]. However, for T = 200 K, an increase in voltage
to V = 0.565 V suppresses the current oscillations in
the semiconductor superlattice caused by the inverse
Andronov−Hopf bifurcation (Fig. 3(b)). The spatial
distribution of charge carriers along the superlattice
turns out to be time-independent. An electron do-
main can be formed along the superlattice; however,
it is immobile and does not induce current oscillations
(see Fig. 3(b)). Further increase in voltage recovers
generation of oscillations (as previously, via a Hopf
bifurcation). A period-doubling bifurcation is not
observed in this case; however, the oscillation type
changes. The type of oscillations depicted in Fig. 3(c)
is close to relaxation. The space-time diagram of
the charge carrier concentration exhibits the follow-
ing sequence: a pattern with a single peak, a time-
independent pattern, and a complex pattern with sev-
eral peaks (successively, Figs. 3(d−f)).

5. CONCLUSIONS

We revealed scenarios of transitions between dif-
ferent modes of current oscillations in semiconduc-
tor superlattices in the presence of tilted magnetic
field, from close-to-harmonic (near the generation
onset) to close-to-relaxation ones. The generation
of current oscillations due to the motion of electron
domains along the structure is implemented both in
the presence and in the absence of magnetic field.
However, a period-doubling bifurcation (accompa-
nied by a change in the transition between current
oscillation modes) may occur in presence of tilted
magnetic field. One can conclude that the change
in the transition between the oscillation modes is
related to the change in the amplitude ratio of the
Esaki−Tsu peak and the Bloch cyclotron peaks in
the dependence of the drift velocity on the electric
field strength, which is observed with an increase
in temperature. At low temperatures (T < 100 K), a
transition occurs through a period-doubling bifurca-
tion, whereas at higher temperatures (e.g., T = 200 K)
a period-doubling bifurcation is absent; in this case,
the transition occurs through suppression of gen-
eration associated with the inverse Andronov−Hopf
bifurcation.
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