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Abstract
The brain resource is limited and it needs to be dis-

tributed among the different concurrent tasks. When the
subject accomplishes the resource-demanding main task
requiring sustained attention, the additional task leads to
the reduction of resources allocated for the main task ac-
complishing. This additional task can be either impor-
tant or caused by the distraction. Anyway, it causes a
performance decrease in the main task. In this paper,
we propose a brain-computer interface (BCI) to control
the cognitive performance of the visual task accomplish-
ing in the presence of the additional (mental arithmetic)
task. We demonstrate how the additional task affects the
performance of the main task accomplishing.
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1 Introduction
The brain resource is limited and it needs to be dis-

tributed among the different concurrent tasks [Christie
and Schrater, 2015]. According to this, when the sub-
ject accomplishes the resource-demanding (main) task
requiring sustained attention the (additional) task leads
to the reduction of resources allocated for the main task
accomplishing. it causes a performance decrease for the
main task [Benoit et al., 2019]. In the present work,
we study the cognitive performance in the framework
of the dual-task paradigm. We use the visual classifi-
cation task as the main task and the mental arithmetic
as an additional task. To monitor the cognitive perfor-
mance during the main task accomplishing we introduce

a brain-computer interface (BCI) (Fig. 1, A). BCI evalu-
ates the brain activity associated with the visual task ac-
complishing by estimating the brain response amplitude
[Maksimenko et al., 2017]. The high values of the brain
response amplitude correspond to the high cognitive per-
formance and vice-versa [Maksimenko et al., 2019]. Us-
ing the BCI we analyze, how the cognitive performance
of the main task accomplishing is affected by the pres-
ence of the additional task.

2 Methods
2.1 Subjects

Ten healthy subjects, 5 males and 5 females, between
the ages of 20 and 28 with normal or corrected-to-normal
visual acuity participated in the experiments. All par-
ticipants were familiar with the experimental task and
did not participated in similar experiments in the last 6
months. All participants provided informed written con-
sent before participating in the experiment. The exper-
imental studies were performed in accordance with the
Declaration of Helsinki and approved by the local re-
search Ethics Committee.

2.2 Tasks
The subjects performed cognitive tasks in the frame-

work of a dual-task paradigm. The dual-task paradigm
requires an individual to perform two tasks simultane-
ously, to compare their behavioral and cognitive perfor-
mance with the single-task conditions. In the current re-
search, we used two different tasks. The main task con-
sisted in the perception and binary classification of the
bistable visual stimuli (Necker cubes) following their in-
terpretations [Kornmeier et al., 2011]. The Necker cube
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Figure 1. Schematic representation of the proposed brain-computer
interface (a) and the experimental session (b).

has transparent faces and visible edges and an observer
without any perception abnormalities sees it as a 3D-
object due to the specific position of the edges. Bista-
bility in the perception of the Necker cube consists in its
interpretation as either left- or right-oriented, depending
on the contrast of the inner edges [Grubov et al., 2017].
The Necker cube images with the different inner edges
contrast were demonstrated on a 24′′ LCD monitor with
a spatial resolution of 1920×1080 pixels and a 60-Hz re-
fresh rate. Each Necker cube image with black and grey
edges was displayed in the middle of a computer screen
on a white background The subjects were sitting at a 70–
80 cm distance from the monitor with an approximately
0.25-rad visual angle. Each Necker cube was presented
for 1-1.5 s. The pause between the subsequent presenta-
tions was chosen randomly between 3 and 5 s.

The additional task was a mental arithmetics. It im-
plied arithmetical calculations using only the human
brain, with no help from any supplies (such as pencil
and paper) or devices such as a calculator. In our study,
the subjects were asked to sequentially subtract a specific
two-digit number (e.g. “27”) from a three-digit number
(e.g. “1506”) in the mind.

2.3 Experimental Protocol
Each subject participated in three 4-min subsequent

sessions (Fig. 1, B). In the first session, the participant
was subjected only to the main task. In the second ses-
sion the additional task was performed together with the
main task. Finally, in the third session the participant
was again subjected only to the main task.

2.4 Recording
To register the EEG data, the cup adhesive Ag/AgCl

electrodes were placed on the scalp with the help of

“Tien–20” paste. Before the experiment, we put the
abrasive “NuPre” gel on the scalp to increase its con-
ductivity. After the electrodes were installed, we moni-
tored the impedance during the experiments, which var-
ied in the interval of 2–5 kΩ. The ground electrode N
was located above the forehead, and reference electrodes
A1 and A2 were attached to the mastoids. For filtering
the EEG signals, we used a band-pass filter with cut-off
points at 0.016 Hz (HP) and 70 Hz (LP), as well as a 50-
Hz Notch filter. For EEG and EOG signal amplification
and analog-to-digital conversion; the electroencephalo-
graph “Encephalan–EEGR–19/26” (“Medikom-MTD”,
Taganrog, Russia).

2.5 BCI Algorithm
To evaluate the subject’s state during the experiment

we developed the passive brain-computer interface [Zan-
der and Kothe, 2011]. The BCI algorithm was aimed at
estimating the brain response amplitude during the main
task accomplishing. Based on the previous works [Mak-
simenko et al., 2018a] we hypothesized that the visual
task accomplishing caused an increase of 15-30 Hz-band
activity and a decrease of 8-12 Hz activity in the occipital
and parietal areas. According to this, we associated the
brain response amplitude with the ratio between the EEG
spectral amplitude in these bands during the prestimulus
and peristimulus period. The brain response amplitude
was evaluated in six steps:

Step 1 – EEG acquisition. The EEG signals were
recorded by the five noninvasive electrodes (O1, O2, P3,
P4, Pz) with a 250-Hz sampling rate.

Step 2 – Time-frequency EEG analysis. We used the
continuous wavelet analysis [Hramov et al., 2015]. The
wavelet amplitude En(f, t) =

√
Wn(f, t)2 was calcu-

lated for each EEG channel Xn(t) in the f ∈ [1, 30]-Hz
frequency range. Here, Wn(f, t) is the complex-valued
wavelet coefficients calculated as

Wn(f, t) =
√
f

t+4/f∫
t−4/f

Xn(t)ψ∗(f, t)dt, (1)

where n = 1, ..., N is the EEG channel number (N = 5
being the total number of channels used for the anal-
ysis) and “*” defines the complex conjugation. The
mother wavelet function ψ(f, t) was the complex Morlet
wavelet widely used for the analysis of neurophysiolog-
ical data and defined as

ψ(f, t) =
√
fπ1/4ejω0f(t−t0)ef(t−t0)2/2, (2)

where ω0 = 2π is the central frequency of the Morlet
mother wavelet.

Step 3 – Extracting spectral components. In order
to follow the dynamics of the main spectral components,
we extracted the locations of five of them (f1, . . . , f5)
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characterized by maximal values of wavelet spactral am-
plitude E(f1), . . . , E(f5), and then analyzed how the
values f1, . . . , f5 evolved in time. According to the lit-
erature, visual attention during the visual task accom-
plishing is associated with the interplay between α (8–
12 Hz) and β (15–30 Hz) frequency bands in occipital
and parietal areas. Therefore, we considered the values
f1, . . . , f5 belonging to these particular frequency bands.

Step 4 – Quantification of the cognitive perfor-
mance. In order to quantify the cognitive performance
during the visual stimulus processing, we compared the
EEG spectra in the 1-s intervals immediately before and
after the onset of stimulus presentation. For this purpose,
we calculated the values A1

i , A2
i , B1

i , B2
i during the pre-

sentation of i-th stimulus, which statistically described
the location of the maximal spectral components using
EEG data taken from all occipital and parietal channels
before and after the onset of image presentation, as fol-
lows:

A1,2
i =

N∑
n=1

∫
t∈∆ti1,2

[
K∑
k=1

ξnk (t′)dt′

]
, (3)

B1,2
i =

N∑
n=1

∫
t∈∆ti1,2

[
K∑
k=1

ξnk (t′)dt′

]
, (4)

where ξn(t) = 1/k if fnk ∈ ∆fβ or ξn(t) =
0 if fnk /∈ ∆fβ . Here, N = 5 is the number of EEG
channels, fnk is the location of k-th maximal spectral
component, belonging to n-th channel, K = 5 is the
number of analyzed spectral components, and ∆ti1,2 in-
dicate the 1-s time intervals preceding and following the
i-th image presentation.

According to the existing works on human attention
during the visual information processing, including our
recent papers [Maksimenko et al., 2017; Maksimenko
et al., 2018b], visual attention is associated with the ac-
tivation of an “attentional center” in the parietal cortex,
which operates at 15–30 Hz frequencies [Laufs et al.,
2006], i.e., increased visual attention activates the β-
waves in the parietal area. In addition, visual stimuli pro-
cessing strengthens connectivity between occipital and
parietal areas in α and β frequency bands [Michalar-
eas et al., 2016; Buffalo et al., 2011], that in turn
causes a growth of β-activity in occipital cortex. Finally,
many studies evidence that visual information process-
ing along with an increase in β-activity simultaneously
inhibits α-wave activity. According to our recent study
[Maksimenko et al., 2018b], an increase of visual atten-
tion causes a percept-related increase in β-activity with
an accompanying decrease in α-activity.

Taking into account the above observation, the sub-
ject’s attention during visual stimulus processing can be
quantified as

I(ti) =
(A

1

i −A
2

i ) + (B
2

i −B
1

i )

2
, (5)

where A
1,2

i and B
1,2

i define the values of A1,2
i and B1,2

i

averaged over six preceding events (i − 6, . . . , i). Such
averaging is performed in accordance with our previous
results [Maksimenko et al., 2017], where we demon-
strated that when stimuli are processed in a short time,
the subject sometimes exhibits low attention I during a
single event, even while demonstrating overall high at-
tention during the whole session. One can see that I(ti)
reaches a maximal positive value, if the values in both
brackets in Eq. (5) are high and positive. It corresponds
to a state of high attention whenA

1

i > A
2

i andB
2

i > B
1

i ,
ii.e., α-activity decreases and β-activity increases. On
the contrary, I(i) reaches a minimal negative value when
A

1

i < A
2

i and B
2

i < B
1

i . Finally, I(i) is zero when
changes in α- and β-activity are insignificant. In the
framework of this work, we consider the visual attention
as a main indicator of the cognitive performance during
the main task accomplishing.

3 Results
The experimental results are illustrated in Fig 2. The

solid curve in Fig. 2, A shows the evolution of the brain
response amplitude during the experiment. The verti-
cal dashed lines in Fig. 2, A illustrate the time intervals
corresponded to the different sessions. Fig. 2, B demon-
strates the mean values of the brain response amplitude
for each of the three sessions. The histogram reflects the
group means and the error bars define the standard devi-
ation in the group.

One can see that during the first session when the sub-
ject performs only the main task, G(t) fluctuates near a
certain mean value, individual for each subject. Having
associated the brain response amplitude G(t) with the
cognitive performance, one can conclude, that a mean
value of G during the first session characterizes the sub-
ject’s performance of the main task accomplishing.

In the second session, when the additional task is per-
formed by the subject together with the main task, one
can see the significant (∗p < 0.05 via Wilcoxon test) de-
crease of the mean brain response amplitude. It can be
supposed, that the presence of the additional task causes
the cognitive resource reallocation. As a result, the cog-
nitive resource allocated for the main task accomplishing
is decreased. It, in turn, is reflected in the decrease of the
brain response amplitude.

Finally, in the third sessionG(t) significantly increases
for all subjects and reaches the mean value which does
not differ significantly from one calculated for the first
session. It means that the observed change of the mean
brain response amplitude is not associated with the pro-
cesses like the mental fatigue or the training effect, but
caused by the presence of the additional task.
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Figure 2. The brain response amplitude vs time during the whole ex-
periment (on the example of the single subject) (a) and mean value
of the brain response amplitude for the different sessions (group mean
±SD) (b)

4 Conclusion
We have introduced the brain-computer interface to

control the cognitive performance of the visual percep-
tion task (main task) accomplishing in the presence of
the additional task (mental arithmetic). We demonstrate
that the performance of the main task accomplishing de-
creases in the presence of the additional task. It is im-
portant to note that a significant change of the cognitive
performance is observed within a relatively short time
interval (less than 30 seconds). Thus, the proposed BCI
enables detecting the decrease of cognitive performance
in real-time. It is important for the sustained attention
tasks where the distraction and switching to other tasks
causes the decrease of both cognitive and behavioral per-
formance.

From the physical point of view, we demonstrate how
the cortical network activity is analyzed by considering
the different rhythms of EEG signals. It is known that
the brain neuronal network participates in the generation
of different rhythms. These rhythms are associated with
the synchronization of the neuronal activity in the cor-
responding frequency bands. The change in the EEG
spectral energy in the particular band reflects the degree
of neuronal network synchronization. In this context,
our results demonstrate the task-related activity in the
neuronal network is subserved by the synchronization of
high-frequency β-rhythm whereas the low-frequency α-
band activity becomes desynchronized.
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