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Abstract—The subjective assessment of experts and cost of
evaluation make it much harder to diagnose an early stage
autism. This could lead to other complications in later life. In this
study, we approach the problem of autism identification based
on functional connectivity via selecting and interpreting input
features. We access the difference in alpha band connectivity
in autistic and neuro-typical individuals and demonstrate how
this difference can be used to identify individuals with autism.
Our study highlights the importance of alpha band connectivity
coupled with supervised machine learning in the diagnosis of
autism spectrum disorder.

Index Terms—Autism Spectrum Disorder, Electroencephalo-
gram, Functional connectivity, Coherence, Machine learning, k-
fold cross validation.

I. INTRODUCTION

A wide range of early-appearing social communication

difficulties and repetitive sensory-motor behaviors, caused

by a significant genetic component as well as several other

reasons, are together referred to as autism spectrum disorder

(ASD). According to World Health Organization (WHO),

1 out of 100 children is suffering from autism [1]. Despite

having standardized diagnostics procedures for autism, its

detection and classification, to this day, is still a challenging

task since the symptoms vary unimaginably from children to

teenagers and no reliable biomarker is yet available.

The capability of machine learning algorithms to find

pattern in large, complex and structurally unorganized raw

data [2], [3] has attracted a huge attention in healthcare

domain. Wide-scale use of machine learning in medical

imaging [4]–[6], drugs discoveries and development [7],

diseases identification and diagnosis [8], [9], and neurological

disabilities identification [10] demonstrate its efficiency.
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In this work, we investigated the feasibility of using Support

Vector Machine (SVM) trained on electroencephalogram

(EEG) as a detection tool for ASD from age 2 to age 16.

Because of the consequences of false negatives in healthcare

domain, we specifically aimed to design a classifier with

optimal recall and precision along with high accuracy. We

also investigated the preposition of alpha band connectivity’s

alterations being a neural biomarker of autism by evaluating

the performance of our classifier via feature selection and

feature engineering. To generalize our model, we performed

training and validation using an extensive dataset of 280

subjects.

The rest of the paper is organized as follows: after the

presentation of some related work in Section II, Section III

describes the implementation of the proposed methodology.

Section IV presents the results and the discussion, and the

paper is concluded in Section V.

II. RELATED WORKS

Advancements in machine/deep learning led researchers

from all around the world to use it in the healthcare

domain. The same trend can be seen in ASD detection and

classification. Methods used to detect autism can be generally

categorized into machine learning and deep learning methods.

In machine learning techniques, features are extracted

manually and a classifier is then trained using these

hand-crafted features. A combination of linear and non-

linear features was employed in previous studies, particularly,

modified MultiScale Entropy (mMSE) [11], texture parameters

of higher order spectra of EEG bi-spectrum [12], Power

Spectrum, Wavelet Transform, Fast Fourier Transform

(FFT), Fractal Dimension, Correlation Dimension, Lyapunov

Exponent, Entropy, Detrended Fluctuation Analysis and

Synchronization Likelihood [13], Minimum-Redundancy-

Maximum-Relevance (MRMR) [14], and physiological and
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behavioral features [15]. All these studies used raw EEG data

with the exception of [14] and [15] which used eye-tracking

data along with EEG. The mostly used classifier was SVM,

giving a classification accuracy of above 70% with k-fold

cross validation scheme [11], [13], [14].

In deep learning, the designed model extracts the features

as a part of the training process. This technique though

provides high accuracy, is dependent on an extensive amount

of data, and the resulting models are often black boxes in

nature. Grossi et al. proposed a novel approach of using a

Multi-Scale Ranked Organizing Map coupled with Implicit

Function as Squashing Time algorithm (MS-ROM/I-FAST)

for classification [16]. MS-ROM/I-FAST is a complex

Artificial Neural Network (ANNs) capable to extract features

in EEG through the analysis of a few minutes of EEG without

any preliminary pre-processing. An interesting advancement

was done by Grossi et al. in [17] where EEG from only two

sensors was used to check if the ASD signature is already

present at birth using Genetic doping algorithm and a neural

network. [18] and [19] used 2D representation of EEG signals

to train deep neural networks.

III. MATERIALS AND METHODS

A. Data acquisition

During the EEG recording experiment, the subjects had

to sit with their eyes open and try not to make any visible

movements. The EEG data were 19-channel recordings with

an average duration of about several minutes at a sampling

rate of 250 Hz, and the duration of the EEG recording for

each individual subject was determined by his ability to

perform the task as long as possible. The electrodes were

placed according to a 10-20 arrangement. The EEG signals

were preliminarily cleaned of artifacts using frequency filters

and the ICA method.

After pre-processing, we defined four age groups. Table I

shows the distribution.

TABLE I
PARTICIPANTS DISTRIBUTION: PARTICIPANTS DIVIDED INTO 4 GROUPS

BASED ON THEIR AGE.

Group Age
Total subjects

ASD Control

A 2 ≤ age ≤ 4 46 37
B 5 ≤ age ≤ 6 37 46
C 7 ≤ age ≤ 9 46 52
D age ≥ 10 20 42

B. Connectivity analysis

To investigate the difference in functional connectivity of

subjects with autism and typically developing individuals, we

used the measure of coherence [20], [21]. Coherence between

two neural rhythms x(t) and y(t) is defined as:

COHxy(f) =
|Pxy(f)|

2

Pxx(f)Pyy(f)

EEG acquisition

Artifacts removal

Alpha band extraction

Coherence matrices

Feature vectors

SVM classifier

Fig. 1. Flow chart of applied methodology: Coherence functional con-
nectivity was extracted from alpha band of cleaned EEG signals and fed to
nonlinear kernalized SVM classifier.

Here, frequency f was defined in the range 8-12 Hz (Alpha

band). Several previous studies have shown that a difference

in alpha connectivity exists between these classes [22]–[27].

This makes alpha connectivity a useful neuromarker for

the autism diagnosis. Pxx and Pyy are the power spectral

densities estimates of x and y, respectively and Pxy is the

cross-spectral density estimate of x and y. Coherence lies

between 0 and 1, where 0 implies no coherence and 1

implies perfect coherence between x and y. We used Scipy

module available in Python programming language to extract

coherence matrices from EEG.

Coherence matrices were of size 19× 19. Because of their

symmetrical nature, we constructed coherence vectors from

matrices by taking the upper triangular matrix. The resulting

coherence vectors were of size 19× (19− 1)/2.

C. Machine learning

We used machine learning to classify subjects in their

respective classes, i.e., autistic or typically developed.

After computing connectivity features, we ranked them in

decreasing order of their relevance in discrimination between

subjects with and without autism. Taking top n features as

input n = 1 .... N, where N is a maximum number of features,
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we tested the performance of the nonlinear classifier. This

allowed us to evaluate the performance of our classifier

against the number of features used to train. We then choose

an optimal number of input features that provided optimal

accuracy with sufficient recall and precision. This chosen

set of features provided a connectivity structure that was

most informative for discrimination among subjects with and

without autism.

1) Feature engineering: The performance of the machine

learning model largely depends upon the features, we use for

training. Generally, feeding all features for training negatively

impacts the model’s performance since most of them are

irrelevant or less relevant to the response. Using all features

also increases the computational cost of training. To avoid

this, feature engineering is used. Feature engineering is a

core concept of machine learning where we employ domain

knowledge to use specific features in order to enhance the

model’s performance and decrease computational cost. Till

now, we have 19 ∗ (19 − 1)/2 = 171 functional connections

between sensors. In order to select key features out of these

171 features, we employed a filter-type feature selection

algorithm [28]. In filter-type feature selection algorithm,

the importance of a feature is calculated based on its

characteristics such as feature variance and its relevance

to the response. We used ANOVA f-test [29] as a feature

selection criterion. Greater the test value, more helpful the

feature for discrimination and vice versa.

2) Classifier: Proposing a complex neural network model

in order to apprehend an already complex network, i.e., the

brain, is not such a good option. That’s why we employed a

nonlinear support vector machine (SVM) classifier with radial

basis function (RBF) as a kernel. Subjects with autism were

assigned a numerical label of 1, whereas typically developing

subjects were assigned a numerical label of 0. We used an

equal number of subjects from all groups to prevent our

classifier from bias. We used a k-fold cross-validation scheme

to train and test our classifier. Since the number of subjects

in groups is small, this validation scheme is suitable [30].

For each group, the k was chosen such that k = (number

of subjects)/10. This made sure that for each iteration, we

would have 10 subjects. During each iteration, the model was

trained on kth − 1 folds and validated on the remaining kth

fold. In order to further prevent our model to inherit bias, we

repeated the training for 50 iterations (the data was randomly

shuffled ones, in each iteration) and took the mean. For the

performance measurement of our trained classifier, we used

accuracy, precision, and recall. These performance metrics can

be defined as:

Accuracy =
TP + TN

TP + FP + TN + FN

Recall =
TP

TP + FN

Precision =
TP

TP + FP

Here, TP is a true positive, which means that a subject with

autism is correctly classified; TN is a true negative, which

means that a subject without autism is incorrectly classified

as one with autism; FP is a false positive, which means that

a subject without autism is correctly classified; FN is a false

negative, which means that a subject with autism is incorrectly

classified as one without autism.

IV. RESULTS AND DISCUSSION

Figure 2 shows the top five connections/features that con-

tributed most to classification. It is interesting to note that

for group A, connectivity in the left temporal, frontal, and

occipital lobes is prominent (α = 0.05, t49 = 156.4948, p ≤

0.001, σ = 0.0338). For group B, connectivity between the

right and left temporal lobe (α = 0.05, t49 = 271.0675, p ≤

0.001, σ = 0.0206), for group C, connectivity in the frontal

lobe (α = 0.05, t49 = 218.0905, p ≤ 0.001, σ = 0.0245), and

for group D, in right temporal, frontal, and occipital lobes

are prominent (α = 0.05, t49 = 127.9471, p ≤ 0.001, σ =
0.0435). Studies done by Muries et al. [22] and Just et al.

[31] supported these findings indicating a weak coherence

pattern that exists between the frontal lobe and the rest of

the cortex in individuals with autism. Cognitive, sensory, and

motor functions are largely dependent on the frontal lobe,

and therefore it’s somewhat unsurprising that a reduction is

observed in frontal-posterior functional connectivity.

Fig. 2. Functional connectivity structures: Top five functional connection
that contributed most in ASD identification, computed via ANOVA f-test. For
groups A, C, and D, connectivity between frontal lobe and rest of cortex is
prominent.

It is also interesting to note that for different groups, an

optimal balance of accuracy, recall, and precision is achieved

at a different number of features. Only 10, 38, 28, and 10

connections are most informative out of 171 connections for

groups A, B, C, and D, respectively. This engineering of
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input features is recently proven to be quite successful in

classifying cognitive brain states [32]. Figure 3 presents the

optimal accuracy, precision, and recall scores.

Fig. 3. Performance metrics: k-fold cross validation scores for each group.
Bars represent mean and whiskers represent standard deviation over the folds
and fifty simulations.

V. CONCLUSION

Autism spectrum disorder is a concerning neural disorder

worldwide. In this work, we evaluated the performance of

supervised machine learning in the identification of autism via

capturing and analyzing EEG. The proposed methodology not

only provided an optimal balance between accuracy, recall,

and precision, but also emphasized the importance of the

applicability of alpha band connectivity as a neural biomarker

for autism detection in addition to finding the most informative

connections in the alpha band and rejecting several irrelevant

ones. We expect that our findings could effectively contribute

to ongoing research in autism spectrum disorder and the

development of effective AI diagnostic tools.
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