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PREFACE 
 

 

In this book, the authors report the results obtained by the application of 

wavelet analysis to two physics experiments: the motion of variable mass 

pendulum and the motion of variable length pendulum. These two motions, 

which furnish non stationary signals for their motions, are analyzed by means 

of a comparative Fourier Transform and Wavelet Transform. Afterwards, 

interval arithmetic extensions for the standard algorithms for the decimated 

and undecimated unidimensional Haar wavelet transform, as well as the 

standard and non-standard formulations for the two-dimensional HWT, are 

presented. In one chapter, wavelet analysis and other statistical tools are 

employed in order to analyse different aspects of Sicily temperature data. 

Sicily represents one of the hot spots for studying climate change in the 

Mediterranean area because of its vulnerability to desertification processes. 

The authors aim to highlight how wavelet transform can be employed to 

extract information from experimental results obtained by spectroscopic 

techniques, such as InfraRed, light and neutron scattering spectroscopies. In 

particular, this book shows how it is possible to characterize the registered 

spectral profiles by means of Wavelet Cross Correlation to evaluate spectra 

and the degree of similarity between images. Later, an iterative à trous 

coarsening algorithm combined with a wavelet extrapolation procedure is 

presented and analyzed to filter and identify the mean trend of simulated 1D 

data with non-trivial boundary conditions. Results show that the wavelet 

extrapolation based algorithm considered for the data-driven analysis is robust 

and reliable, allowing for an increased confidence region of the wavelet 

transform. In the concluding chapter, the authors aim to show that the wavelet 

transform has several advantages and benefits over classical methods of 

spectral analysis and other approaches. 
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Chapter 1 - It is well known that Mathematics and Physics are two 

distinguished disciplines that in the meantime are often strictly interconnected 

for teaching purposes. Mathematics furnishes useful tools for Physics and, on 

the other hand, Physics, together with its laboratory activities, can facilitate the 

clarification of Mathematics concepts, especially when they do not have a 

straightforward meaning. For this reason, in teaching wavelet analysis it is 

often advantageous to adopt an integrated mathematical and physical 

approach. The authors report the results obtained by the application of a 

wavelet analysis on two Physics experiments, i.e., the motion of a variable 

mass pendulum and the motion of a variable length pendulum. These two 

motions, which furnish non stationary signals, are analyzed by means of 

comparative Fourier Transform (FT) and Wavelet Transform (WT) 

approaches. Through these two laboratory experiments it is shown how, 

contrarily to FT that furnishes only an average frequency value for the non 

stationary signal, WT allows to get information on the time evolution of the 

frequencies content, i.e., it allows a joint time-frequency analysis. 

Chapter 2 – This chapter presents interval arithmetic extensions for the 

standard algorithms for the decimated and undecimated unidimensional Haar 

wavelet transform (HWT), and the standard and non-standard formulations for 

the two-dimensional HWT. The proposed algebraic optimizations for the 

algorithms are derived specifically for the formulation of the HWT in the 

interval arithmetic context, being part of the already under development Int-

HWT library, which is implemented using C-XSC library for interval 

arithmetic. This work is the first step to the development of the Int-DWTs 

library that will provide interval results for several Discrete Wavelet 

Transforms. The interval results show that the proposed formulations for the 

different standard algorithms for the HWT provide more exact values, with an 

increase of 20% in performance for the decimated HWT formulation. As an 

application, the interval optimizations for image filtering procedures based on 

the Hard and Soft thresholding of the wavelet coefficients are also presented, 

providing results more accurate than the standard algorithms with punctual 

values. 

Chapter 3 - Wavelet transform is an effective mathematical tool able to 

provide a time–frequency representation of signals defined in the time domain. 

So far this innovative multiscale analysis has been successfully applied in 

various fields of science, such as, for example, geophysics, astrophysics, 

telecommunications and climatology. In this chapter the wavelet analysis is 

employed to analyse Sicily temperature data. Sicily represents one of the hot 

spot for the study of climate change in the Mediterranean area, because of its 
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vulnerability to desertification processes. Precipitations and temperature trends 

forecasted for the XXI century by Regional Climate Models (RCM) show an 

increasing temperature trend and a non-clear precipitation trend. To better 

characterize the temperature trend, the 1865-2016 temperature time series of 

Palermo and the 1962-2014 time series of four Sicilian localities have been 

analysed by means of Continue and Discrete Wavelet Transforms. Such 

analyses allow to identify the fast and slow events contained in the time series 

and to identify the major features of the Sicilian climate dynamics. 

Chapter 4 - Wavelet transform is an innovative and powerful tool for 

analyzing complex data such as those obtained by spectroscopic techniques. In 

particular, it allows to locally resolve a non-stationary signal by means of 

functions called mother wavelets so producing a time-scale view of the signal. 

In addition, thanks to the wavelet multiscaling properties it is possible to get 

information both on a global and on a local view, to characterize transitory 

signal characteristics, trends, drifts, spectra abrupt changes and to perform 

signal denoising. The aim of this chapter is to highlight how wavelet transform 

can be effectively employed to extract precious information from experimental 

results obtained by spectroscopic techniques, such as InfraRed, light and 

neutron scattering spectroscopies.In particular, it will be shown how it is 

possible to characterize, following different approaches, the registered spectral 

profiles as well as, by means of Wavelet Cross Correlation, to evaluate spectra 

and images similarity degree. 

Chapter 5 - An iterative à trous coarsening algorithm combined with a 

wavelet extrapolation procedure is presented and analyzed to filter and identify 

the mean trend of simulated 1D data with non-trivial boundary conditions. 

Results show that the wavelet extrapolation based algorithm considered for the 

data-driven analysis is robust and reliable, enabling the increase of the 

confidence region of the wavelet transform. Relative errors for the simulations 

were found to be in the order of 0.2% or less for each simulated 1D data set, 

independent of noise intensity, decomposition level or coarsest signal shape 

near data boundaries, confirming the contribution of the wavelet extrapolation 

to the non-linear analysis scheme. The intrinsic interpolatory property of the 

wavelet transform, combined with the à trous coarsening algorithm, also 

allowed the proposal of an automatic local curve approximation procedure for 

regions where strong localized influences are present and need to be removed 

in order to diminish distortions in the mean signal pattern. The proposed 

procedure avoids the necessity of model fitting for the regions to be treated. 

Numerical simulations for the analysis of noisy data are also presented and 
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discussed, highlighting the potential of the proposed scheme to be considered 

for a wide range of applications. 

Chapter 6 - Noninvasive brain research is extensively used in modern 

neuroscience for studying human cognitive behavior and intellection 

mechanisms. One of the important technologies for recording brain dynamics 

is the electroencephalography (EEG). This method is very convenient for 

monitoring brain activity in a wide frequency range with a relatively high 

spatial resolution. The EEG data of psychophysiological experiments are 

usually processed for detecting characteristic patterns associated with various 

cognitive functions, as well as for other types of brain activity. In this chapter, 

the authors show that the wavelet transform has several advantages and 

benefits over classical methods of spectral analysis and other approaches. We 

demonstrates the success of wavelet processing on the example of 

psychophysiological data registered in the experiment with visual perception 

of ambiguous objects. Nowadays, ambiguous images are extensively explored 

for studying visual perception and decision making. However, despite high 

efforts of many researchers, the main mechanisms of image interpretation are 

not yet well understood. Although it is known that perception is a result of 

nonlinear processes in a distributed neural network of occipital, pariental and 

frontal regions of brain cortex, further detailed investigation of these processes 

is required. 
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WAVELET APPROACH  

IN PHYSICS EDUCATION 
 

 

S. Magazù* and M. T. Caccamo 
Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche  

e Scienze della Terra, Università di Messina, Messina, Italy 

Istituto Nazionale di Alta Matematica “F. Severi” – INDAM,  

Gruppo Nazionale per la Fisica Matematica – GNFM, Rome, Italy 

Abstract 

It is well known that Mathematics and Physics are two distinguished 

disciplines that in the meantime are often strictly interconnected for teaching 

purposes. Mathematics furnishes useful tools for Physics and, on the other 

hand, Physics, together with its laboratory activities, can facilitate the 

clarification of Mathematics concepts, especially when they do not have a 

straightforward meaning. For this reason, in teaching wavelet analysis it is 

often advantageous to adopt an integrated mathematical and physical 

approach. In this chapter, we report the results obtained by the application of 

a wavelet analysis on two Physics experiments, i.e., the motion of a variable 

mass pendulum and the motion of a variable length pendulum. These two 

motions, which furnish non stationary signals, are analyzed by means of 

comparative Fourier Transform (FT) and Wavelet Transform (WT) 

approaches. Through these two laboratory experiments it is shown how, 

contrarily to FT that furnishes only an average frequency value for the non 

                                                        
* Corresponding Author Email: smagazu@unime.it. 
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S. Magazù  and M. T. Caccamo 2 

stationary signal, WT allows to get information on the time evolution of the 

frequencies content, i.e., it allows a joint time-frequency analysis. 

 

Keywords: wavelet transform, Fourier transform, physics education 

Introduction 

It is well known that an integrated approach of Mathematics, Physics and 

laboratory activities can substantially increase the student learning processes, 

especially for Mathematics concepts which do not have a direct meaning (see 

Figure 1). This can be attributed to the fact that a lot of students find more 

effective to deal with Mathematics topics on the basis of practical experiences 

instead of dealing merely with mathematical descriptions. 

 

 

Figure 1. Mathematics concepts which do not have a straightforward meaning, as 

wavelets, are often considered hard to students. For this reason, in many cases it is 

often advantageous to adopt an integrated approach where Mathematics, Physics and 

Laboratory activities can furnish to notions concrete meanings and can highlight the 

usefulness, the advantages and the benefits of their applications. 

Signal processing techniques have become increasingly important in many 

Physics, Mathematics and Engineering curricula, as well as in many other 

fields of applications, such as biology, neutron scattering, economy, medicine, 

meteorology, also because of the significant increase in computational power 

[1-7]. In particular, Fourier Transform (FT) and, very recently, Wavelet 

Mathematics

LaboratoryPhysics
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Wavelet Approach in Physics Education 3 

Transform (WT) are largely applied to detect information on the periodicities 

which are present in stationary and non-stationary signals respectively.  

In particular, WT provides a more detailed information because it works 

over a continuous range of scales and hence is more suited for studying both 

stationary and non-stationary phenomena [8-14]. 
In the present chapter the FT and WT analyses are presented dealing with 

the specific case of time dependent mechanical oscillations. It should be 

stressed that in such cases a generalization of the Newton’s second law, to 

include the mass variation effect, is to be taken into account; furthermore in 

such cases the analytic approach alone is not able to easily solve the systems 

dynamics. It will be shown that for these systems, since FT analysis is not able 

to furnish information on the time dependence of the frequencies content, the 

WT approach is to be preferred. 

Fourier and Wavelet Transforms – Historical 

Background 

The idea of expanding periodic (non-periodic) functions in a sum (integral) 

of sine and cosine functions was introduced in 1822, in the treatise 

“Theorie Analytique de la Chaleur”, by the French mathematician and 

physicist Joseph Fourier with the intention to solve the heat conduction 

equation. 

FT analysis decomposes a signal, and then reconstructs it without loss 

of information, although being localized only in frequency and not in time; 

for this reason it allows to effectively analyse only stationary signals [15].  

To overcome such a limitation a “window” function of given 

amplitude which slides along the time axis was introduced to execute a 

“time-localized” FT, i.e., the so called Short Time Fourier Transform 

(STFT); this procedure was introduced in 1946 in the paper titled “Theory 

of communication” by the Hungarian mathematician Dennis Gabor. D. 

Gabor chose a Gaussian function as window but, although he solved the 

problem of time localization, his approach furnished an equal resolution in 

time for all the frequencies, while window function width was kept 

constant [16].  

Later, in the mid-1970s, the French geophysics Jean Morlet, working 

for an oil company, studying the acoustic echoes sent into the soil for 

identifying oil reservoirs on the Earth’s crest, introduced the method of 
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scaling while shifting the STFT. In order to better analyse the acoustic 

echoes, Morlet changed the width of the window by a dilatation or 

compression procedure [17]. His approach led to the term “ondelette” 

introduced by J. Morlet and Alex Grossmann in 1984. The French term 

was translated in English as wavelet, which stands for wave (onde) and let 

(petite). 

Fourier Series and Fourier Transform 

It is well known that a periodic function 𝑓(𝑡 + 𝑇)= 𝑓(𝑡), with period 𝑇 =
2𝜋

𝜔
,𝜔 

being a frequency, by means of the Fourier analysis can be expressed as a sum 

of sine or cosine functions [18-19]: 

 

 𝑓(𝑡) = ∑ [𝐴𝑛 cos(𝑛𝜔𝑡) + 𝐵𝑛 sin(𝑛𝜔𝑡)]∞
𝑛=0  (1) 

 

where 𝐴𝑛 and 𝐵𝑛 are the Fourier coefficients. 

For n=0,𝐵0 sin(𝑛𝜔𝑡) = 0 and hence it is: 

 

 ∫ 𝑓(𝑡)𝑑𝑡
𝑇

0
= ∫ 𝐴0𝑑𝑡

𝑇

0
= 𝐴0𝑇 (2) 

 

 𝐴0 =
1

𝑇
∫ 𝑓(𝑡)𝑑𝑡

𝑇

0
 (3) 

 

Concerning the other 𝐴𝑛 terms, let us multiply eqn. 1 for cos(𝑚𝜔𝑡), and 

then integrate over T: 

 

∫ 𝑓(𝑡) cos(𝑚𝜔𝑡) 𝑑𝑡
𝑇

0
=

∫ cos(𝑚𝜔𝑡) {∑ [𝐴𝑛 cos(𝑛𝜔𝑡) + 𝐵𝑛 sin(𝑛𝜔𝑡)]∞
𝑛=0 }𝑑𝑡

𝑇

0
 (4) 

 

Where due to the Werner equations only the term cos(𝑚𝜔𝑡) with 𝑚 =

𝑛 is different from zero: 

 

Therefore, being ∫ 𝑓(𝑡) cos2(𝑚𝜔𝑡) 𝑑𝑡 =
𝑇

2

𝑇

0
 it is:  

 

 𝐴𝑛 =
2

𝑇
∫ 𝑓(𝑡) cos(𝑛𝜔𝑡) 𝑑𝑡

𝑇

0
; (5) 
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Following the same procedure, it results: 

 

 𝐵𝑛 =
2

𝑇
∫ 𝑓(𝑡) sin(𝑛𝜔𝑡) 𝑑𝑡

𝑇

0
;  (6) 

 

The quantities 𝐴𝑛 and 𝐵𝑛 indicate the amplitude of the cos(𝑛𝜔𝑡) 

and sin(𝑛𝜔𝑡) and are called the harmonic components of function 𝑓(𝑡).  

From an intuitive point of view, one can think to a color mixing, see Figure 

2. In particular, assuming that, in general, light is a continuous spectrum of 

electromagnetic waves, since the eyes of humans, and of other species, normally 

contains three types of color receptors (trichromats), the additive primaries 

colors, i.e., red, green, and blue, are able to generate, by mixing, the largest 

range of visible colors. As shown in figure, additive mixing of red and green 

light, produces shades of yellow or orange depending on the different values of 

the mixing proportions (in the analogy different values of the coefficients 𝐴𝑛 

and 𝐵𝑛). Mixing green and blue produces shades of cyan, and mixing red and 

blue produces shades of purple and magenta; mixing equal proportions of the 

additive primaries results in shades of grey; when all three colors are fully 

saturated, the result is white. 

 

 

Figure 2. Additive mixing of the green, red and blue primaries colors generate the 

other visible colors. For example, red and green produce shades of yellow or orange 

depending on the mixing proportions (corresponding to different values of the Fourier 

coefficients 𝐴𝑛  and 𝐵𝑛); green and blue produce shades of cyan; red and blue produce 

shades of purple and magenta; mixing equal proportions of the additive primaries 

results in shades of grey while when the three colors are saturated the result is white. 
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It should be noticed that different functions having the same period have 

the same fundamental harmonic component. The passage from the function 

𝑓(𝑡) to the sequence of the Fourier coefficients {𝐴0, 𝐴𝑛, 𝐵𝑛} is interpreted as 

an analysis process whereas the inverse operation that leads from the 

coefficients of Fourier to function 𝑓(𝑡) is interpreted as a synthesis process. 

The {𝐴0, 𝐴𝑛, 𝐵𝑛} coefficients are called the spectrum of the function 𝑓(𝑡). 

As a rule, by increasing the index n the nth Fourier coefficient becomes 

smaller and smaller and therefore, in practical cases, the sum in eqn. 1 can be 

truncated at a given stage.  

 

 

Figure 3. First Partial sums of the Fourier series for a square wave. 

Figure 3 shows, as an example, the partial sums of the Fourier series for a 

square wave where it is: 

 

 𝐴0 =
1

2𝜋
∫ 𝑓(𝑡)𝑑𝑡 = 0

2𝜋

0
 (7) 

 

 𝐴𝑛 =
1

𝜋
∫ 𝑓(𝑡)𝑑𝑥

2𝜋

0
cos(𝑛𝑡) =0 (8) 
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 𝐵𝑛 =
1

𝜋
∫ 𝑓(𝑡)𝑑𝑡

2𝜋

0
sin(𝑛𝑡) = {

1

𝜋𝑛
 if 𝑛 is odd

0 if 𝑛 is even
 (9) 

 

The Fourier integral or Fourier transform is an extension of the Fourier 

series for non-periodic functions; it is an operator which associates to a 

function of the single variable 𝑡, 𝑓(𝑡), a function of a single variable 𝜐 

(conjugate to t), Ϝ̂(𝜐). FT decomposes 𝑓(𝑡) into a set of sine (or cosine) waves 

and where frequency 𝜔 changes continuously: 

 

 Ϝ̂(𝜐) = ∫ 𝑓(𝑡)𝑒−𝑖2𝜋𝜐𝑡𝑑𝑡
+∞

−∞
= 

 =∫ 𝑓(𝑡)cos (2𝜋𝜐𝑡)𝑑𝑡
+∞

−∞
− 𝑖 ∫ 𝑓(𝑡)sin (2𝜋𝜐𝑡)𝑑𝑡

+∞

−∞
 (10) 

 

Eqn. 10 can be interpreted as a representation of the time signal 𝑓(𝑡) in 

the frequency domain through the function Ϝ̂(𝜐), obtained through a 

comparison between the signal 𝑓(𝑡) and a set of “template” functions 

cos(2𝜋𝜐𝑡) and sin(2𝜋𝜐𝑡). One can introduce the convolution operator, , see 

eqn. 3 and eqn. 4, which applies to two functions 𝑓(𝑡) and 𝜓(𝑡) and produces 

a third function obtained by the integral of the pointwise multiplication of the 

first function 𝑓(𝑡) and of the conjugate 𝜓∗(𝑡) of the second function 𝜓(𝑡) 

when this latter is translated. The convolution is similar to cross-correlation, *, 

see eqn. 13, differing only in a time reversal in one of the signals; finally for 

𝑓(𝑡)=(𝑡) the cross-correlation becomes an autocorrelation function, see eqn. 

14. 

 

 𝑓(𝑡)𝜓(𝑡) = ∫ 𝑓(𝜏)𝜓∗(𝑡 − 𝜏)𝑑𝜏
+∞

−∞
 (11) 

 

In the case of the Fourier integral, it is (𝑡) = 𝑒𝑖2𝜋𝜐𝑡: 

 

 Ϝ̂(𝜐) = 𝑓(𝑡)𝜓(𝑡) = ∫ 𝑓(𝜏)𝜓∗(𝑡 − 𝜏)𝑑𝜏
+∞

−∞
 (12) 

 

Eqn. 4 indicates that the Fourier transform is essentially a convolution 

between the time function 𝑓(𝑡) and the sine and cosine functions that can be 

viewed as template functions. The operation measures the similarity between 

𝑓(𝑡) and the template functions, and expresses the average frequency 

information during the entire period of the signal analyzed.  
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 𝑓(𝑡) ∗ 𝜓(𝑡) = ∫ 𝑓(𝜏)𝜓∗(𝑡 + 𝜏)𝑑𝜏
+∞

−∞
 (13) 

 

 𝑓(𝑡) ∗ 𝑓(𝑡) = ∫ 𝑓(𝜏)𝑓∗(𝑡 + 𝜏)𝑑𝜏
+∞

−∞
  (14) 

 

 

Figure 4. The convolution operator ⊗ applies to the two functions 𝑓(𝑡) and 𝜓(𝑡) and 

produces a third function obtained by the integral of the pointwise multiplication of the 

first function 𝑓(𝑡) and of the conjugate 𝜓∗(𝑡) of the second function 𝜓 when this latter 

is translated. 

To overcome the limitations of the Fourier transform a “time-localized” 

short-time Fourier Transform, STFT, was introduced by D. Gabor which can 
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also be viewed as a measure of “similarity” between the signal and the time-

shifted and frequency-modulated Gaussian window function. Over the past 

decades, various types of window functions have been developed [20], each of 

them being specifically tailored toward a particular type of application. To cite 

a few examples, the Gaussian window was designed for analyzing transient 

signals; the Hamming and Hann windows were introduced for narrow bands, 

random signals the Kaiser-Bessel window was introduced in order to separate 

two signal components with frequencies very close to each other but with 

widely differing amplitudes.  

The choice of the window function affects the time and frequency 

resolutions of the analysis. A high resolution provides a better separation of 

the signal components; however, the time and frequency resolutions of the 

STFT technique cannot be chosen arbitrarily at the same time, according to the 

uncertainty principle.  

WT is an operator which associates to a function of the single variable 

𝑡, 𝑓(𝑡), a function of the two variables 𝑎, 𝜏, 𝑊(𝑎, 𝜏), where the parameter 

𝑎 > 0 denotes the scale, who sw value is the inverse of the frequency, 

while the parameter 𝜏 represents a time shift along the time axis. WT 

decomposes 𝑓(𝑡) into a set of wavelets components 
1

√𝑎
𝜓 (

𝑡−𝜏

𝑎
), that can be 

chosen according to the similarity degree with 𝑓(𝑡), as it follows: 

 

 𝑊(𝑎, 𝜏) =
1

√𝑎
∫ 𝑓(𝑡)𝜓∗ (

𝑡−𝜏

𝑎
) 𝑑𝑡

+∞

−∞
 (15) 

 

where 𝜓∗ denotes the conjugate complex of the function 𝜓. Similarly to FT, 

WT realizes a comparison of the function 𝑓(𝑡) with the set of the wavelets 

template functions, obtained from the scaling, i.e., dilation and contraction, 

and shift, i.e., translation along the time axis, looking for their similarities, that 

is, the degree of closeness between the two functions. The more similar they 

are the larger the 𝑊(𝑎, 𝜏) value will be. In this case, however the template 

functions are not necessarily the sine and cosine functions but can be 

arbitrarily chosen, provided that some conditions are satisfied. 

Differently from FT, which shows only which signal frequencies are 

present, WT, in addition, also shows where, or at what scale they are [21-25]. 

Furthermore, while FT allows to decompose the signal only in cosine and sine 

component functions, the WT takes into account several wavelet mother 

functions, that can be chosen according to the similarity degree of the mother 

functions with the investigated signal [26-33]. 
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Figure 5. Comparison between the results of an FT and the WT spectral analysis 

obtained for a damped time oscillation (a) and for a chipir function (b). In the case of 

the chipir function it is evident that FT furnishes only an average frequency value 

while WT furnishes information on the time evolution of the frequencies content. 
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In this chapter, the wavelet Morlet mother function is used:  

 

 𝜓(𝑡) =
1

√𝜋𝐹𝑏
𝑒(2𝑖𝜋𝐹𝑐𝑡)𝑒

−
𝑡2

𝐹𝑏 (8) 

 

Here, 𝐹𝑏 and 𝐹𝑐 provide the wavelet bandwidth, which is connected with 

the duration of the time window, and the center pseudo-frequency position. It 

should be noted that no information about time dependence is obtained in case 

of a very long time window; in other words, in the case in which the wavelet 

mother is 𝜓(𝑡) = 𝑒−2𝜋𝑖𝑡 the WT transform reduces to the FT. Therefore, the 

parameters of the “Morlet” mother function are to be adjusted to the dealt 

specific case [34-37]. 

Figure 5 shows a comparison between the results of the FT and the WT 

spectral analysis for a damped time oscillation (a) and a chipir function (b). As 

it can be seen in the case of the chipir function, contrarily to what occurs for 

FT which furnishes only an average frequency value, WT allows to get 

information on the time evolution of the frequencies content, namely WT 

allows a joint time-frequency analysis.  

Variable Length Pendulum  

Let us analyze a pendulum of length ℓ(𝑡) and mass 𝜇, in the absence of 

frictions. The second law of Dynamics is:  

 

 𝜇�⃗� = �⃗� (16) 

 

where �⃗� is the linear acceleration, �⃗� the total force. In this case it is: 

 

 𝜇�̈� = −𝜇𝑔 sin 𝜑 (17) 

 

where 𝜑 angular deviation from the equilibrium position; s=ℓ(𝑡)𝜑(𝑡) is the 

length spanned by the oscillator, �̈� =
𝑑2𝑠

𝑑𝑡2 is its second derivative, and g the 

gravity acceleration. It is: 

 

 �̇�(𝑡) = ℓ̇(𝑡)𝜑(𝑡) + ℓ(𝑡)�̇�(𝑡) (18) 

 

Therefore, the second derivative is: 
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 �̈� = ℓ̈𝜃 + 2ℓ̇�̇� + ℓ�̈� (19) 

 

Now, assuming that: i) the pendulum length changes with a constant rate, 

ℓ̇ = 𝑐𝑜𝑛𝑠𝑡. and hence ℓ̈ =
𝑑2ℓ

𝑑𝑡2 = 0; ii) during the oscillation, the pendulum 

length ℓ(𝑡) changes slowly in respect to 𝜃(𝑡) variation, ℓ̇ ≪ �̇�, then �̈� = ℓ�̈�, 

and hence: 

 

 𝜇ℓ(𝑡)�̈�(𝑡) = −𝜇𝑔 sin 𝜑(𝑡) (20) 

 

If 𝜑(𝑡) ≪ 1 then sin 𝜑 (𝑡)~𝜑(t), and then: 

 

 �̈�(𝑡) = −
𝑔

ℓ(𝑡)
𝜑(𝑡) (21) 

 

 

Figure 6. FT vs WT comparison. Both the approaches are applied to characterize the 

effects of the pendulum length change on the time-dependent oscillation frequencies. 

On the top: collected oscillation signal; on the right: signal FT which shows only an 

average of the oscillation frequencies; on the bottom: signal WT scalogram which 

shows how the oscillation frequency changes with time. WT outperforms the FT 

approach highlighting which frequencies are present and where they are. 
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The solution of this equation is:  

 

 𝛼(𝑡) = 𝛼0 sin(𝜔(𝑡)𝑡 + 𝜑) (22) 

 

with: 

 

 𝜔(𝑡) ≈ √
𝑔

ℓ(𝑡)
 (23) 

 

The experimental set-up includes: i) a 0,150 kg spherical mass; ii) a 

rotating device for the pendulum length variation; iii) a Logger Lite data 

acquisition program; IV) a GoMotion-Vernier ultrasonic sensor device to 

measure displacements. We have collected, and then analyzed by a WT 

approach, a set of measurements in which the length changed linearly in time 

following the law ℓ(𝑡) = ℓ0 −
1

40
𝑡 (meter vs second). Figure 6 shows, on the 

top, the collected oscillation signal. As it can be seen while the signal FT, 

shown on the right, provides only an average of the oscillation signal 

frequencies, the WT scalogram, on the bottom shows the oscillation frequency 

changes in time [38]. 

Variable Mass Pendulum 

Let us now take into account a funnel filled with sands and hang through a 

thread of fixed length ℓ whose 𝜇(𝑡) changes in time from its initial value 𝑚0 

following the law: 

 

 𝜇(𝑡) = 𝜇𝑒−𝛽𝑡 (24) 

 

The rigid body dynamics equations are:  

 

 {�̅� = �̇�

�̅� = �̇�
 (25) 

 

where �̅� is the net external force, �̅� is the linear momentum which can be 

expressed in terms of the center mass velocity  �̅�𝐺 as �̅� = 𝑚�̅�𝐺; �̅� is the net 

external torque, �̅� = �̅� ∧ �̅� is the total angular momentum. It is: 
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 �̅� = 𝐼�̅� (26) 

 

where 𝐼 is the system moment of inertia and 𝜔 = �̇� is the modulus of the 

angular velocity. 

 

Being |�̅�| = |�̅� ∧ �̅�| = 𝜇𝑔ℓ sin 𝜗, it is: 

 

 {
𝜏 = −𝜇𝑔ℓ sin 𝜗 = −𝜇0𝑒−𝛽𝑡𝑔ℓ sin 𝜗

𝐼 = 𝜇ℓ2 = 𝜇0𝑒−𝛽𝑡ℓ2
 (27) 

 

and hence: 

 

 �̅� = 𝐼�̅̇� + 𝐼�̅̇� = −𝜇0ℓ2𝑒−𝛽𝑡𝛼�̅� + 𝜇0𝑒−𝛽𝑡ℓ2�̅̇� = −𝐼�̅�𝛽 + 𝐼�̅̇� (28) 

 

and by multiplying for (1/𝐼), it results: 

 

 −�̅�𝛼 + �̅̇� = −
1

ℓ
𝑔 sin 𝜗𝑗̂ (29) 

 

Assuming: i) small oscillation angles, then sin 𝜗 = 𝜗, and ii) 𝜔0 = √
𝑔

𝑙
, 

one has: 

 

 �̈� − 𝛼�̇� + 𝜔0𝜗 = 0 (30) 

 

which represents a homogeneous second order differential equation. By 

putting 𝜗(𝑡) = 𝑒−𝛾𝑡: 

 

 𝛾2 − 𝛽𝛾 +
𝑔

ℓ
= 0 (31) 

 

it results: 

 

 𝛾1,2 =
𝛼±√𝛽2−4

𝑔
ℓ⁄

2
 (32) 

 

The solution results: 

 

 𝛼(𝑡) = 𝑘1𝑒𝛾1𝑡 + 𝑘2𝑒𝛾2𝑡 (33) 
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In particular when is: 

 

 𝛽2 −
4𝑔

ℓ
> 0  (34) 

 

i.e.: 

 𝛽 > 2√
𝑔

ℓ
 (35) 

 

the motion is not oscillating; on the contrary when it is: 

 

 𝛽 > 2√
𝑔

ℓ
 (36) 

 

 𝛾1,2 =
𝛽±𝑖𝜔

2
 (37) 

 

one has an oscillatory motion with frequency 𝜔: 

 

 𝜔 = √4
𝑔

ℓ⁄ − 𝛽2 (38) 

 

The procedure does not take into account that while the empty funnel 

center of mass keeps constant in time the center of mass of the sand inside the 

funnel lowers its position giving rise to an increase of the effective length; 

however such an effect is partially compensated by the fact that the empty 

funnel center of mass will increase its relative weight. Therefore one can 

assume that introducing the effecting length ℓ𝑒𝑓𝑓(𝑡), one has: 

 

 𝜔(𝑡) ≈ √
𝑔

ℓ𝑒𝑓𝑓(𝑡)
 (39) 

 

The experimental set-up includes: i) a funnel whose weight is 0,270 kg;  

ii) fine sand for a total mass of 1,790 kg; iii) a twine with a distance between 

the fixed support and the funnel of 0,66 m; a precision balance  

with capacity=2,100 kg; iv) a Logger Lite data acquisition program;  

v) a GoMotion-Vernier ultrasonic sensor device. 
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Regarding the experiment procedure, the funnel was filled with the sand 

and the measured mass variation versus time fulfilled the law 𝜇(𝑡) =

𝜇0𝑒−
1

0.036
𝑡
.  

Figure 7 shows in its upper portion the collected oscillation signal. As it 

can be seen, since the spectral content of the investigated process changes in 

time, FT as shown in the right portion of the figure is able to furnish only a 

mean oscillation frequency. Such a FT drawback is overcome by the 

employment of the WT analysis which furnishes the time evolution of the 

signal spectral components [39]. 

 

 

Figure 7. FT vs WT comparison. Both the approaches have been applied to 

characterize the effects of the pendulum mass change on the time-dependent oscillation 

frequencies. On the top the collected oscillation signal; on the right the signal FT 

which shows only an average of the oscillation frequencies; on the bottom the signal 

WT scalogram which shows how the oscillation frequency changes with time. WT 

outperforms the FT approach highlighting which frequencies are present and where 

they are. 

Conclusion 

In this chapter, a comparison of FT and WT approaches, finalized to signal 

processing, are introduced. In particular, we report the results obtained by the 
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application of FT and WT analysis on two Physics experiments, i.e., the 

motion of a variable length pendulum and the motion of a variable mass 

pendulum. These two motions are analyzed by means of a comparative FT and 

WT approach. Through these two experiments it is shown how, contrarily to 

FT that furnishes only an average frequency value for the non-stationary 

signal, WT allows to get information on the time evolution of the frequencies 

content, i.e., it allows a joint time-frequency analysis. It is shown that WT 

outperforms the FT approach highlighting which frequencies are present and, 

in addition, where they are, so providing an easy-to-interpret physical 

significance of time-frequency analysis. It is shown how Physics, together 

with its laboratory activities, can facilitate the clarification of this Mathematics 

concept and specifically that in teaching wavelet analysis it is often 

advantageous to adopt an integrated mathematical and physical approach. 
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Abstract

This work presents interval arithmetic extensions for the standard
algorithms for the decimated and undecimated unidimensional Haar
wavelet transform (HWT), and the standard and non-standard formula-
tions for the two-dimensional HWT. The proposed algebraic optimiza-
tions for the algorithms are derived specifically for the formulation of the
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HWT in the interval arithmetic context, being part of the already under de-
velopment Int-HWT library, which is implemented using C-XSC library
for interval arithmetic. This work is the first step to the development of
the Int-DWTs library that will provide interval results for several Discrete
Wavelet Transforms. The interval results show that the proposed formu-
lations for the different standard algorithms for the HWT provide more
exact values, with an increase of 20%in performance for the decimated
HWT formulation. As an application, the interval optimizations for im-
age filtering procedures based on the Hard and Soft thresholding of the
wavelet coefficients are also presented, providing results more accurate
than the standard algorithms with punctual values.

PACS: 07.05.Tp, 07.05.Pj

Keywords: Error analysis, Interval Arithmetics, Haar wavelet Transform, Com-
pression

AMS Subject Classification:65G30, 65G40

1. Introduction

The quality of numerical results in Scientific Computing (SC) depends on un-
derstanding the different error causes, on controlling their propagation and on
improving accuracy and precision of computations upon the involved proce-
dures. In this sense, the proposed study considers the Interval Mathematics (IM)
approach for addressing this issue and proposes a solution based on Moore’s
arithmetic [1] for the implementation of the Haar wavelet transform (HWT).
Two well established algorithms are considered: the Cascade for implementing
the decimated version of the transform, and theÁ Trous for the undecimated
approach. Their standard formulations assume point values as input data, being
the proposed interval formulation a first step on the development of the Int-DWT
library that will provide interval results for several Discrete Wavelet Transforms
(DWTs).

Interval results carry over the safety of their quality together with the de-
gree of their uncertainty [1]. The diameter of the interval solution represents
with fidelity the uncertainties of input parameters, being also an indicative of
the error influence and of the extension of its propagation within the incoming
data. Interval solutions also indicate truncation and rounding errors contained
in the computed results. In the last decade, many studies associating wavelet
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transforms with IM have arisen, promoting a new research direction and point-
ing out the relevance of interval computations for a wide range of applications.
Shu-Li et al. [2] propose the interval extension of the interpolating wavelet fam-
ily for the construction of an adaptive algorithm for solving partial differential
equations (PDE). Another collocation method for solving PDE is presented by
Liu [3], based on the interval extension for the Shannon-Garbor wavelet fam-
ily. By analyzing wavelet synthesis in a piecewise manner, interval wavelet
transform methods in [4] are considered to provide sparser representations in
the vicinity of discontinuities than a classical wavelet transform, showing how
they can be used for image compression and upscaling of signal approximation.
With respect to image processing applications, Minamoto and Aoki [5] propose
a blind digital image watermarking method using interval Daubechies wavelets.

The main motivation for interval techniques integrated with DWT is to pro-
vide trustworthy and validated results to technological and SC applications as-
suming such transformations. The pool of techniques involving wavelets is am-
ple, specially in signal and image processing [6, 7]. The Haar basis, the less
regular of the orthonormal Daubechies family, provides the simplest discrete
wavelet transform (DWT) in terms of algorithm complexity and therefore is
still nowadays largely explored. Its robustness with respect to many different
mathematical structures and space formulations is also considered a relevant as-
pect [8] of the HWT addressed in different applications. Besides, as pointed out
in [9], the imaging inaccuracy of the Haar wavelet basis is the smallest possible,
motivating its usage in many 2D problems as well as the proposed formulations
in the interval context presented in the current study.

Hence, this work introduces an integrated analysis of the original HWT al-
gorithms and the proposed interval extensions. Preliminary results of the in-
terval extension of the Int-HWT library, presented in [10], are revisited here,
including the interval extensions of the decimated version of HWT [11] (given
by the Cascade algorithm) for the 1D and 2D cases. Another contribution to
be addressed is the interval extension for the non-decimated HWT formulation,
given by theÁ Trous algorithm [12, 13], in which the size of the input data does
not change through out all the decomposition levels of the HWT. Interval ex-
tensions are also proposed for both 1D and 2D cases. Furthermore, a threshold
procedure for treating signals and images, which is a significant part of many
compression and filtering algorithms, is analyzed and its interval extension is
presented. Interval metrics are also evaluated to validate the two studied inter-
val filtering procedures.

Complimentary Contributor Copy



24 V. R. dos Santos, R. H. S. Reiser, M. Pilla et al.

This contribution is organized as follows. Section 2 summarizes some rel-
evant aspects about interval arithmetics and the interval formulation of three
metrics considered as figure of merit for analyzing the quality of the results
obtained by the proposed interval extensions of the HWT. In the end of this
section, some remarks about the C-XSC library, considered for the implementa-
tions, are also made. Section 3 presents the optimal interval formulations for the
HWT. The 1D decimated formulation is discussed in Subsection 3.1 and the 1D
undecimated case is given in 3.3. Both 2D formulations are also addressed. In
Section 4 the interval extensions of two compression procedures are presented.
Section 5 provides a pool of numerical simulations, for which some statistics are
collected to demonstrate the gain related to the developed interval formulations.
Finally, conclusions and future works are discussed in Section 6.

2. Interval Arithmetics

Interval analysis was devised by Ramon Moore in the 1960’s [14, 15], when
computers were still at an early stage of development and every additional
cost associated with keeping track of computational errors was considered as
too high. Furthermore, error bounds were overly pessimistic and, therefore,
mostly useless for practical applications. Nowadays, the research for new inter-
val methods have reached a high scientific level, producing tighter error bounds
faster than approximations of non-rigorous computations. Even in pure math-
ematics, non-trivial results have recently been proved using computer-aided
methods based on interval techniques [16]. Additionally, scientific computa-
tions demanding rigor as well as speed from numerical computations should be
performed based on techniques with validated numerical calculations such as
interval methods. Despite distinct approaches of arithmetic for intervals, such
as [17, 18] and [19], this work considers the interval analysis proposed by Moore
in the 1960’s [1, 14, 15], providing methods to obtain accuray in numerical cal-
culations.

2.1. Moore Interval Arithmetic Operations

In Moore’s arithmetic, an intervalX is a continuum subset of real numbers
which is in the infimum-supremum representation given as:

X = {x ∈ R : a ≤ x ≤ b, a, b ∈ R}. (1)

Complimentary Contributor Copy



25

The set of all real intervals is indicated byIR. Frequently, an intervalX ∈
IR is indicated by its endpoints,X = [a, b]. Whena = b then [a, b] ∈ IR

is called a degenerate interval. For an unary operatorω : R → R, we have
that ω(X) = {ω(x) : x ∈ X}. According to [20], Def. 4.2 and Prop. 5.1,
for a total and non-asymptotic real functionω : R → R, an interval function
Ω(X) = {ω(x) : x ∈ X}, verifying properties below:

(i) Ω is an interval extension ofω, i.e.Ω(X) = [ω(x), ω(x)], ∀x ∈ X;

(ii) Ω is correct w.r.tω, implying thatω(x) ∈ Ω(X), ∀x ∈ X ,

is well defined and called a canonical interval represention ofw. In addition,
for all X ∈ IR, we have thatΩ(X) = [min f(x) : x ∈ X,max f(x) : x ∈ X].
Thus, for an interval representation function∗ : IR

2 → IR such that∗ ∈
{+,−, /, ·}, the following property is valid:X ∗ Y = {x ∗ y : x ∈ X andy ∈
Y }, ∀X,Y ∈ IR.

Interval functions can be computed by performing arithmetic operations or
by applying rational approximation methods [17]. The former identifies the
class of rational interval functions and the latter, the class of irrational interval
functions. Thus, Moore arithmetic guarantees correctness in the sense that any
computation performed with standard floating-point methods can also be done
with their interval version. By considering the setℜ = [−∞,∞] of extended
real numbers, the related family of subintervals of[a, b] is given as

I[a,b] = {[x, y] ⊆ ℜ : a ≤ x ≤ y ≤ b}. (2)

In particular, letU = [0, 1] ⊆ ℜ be the real unit interval. By Eq. (2), the set
of all subintervals ofU is indicated asIU = {[x, y] ⊆ ℜ : 0 ≤ x ≤ y ≤ 1}.
The projectionsl, r : I[a,b] → [a, b] are respectively given byl([x, y]) = x and
r([x, y]) = y, for all [x, y] ∈ I[a,b]. Additionally, whenX = [x, y] ∈ I[a,b], the
projection functionsl(X) andr(X) are also denoted byX andX, respectively.
Thus, for allX,Y ∈ I[a,b], interval arithmetic operations can be defined as
follows:

X + Y = [X + Y ,X + Y ];

X − Y = [X − Y ,X − Y ];

1/Y = [1/Y , 1/Y ], if 0 /∈ Y ;

X · Y = [min {X · Y ,X · Y ,X · Y ,X · Y },max{X · Y ,X · Y ,X · Y ,X · Y }].

Int-HWT
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The power, root and logarithm operations are, respectively, defined as follows:

Xn =







[Xn, X
n
], if X > 0 or n is odd;

[X
n
, Xn], if X < 0 andn is even;

[0,max{Xn, X
n}], if 0 ∈ X andn is even.

n
√
X =

{

[ n
√
X,

n
√
X], if X ≥ 0 or n is odd;

undefined, otherwise.

logX =

{

[logX, logX], if X > 0;
undefined, otherwise.

The partial order used here in the context of IM is the Product (or Kulisch-
Miranker) order and, for allX,Y ∈ I[a,b], it is defined as follows:

X ≤I[a,b]
Y iff X ≤ Y andX ≤ Y . (3)

Additionally, an interval function preserving the partial order≤I[a,b]
is called

I[a,b]-monotonic function with respect to the partially ordered set(I[a,b],≤I[a,b]
).

2.2. Interval Metrics

Not only interval algorithms, but metrics for evaluating procedure’s accuracy
may also assume concepts from IM [1] to manage computation errors. The
motivation to consider numerical intervals instead of simple punctual values is
linked to the capability of intervals to represent infinite punctual values. This
sort of representation is very useful in SC when the accuracy of the input (or out-
put) data is not known beforehand. In these cases of uncertainty or inaccuracy,
the interval procedures should ensure that all possible punctual results belong to
the interval results. In addition, due to memory limitation, it is also common to
compute round (or simply truncated) values to store the result afterwards. This
heuristic may result in different values which are depending on the machine’s
configuration.

The interval extension of real metrics being used in the current work to
measure result quality are interval metrics in the sense of Trindade e.al. [21].
However, they are not interval metrics in the sense of Moore [20]. See [22] for
a more general theory of metric spaces.
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2.2.1. Euclidean Distance

Let Ỹ = (ỹ)ij ∈ R
n×m be an estimator ofY = (y)ij ∈ R

n×m whosenm
elements̃yij are predictions of the original valuesyij . The Euclidean distance
betweenY and its estimator̃Y is defined by the following expression:

D(Ỹ , Y ) =

√

√

√

√

m
∑

j=0

n
∑

i=0

(ỹij − yij)2. (4)

Analogously,Ỹ = (Ỹ)ij is called an interval estimator ofY = (Y)ij ∈
IR

n×m with annm-dimensional matrix of interval predictions̃Yij of the orig-
inal interval quantitiesYij . An interval extensional of Eq.(4) is defined as:

D(Ỹ,Y) =

√

√

√

√

m
∑

j=0

n
∑

i=0

(

Ỹij −Yij

)2
. (5)

2.2.2. Mean Squared Error

The Mean Squared Error (MSE) is a risk function, corresponding to the ex-
pected value of the squared error loss. It measures the average of the squares
of the errors in SC, providing the difference between the estimator and what is
estimated. MSE allows us to compare the pixel values of our original image
to our image degraded by noise based on the amount by which the values they
differ.

Let Y = (y)ij ∈ R
n×m be the related matrix of true valuesyij . The accu-

racy ofỸ = (ỹ)ij can be obtained by the application of an MSE operator as the
following

MSE(Ỹ , Y ) =
1

mn

√

√

√

√

m
∑

j=0

n
∑

i=0

(ỹij − yij)2 =
1

mn
D(Ỹ , Y ). (6)

Analogously, for allY = (Y)ij ∈ IR
n×m corresponding to the related

matrix of true valuesYij , the accuracy of the estimated values can be obtained
by applying an interval extension of theMSE operator in Eq. (4), which is

Int-HWT
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given by the following expression:

MSE(Ỹ,Y) =
1

mn

√

√

√

√

m
∑

j=0

n
∑

i=0

(Ỹij −Yij)2 =
1

mn
D(Ỹ,Y). (7)

2.2.3. Peak Signal-to-Noise Ratio

An important performance metric for evaluation and comparison of image or
video codecs is the Rate/Distortion (R/D), which measures the image quality
in terms of Peak Signal-to-Noise Ratio (PSNR). PSNR expresses the ratio
between the maximum possible power of a signal and the power of corrupting
noise affecting the fidelity of its representation.PSNR is used to measure the
quality of reconstruction of lossy compression codecs. The signal is the original
data and the noise is the error introduced by compression. However, the range
of validity of this metric is limited since it is only conclusively valid quality
measure when used to compare results from the same content or same codec
type. Thus, the expression ofPSNR is most easily defined via the logarithmic
decibel scale related to theMSE as follows:

PSNR(Ỹ , Y ) = 10 · log10
MAX2

I

MSE(Ỹ , Y )
, if MSE(Ỹ , Y )

6
= 0 (8)

whenI indicates amn-dimensional monochrome image associated toY and
MAXI is the maximum possible pixel value of the imageI. WhenỸ = Y ,
thenMSE(Ỹ , Y ) = 0 and it makes no sense to compute the PSNR value.
Therefore, a natural interval extension of Eq. (8) is given as:

PSNR(Ỹ,Y) = 10 · log10
[MAXI ,MAXI ]

2

MSE(Ỹ,Y)
, if 0 /∈MSE(Ỹ,Y) (9)

when[MAXI ,MAXI ] denotes the degenerate interval obtained byMAXI and
MSE(Ỹ,Y) is the interval extension ofMSE(Ỹ , Y ). Finally, in the computa-
tion of the MSE between two identical images, the value will be zero and hence
PSNR will be undefined. Moreover, the main limitation of both metrics is that
they strictly rely on numerical comparison, which is exactly the focus of this
contribution.
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2.3. C-XSC Library

Algorithms performing only interval arithmetic must be designed in a way that
interval results contain all possible punctual results. In this work, HWT and its
many formulations are extended according to the interval arithmetic, consider-
ing the C-XSC interval library [23]. C-XSC is an extensive C++ class library
for SC that includes a set of basic data types definitions (from intervals to mul-
tiple precision complex intervals). These types are predefined and can be called
by their usual operator symbols. So, arithmetic expressions and numerical al-
gorithms are expressed in a notation that is very close to the usual mathematical
notation and verification algorithms are written in a way which is very near to
pseudo-code used in SC. All predefined numerical operators are of highest ac-
curacy, meaning that computed results differ from the correct result by at most
one rounding.

Such system incorperated some concepts of mathematics of computation
and computational arithmetic, such as high accuracy arithmetic, interval math-
ematics and automatic numerical verification. C-XSC is an open source library
available from [23] that adds extra packages, such as extended interval divi-
sion, evaluation of polynomials, automatic differentiation, linear and nonlinear
equations, global linear and optimization, accurate evaluation of arithmetic ex-
pressions,etc.

Function and operator overloading ease the common mathematical nota-
tion of expressions involving interval types. This is also true for (interval)
matrix/vector expressions. Numerical verification methods, also called self-
validating methods, are constructive and they allow to handle uncertain data
with mathematical rigor. The C-XSC library provides support for users to de-
velop efficient numerical verification methods in self-validating numerical ap-
plications.

2.4. Int-DWTs Library

The implementation of our interval extension and optimizations for the HWT is
maintained using a Git repository at1. The library distribution is being made
using Github, an open-source development platform for easy access.

The Int-DWTs library requires three programs in order to be compiled,
which aremake, clang andcxsc. The following commands show how to install

1github.com/fireapache/Int-DWTs

Int-HWT
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the required programs.

$ sudo apt-get install make
$ sudo apt-get install clang
$ wget http://www2.math.uni-wuppertal.de/˜xsc/xsc/
cxsc/cxsc-2-5-4.tar.gz
$ tar -zxvf cxsc-2-5-4.tar.gz
$ cd cxsc-2-5-4/
$ ./install_cxsc

It is important to installcxsc at /home/ < user > /cxsc/, where<
user > is the user’s name in the system. The following commands show how
to clone the repository and to compile the library.

$ git clone https://www.github.com/fireapache/Int-DWTs/
$ cd Int-DWTs/
$ make tests

The compilation process will produce an executable namedtest.exe, which
has several implemented tests. The program can list the available tests by using
the−l flag and can execute a given test by using−t n, beingn the selected test
number.

In the last decade, significant improvements have been made in parallelized
versions of interval linear system solvers supplied by C-XSC [24, 25, 26]. Once
the interval extensions allow different error computations, different compres-
sion algorithms can be derived, as shown in Section 4. With the summarized
background already presented, the remainder of this work develops the exten-
sion of the Haar wavelet transform for the context of interval arithmetics. Some
formulation simplifications are made in order to improve the quality of inter-
val extensions of related transforms, directly implying in more accurate results.
Image compression step is chosen as a case study of the techniques discussed
before.

Thus, interval techniques and optimization of Int-DWTs library are mainly
concerned with execution performance, accuracy of the calculations stating the
relation between the diameter of intervals and computing errors, together with
metrics providing quality measures of results. Additionally, constrains in per-
formances are discussed based on algorithm complexity analysis.
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3. Optimal Interval Formulations for the HWT

The Haar basis was proposed in 1910, introduced by the Hungarian mathemati-
cian Alfred Haar [27] in a different approach than the one considered by Ingrid
Daubechies in 1988, when she presented her orthogonal basis of wavelet func-
tions with compact support for the space of square integrable functions[28].
Nevertheless, through her work, the Haar functions started to be seen as a par-
ticular case of orthogonal wavelets. Nowadays, the HWT is well stated through
different fast algorithm formulations, been well established for many applica-
tions, specially those involving data compression, as considered by JPEG-2000
[29].

When dealing with the original algorithms of the HWT [11, 12], the trans-
formation is characterized by a convolution with a family of filters. For the
unnormalized transform the filters areh = [1/2, 1/2] andg = [1/2,−1/2]. For
the normalized case,h = [1/

√
2, 1/
√
2] andg = [1/

√
2,−1/

√
2], implying

that divisions by
√
2 have to be considered in all iterations within the HWT

decomposition. Once
√
2 is not a computable value, each composition or de-

composition level adds a certain degree of error, generated in each iteration and
then propagated through all levels until the end of the HWT procedure. In [30] a
solution to avoid this loss of accuracy for the interval extension of the decimated
HWT was proposed based on algebraic simplifications performed to eliminate
the computation of these non computable rational values,2j/2. As a result, more
reliable results in comparison with the original ones given in [11, 13] were ob-
tained.

In this section, the heuristic from [30] is briefly summarized. New inter-
val extensions for the undecimated HWT inspired by the previously proposed
simplifications are addressed as part of our main contributions. Assuming the
same input data and all different formulations of the HWT: the Cascade (dec-
imated) andÁ Trous (undecimated) algorithms for both normalized and non-
normalized approaches are analyzed and their interval versions developed here
are compared. All algorithm complexities are expressed in terms of worst case
complexity.

3.1. 1D Decimated Int-HWT Simplification

According to the description in [11], when assuming the decimated HWT and
given an initial vectorCj with n = 2j punctual values, the one-dimensional

Int-HWT
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non-normalized HWT calculates the averages (convolution ofCj with the filter
h = [1/2, 1/2]) and differences (convolution withg = [1/2,−1/2]) of each
pair of adjacent elements in the input vectorCj , (Cj

2k−1, C
j
2k), k = 1, ..., n/2,

generating therefore two output sets: one denoted byCj−1 for the scaling (av-
erages) and another for the wavelets (differences) coefficientsDj−1, both with
n1 = n/2 points, half size of the original input vectorCj , assumed to be given
in the finest resolution levelj. For the normalized version of the HWT, the only
modification is the consideration of the normalized set of filters.

Since the HWT main feature is to decompose information in many resolu-
tion levels, the next level of the decimated HWT decomposesCj−1 in a second
pair of half-sized vectors,Cj−2 andDj−2 both now with sizen2 = n1/2. This
procedure is recursively defined by further decomposing the scaling compo-
nents and can be applied until a specific level of coarser resolution is achieved
or until a single scalar scaling coefficient and a single wavelet coefficient are
obtained. The whole process of the direct HWT (also called decomposition)
produces a multi-resolution representation of the input vectorCj in terms of the
complete set of all wavelet and scaling coefficients, represented by the1 : 1
correspondenceCj ←→ (C0, D0, D1, ..., Dj−1).

The novelty on the interval code remains in the definition of vectors as inter-
val vectors [31]. Constants are defined as interval quantities and all arithmetics
are treated as interval operations. In this sense,h = (1/

√

[2; 2], 1/
√

[2; 2])
and g = (1/

√

[2; 2],−1/
√

[2; 2]) (considered as interval quantities) are the
normalized interval filters associated to the Int-HWT, being part of the interval
extension of the standard algorithm.

The simplification of the normalized decomposition procedure for the dec-
imated version of the Int-HWT, either 1D or 2D, is executed in the follow-
ing order: first a non-normalized decomposition is made, as indicated by the
pseudo-code in Figure 1; the normalization of all coefficients is performed after
this stage, multiplying them by the normalization factor2−j/2, wherej is the
resolution level of the coefficients throughout the decomposition. Depending on
j, the computation of

√
2 may be unnecessary, avoiding any computation error

in this case. This process is illustrated in Figure 1 with an example presented
in [11], assumingC2 = [9 7 3 5] the input vector. The complete decom-
position ofC2 ←→ (C0, D0, D1) = [6 2 1 − 1] is obtained by 2 levels
of the non-normalized 1D HWT. The normalization step if performed as a final
separate procedure, given the output[6 2 1/

√
2 − 1/

√
2] .

Figures 2 and 3 show interval extensions of the decimated 1D HWT pro-

Complimentary Contributor Copy



33

[9 7 3 5] → [6 2 1 − 1] → [6 2 1√
2

−1√
2
]

Input Decomposition Normalization

Figure 1. Example of two level decimated 1D HWT with optimized normaliza-
tion step.

cedure, which are referenced as Int-HWT in this work. Figure 2 presents the
normalized case of decomposition and Figure 3 shows the non-normalized one.
The number of operations fromDecompositionStep isn+1, and for the main
Decomposition algorithm the number of operations isn+log(n) · (n+2)+1.
Our proposed simplification, represented in Figure 4, reduce the same number
of operations ton andn+ n · log(n), respectively.

Figure 2. 1D decimated Int-HWT: normalized decomposition process.

Figure 3. 1D decimated Int-HWT: non-normalized decomposition process.

The normalization procedure in Figure 4 performs the normalization step of
all coefficients after their convolution using the non-normalized filters. Since it
is executed once on every coefficient of an sized vector, the number of oper-
ations isn. By performing a non-normalized transform and the normalization
procedure afterwards, the number of operations isn log(n) + n, which is the

Int-HWT
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same amount of operations from the normalized transformation. The goal is
therefore the gain in exactitude obtained by avoiding high number of divisions
using

√
2 from the originalDecompositionStep algorithm, as shown in Fig-

ure 20. According to [11], in the inverse transform (also called composition

Figure 4. 1D decimated Int-HWT: dimensional normalization procedure.

process) the original values are restored level by level, starting from the coarsest
resolution level of the transformation, combining the wavelet and scaling coeffi-
cients from the level immediately below. Therefore, the 1D HWT is completely
reversible, allowing the exact data reconstruction in each level of the transfor-
mation, until the end of the process is achieved, when the finest resolution level
is finally reconstructed.

The normalized inverse 1D HWT also avoids computation of
√
2 by per-

forming the non-normalized inverse transform, but this time a denormalization
step is executed before the inverse transform begins (Figure 4). The interval
extension for composition and its step procedure (Figure 5) is similar to the
decomposition, being characterized also by the convolution of the vectors by
filters. The number of operations of theComposition procedure isn · log(n).

The denormalization step, also shown in Figure 4, is very similar to the
Normalization algorithm, performingn operations. The difference is at line 6,
where each coefficient is divided by the normalization factor, preparing the data
for the inverse transform. Therefore, the optimal composition has the same
complexity as the original version,O(n · log(n)), but its results are more exact
due to the normalization step, avoiding the calculation of

√
2 in every iteration.
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Figure 5. Inverse 1D decimated Int-HWT: composition process to reconstruct
l = log2n levels.

3.2. 2D Decimated Int-HWT Simplification

The HWT can be extended for 2D vectors. According to the procedure de-
scribed in [11], the fast algorithm for the 2D decimated HWT is obtained
through the application of the 1D transformation per direction (in all rows of
the input matrix and after that, in all columns of the resulting one). In fact, the
order how the many levels of the 1D transformation are applied to the 2D data
generates different intermediate results and, therefore, distinct algorithms for
the 2D transform. Following what was presented in [11], the 2D decimated Int-
HWT can be calculated through theStandardformulation. In this formulation,
an input matrix withn × n entries is initially decomposed inL = log2n levels
by the 1D transform, applied to all its rows. After theL decomposition levels
of the 1D HWT were applied to the entire set of rows, the same 1D procedure is
applied to the columns to the resulting matrix (already containing transformed
data), as many levels as done for the rows.

The simplifications implemented for the normalized version of the 2D deci-
mated int-HWT consider the same principle presented in the 1D case. The same
strategy of multiplying the transformed values with respect to non-normalized
filters by the corresponding2−j/2 normalization factor is employed, wherej is
the corresponding level. The 1D transform is applied to all rows and columns
of the input matrix in order to compose or decompose a matrix. However, ac-
cording to [11], there is another well established algorithm for composition and
decomposition of matrices, known as theNon-Standardprocedure.

In this case, once one level of the 1D HWT is performed per rows, before
considering the next level, the 1D HWT is applied to the columns. This proce-
dure produces completely different decomposition sets of the input matrix from
those obtained by theStandardformulation. As a consequence,Standardand

Int-HWT
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Non-Standard2D HWT suggest distinct normalization procedures to allow their
optimized interval extensions. During the study of the original algorithms [11],
patterns of normalization factors were recognized. These patterns were ana-
lyzed and employed in the development of the normalization procedures for
both algorithms, assuming the decimated version of the 1D HWT as the starting
point.

These patterns are illustrated in Figure 6, in which three decomposition lev-
els are presented for 8x8 matrices. The parametersj′ andj′′ indicate the nor-
malization levels. The rule to calculate these normalization factors is described
as follows:

2
−(j′+j′′)/2

,

where0 ≤ j′, j′′ ≤ (log2 n)− 1 andn indicates the matrix order.

Figure 6. Scheme for the normalization patterns of the 2D decimated Int-HWT:
(a) standard, (b) non-standard formulation and (c) rule for normalization factors.

Analysis of the original standard algorithm in Figure 7 shows that it depends
on the original normalized decomposition procedure, whose amount of opera-
tions isn · log(n), executing it for every row and column of the input matrix.
Considering an × n matrix, the number of operations in the original standard
algorithm isn·(n·log(n)+n)+n·(n log(n)+n), thereforeO(n2 ·log(n)). Per-
forming the non-normalized decomposition algorithm, discussed in Section 3.1,
it reduces the calculations by avoiding intermediate normalization steps.

The non-normalized standard decomposition is performed with2n2 ·
log(n), and the last step is to normalize the results using theStandard−
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Figure 7. 2D decimated HWT: standard and non-Standard decomposition pro-
cesses.

Figure 8. 2D decimated Int-HWT: normalization step for the standard decom-
position process.

Normalization algorithm, presented in Figure 8, and since it is operating one
time on each coefficient of the input matrix, its complexity can be expressed by
O(n2). The number of operations for the non-normalized standard decomposi-
tion and the standard normalization steps can be expressed by2n2 · log(n)+n2,
which is faster than the original normalized procedure by avoiding a second it-
eration ofO(n2) on the input matrix. The original non-standard algorithm (Fig-

Int-HWT

Complimentary Contributor Copy



38 V. R. dos Santos, R. H. S. Reiser, M. Pilla et al.

ure 7) executes an intermediate normalization at line 1, dividing each coefficient
by the order of the input matrix with complexityO(n2). Considering a square
matrix of ordern, the rest of the algorithm operates in awhile loop which is
executedlog2(n) times. For eachwhile loop there are twofor loops also exe-
cuting log2(n) times, each one performing theDecompositionStep algorithm
(O(n)) in portions of the input matrix, depending on the level of transformation.

The original non-standard decomposition is executed inn2 + 2 ·
log(2 · log(n)) operations. The non-normalized, non-standard decomposi-
tion (O(log(n))) does not require the normalization step, and itsNon −
StandardNormalization algorithm (Figure 9) is performed with complexity
O(n2).

Figure 9. 2D decimated Int-HWT: normalization step for the non-standard de-
composition process.

The overall number of operations of these procedures is(n2+log(2·log(n)),
which is the same as the original normalized non-standard algorithm. The gain
of time presented in Figure 21 is obtained by avoiding divisions by

√
2, a more

expensive operation. The original normalized standard composition (i.e. the 2D
inverse HWT assuming normalized filters and standard formulation), shown in
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Figure 10, may be analyzed in the same way as its decomposition procedure.
It performs the same number of operations and although both versions have
complexityBigO(n2 · log(n)), the original version is executed in2n2 · log(n)+
2n2 operations,while its optimized version requires only2n2 · log(n) + n2

operations.

Figure 10. 2D decimated HWT: composition process (a) standard formulation,
and (b) non-standard formulation.

3.3. 1D Undecimated Int-HWT Simplification

Another alternative version for the HWT is the undecimated approach, which
avoids the decimation operation after the convolution with the filters is com-
puted. This undecimated transform has one well established formulation, called
the à trousalgorithm, which is considered in many astrophysical and statistical
applications [12, 13], specially for been a translation invariant transform.

The undecimated formulation generates, for all decomposition levels, two
vectors of the same size as the original one, containing the scaling and the
wavelet coefficients. The undecimated formulation can also be executed as-
suming normalized or non-normalized filters. In the current subsection both
cases are addressed, and the corresponding interval extensions are proposed.

The normalized decomposition procedure for the undecimated version of
the Int-HWT, either 1D or 2D, is executed in the same order as the optimization
developed for the decimated version: first a non-normalized decomposition of
the input vectorC0 is made, as illustrated in Figure 11 for the case of two
decomposition levels.

Now, to compute the last position values of the decomposition vectorsCj

Int-HWT
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C0 = [9 7 5 3] → C1 = [8 6 4 6] → C2 = [7 5 5 7] → ...
D1 = [1 1 1− 3] D2 = [1 1− 1− 1]

Figure 11. 1D undecimated HWT: example of two decomposition levels, with-
out normalization and periodic extension on the right boundary of the vectors
Cj , j = 0, 1, ...

Figure 12. 1D undecimated Int-HWT: normalized decomposition algorithm.

andDj , the finite dimensional input vectorCj−1 has to be extended. One natu-
ral assumption is the cyclic periodic extension, in whichCj−1

n+1 = Cj−1
1 . After

all levels of the transform are obtained, the normalization of all coefficients is
performed by multiplying by the normalization factor2j/2, wherej is the reso-
lution level of the coefficients through out the decomposition.

The number of operations forDecompositionStep andDecomposition
procedures are2 · n + 2 and2 · Levels · n + 3, respectively. Both are part
of the original decomposition procedure, shown in Figure 12. As in the pre-
vious cases, by performing a non-normalized decomposition there is no need
to execute divisions by

√
2 in the step procedure (pseudo-code shown in Fig-

ure 13), reducing the number of operations to2n and2 · n · Levels with the
sameBigO(n) complexity as the original normalized transform.
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Figure 13. 1D undecimated HWT: non-normalized decomposition step, without
algebraic simplification.

The procedure in Figure 14 performs the normalization step of all coeffi-
cients after the transform. In contrast with the decimated version, the undeci-
mated approach deals with a set of vectors as result of the transform, and each
one of the resultant vectors needs to be normalized individually. The normal-
ization procedure multiplies each scalar coefficient by its normalization factor
2i/2 for each resultant vector from the transform, configuringn · Levels oper-
ations from line 1 to 5 of the pseudo-code. With the new set of scalar values,
all wavelet coefficients are then recalculated configuringLevels · (n + 3) + 2
operations from line 6 to 16, which can be simplified ton · Levels. The to-
tal of execution cost in this procedure, from line 1 to 16, can be expressed as
2 · n · Levels operations.

By performing a non-normalized vector transform followed by the normal-
ization procedure, the number of operations is4 · n · Levels, which is more
expensive than the original normalized formulation. The gain obtained with the
new implementation is on the exactitude of results by avoiding high number of
divisions by

√
2 from the originalDecompositionStep algorithm, as shown in

Figure 20. The composition process (inverse transform), presented in Figure 15,
starts withCL, the component with the scalar coefficients from the lowest level
L, adding it with all wavelet vectorsDj , j = L,L − 1, ..., 1, produced during
decomposition(the addition here is done position by position).

In this sense, the inverse formultion of the undecimated transform avoids
the convolution with filters, characterizing the main difference with respect to
the decimated case. The complexity of this procedure isO(n · Levels) and can
be used for both normalized and non-normalized transformations.

Int-HWT

Complimentary Contributor Copy



42 V. R. dos Santos, R. H. S. Reiser, M. Pilla et al.

Figure 14. 1D undecimated Int-HWT: normalization procedure.

Figure 15. 1D undecimated HWT: composition algorithm (inverse transform).

3.4. 2D Undecimated Int-HWT Simplification

As done for the decimated case, the undecimated 2D HWT considers the same
principle presented in the 1D optimization, i.e., the same strategy of multiplying
the transformed values by the corresponding2j/2 normalization factor, where
j is the corresponding level. To decompose a matrix, the 2D implementation
creates a set of matrices carrying scalar coefficients and another set of matrices
to store wavelet coefficients. The procedure is expensive on both performing
and storing the results. Applying the same idea used in previous implementa-
tions, it is possible to reduce the error involved in the process. In Figure 16
the original standard procedure is presented. It performs the decomposition of
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every line and level of an × m matrix, configuring2 · m · n · Levels opera-
tions. The analog procedure for all columns of the same matrix executes the
same2 · n ·m · Levels operations. The entire procedure can be expressed by
2·m·n·Levels+m·2·n·Levels, which can be simplified to4·m·n·Levels. The
non-standard procedure executes the same amount of calculations, but interca-
lating the decomposition of rows and columns. Both standard and non-standard
algorithms can be used in conjunction withDecompositionStep shown in Fig-
ure 3, so the execution cost of operating the normalized and non-normalized
methods are the same.

Figure 16. Undecimated 2D HWT: standard matrix decomposition.

The next step in order to normalize the transformed values is to perform
theATrousMatrixNormalization procedure (Figure 17) which is executes
4 ·n ·m ·Levels operations. Therefore, the optimized decomposition procedure
performs8 · n ·m ·Levels operations, twice the cost of the original normalized
formulation and same complexityBigO(n ·m), consideringLevels as a con-

Int-HWT
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stant value. Nevertheless, our approach results in more exact values as shown
in Figure 22.

Figure 17. Undecimated 2D Int-HWT: normalization procedure.

4. Interval Data Compression

This section presents the interval extension of compression procedures, another
contribution of the current study. The main goal of compression procedures is
to express an initial data set with the smallest amount of points as possible, and
this task can be done either with or without loss of information [11, 32].

In the wavelet context, the wavelet expansion of the initial data is ana-
lyzed to decide the most significant wavelet coefficients, comparing them with
a threshold value. The truncated series without the least significant coefficients
represents the compressed (or filtered) data. In many signal analysis applica-
tions, the significant wavelet coefficients can be used to draw conclusions. For
example, in [33] micro-calcifications in mammograms were detected based on
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the truncated wavelet representation of the images. In [34], ECG signals were
analyzed assuming adaptive compression techniques.

The coefficient significance is judged by a threshold strategy, i.e. an heuris-
tic to select the threshold value. There are many options, such as the Universal
threshold value proposed by [35] which considers one single threshold value to
be compared with all wavelet coefficients in all decomposition levels. Adaptive
strategies to define the threshold value, such the one proposed in [36], are at-
tempts to define threshold values depending on the analyzed coefficients, and
therefore producing approximations closer and more coherent to the original
data. For a review about the many possibilities for choosing threshold values
see [32] and the references therein.

By discarding (excluding) non significant wavelet coefficients from the
wavelet expansion, this strategy turns the method into a lossy compression pro-
cedure. This procedure is called hard thresholding [35]. When the wavelet
coefficients are also smoothed by the threshold value, the strategy is called soft
thresholding [35].In Figure 18, an example presented in [11] shows a sequence
of approximations, generated by varying the compression rates

N , wheres is the
number of significant coefficients, andN the total amount of points in the initial
data representation. The criteria of selecting them wavelet coefficients with the
largest modulus is called them-Best approximation procedure[11].

Figure 18. Approximation of functions after compression. Source: [11].

The hard thresholding is trivial for punctual data, but it cannot be applied in
the same way to interval information. The punctual algorithm uses a real value
τ as the threshold value, and the decision of which details must be ignored is a
set of simple punctual comparisons.

When dealing with interval data,τ turns to be also an interval, carrying the
error in the threshold calculus. In this way, the truncation decision cannot be
evaluated with the same punctual comparison as before [1]. Since interval com-
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pression demands extra computations than punctual compression, the strategy
considered to manage two solutions which overcome computational cost pre-
serve automatic validation and correctness code. The first one is named Hard
Decision and the second one Soft Decision, both inspired on the hard and soft
threshold operators defined by [35]. The Hard Decision tests if the interval data

Figure 19. Hard Thresholding, Hard Decision, and Soft Decision compression
procedures.

is entirely less thanτ , comparing the left bound of the information and the right
bound of the threshold. This procedure grants that every possible punctual coef-
ficient is less than all possible punctual values belonging toτ . The Soft Decision
verifies if most of the interval data is less than the midpoint of the intervalτ ,
comparing the left bound of the information and the center of the threshold in-
terval. This procedure grants that most possible punctual coefficients are less
than the midpoint ofτ andτ .

5. Tests and Results

The numerical validation of algorithms proposed and described in Section 3 is
based on the application of the HWT for image processing. In this way, inter-
val parameters are obtained from punctual values setting degenerated intervals
and using them as input to the interval extensions of both decimated and undeci-
mated implementations of the HWT. The implementation of interval procedures
in the Int-HWT library performs the computation of interval error in the process,
presenting the widest interval diameter contained in the transformation results.
For all tests, each function was executed 30 times, from which mean and stan-
dard deviation values for execution time were calculated. Standard deviation
was less than 5% of average in the worst case.
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In order to compute tests using the 1D HWT and its interval extension, a
vector filled with1, 048, 576 randomvalues is used as input. For tests using 2D
HWT algorithms, the input is generated from a1024 × 1024 matrix of random
values, configuring the same1, 048, 576 values. The tests were executed on an
Intel R© Core

TM
i7 950 Processor @ 3.07GHz, 6GB RAM DDR3 at 1066MHz,

Windows 10, compiled using Microsoft Visual C++ Compiler for Visual Stu-
dio s2013 on x64 Release. For each HWT, performance, accuracy, and metrics
of Euclidean distance (EUC), Mean Square Error (MSE) and Peak-to-Noise Ra-
tio (PSNR) were compared with results from the literature and their improve-
ment or loss is presented in percentage. Such comparison is performed over
diameters of such interval results in order to obtian their error analysis.

Thus, the corretness of HWT algorithms can be achieved by establishing
that the result of interval computations contains all values of the related punctual
computations. The interval metrics presented in Eqs.(5), (7) and (9) are applied
in order to obtain the result intervals, which are compared based on usual order
in I[a,b].

5.1. Results for 1D HWT

Results of both decomposition and composition procedures for decimated and
undecimated 1D HWT with the algorithms from [11] are presented in Fig-
ure 20a. Performance improvements for the decimated 1D HWT range from
36.8 to 51.8%. For the undecimated 1D HWT, performance loss was 52% for
decomposition and 32% for both operations. Composition showed a slight im-
provement in performance.

The accuracy gain ranges from95% up to 99.8% for the decimated case,
meaning that the developed algorithms generate more exact results when com-
pared to those from the literature. Euclidean Distance (EUC) and Mean Square
Error (MSE) presents a gain of99.8%, and Peak-to-Noise Ratio (PSNR) shows
24.4% of gain. The undecimated formulation adds no error to calculations on
the composition step, considering that the input does not contain errors, which
explains the lack of bars in Figure 20b. The accuracy gain when performing
the combination of both decomposition and composition is around81%. The
EUC is about54.5%, and MSE is79.3%, while PSNR is2.15%. These results
show that, despite the loss of performance, the developed algorithms are more
accurate than those related in [12].

Int-HWT
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(a) Decimated 1D HWT (b) Undecimated 1D HWT

Figure 20. Performance, accuracy, and metric gains for the 1D HWT.

5.2. Results for 2D HWT

Figure 21 shows results for both standard and non-standard approaches for the
decimated 2D HWT. The results presented in Figure 21a show a performance
boost of58.1% during the composition step. The accuracy gain of decompo-
sition, composition and the combination of both are99.8%, 93.5% and98.3%,
meaning that the results provided from the developed algorithms are more ex-
act than results from the literature [11]. The EUC, MSE and PSNR metrics
are99.8%, 99.9% and19.2% better respectively, showing that the developed
algorithms are more accurate. Figure 21b shows the performance, accuracy and
metric gains for the decimated 2D non-standard HWT comparing to the origi-
nal algorithms found in [11]. As shown in Figure 6, the developed non-standard
method avoid calculating

√
2 by algebraic simplifications. Therefore, the cor-

responding calculations do not increase the error during this process, indicated
by accuracy values at100% for all three methods. Due to the lack of error, the
EUC and MSE are also shown at100%. The PSNR metric cannot be calculated
due to division by0, since it uses MSE as divisor and its value is0.
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(a) Decimated 2D Standard HWT (b) Decimated 2D Non-Standard HWT

Figure 21. Execution Times and error measurements for the 2D HWT using210

x 210 matrix with random values.

5.3. Comparison of Standard and Non-Standard Approaches

Figure 22 shows the results for both standard and non-standard approaches for
the undecimated 2D HWT. Performance is shown in Figure 22a and Figure 22b
indicates that the developed algorithms are at least10% slower than the origi-
nals, despite the composition step having a little advantage of5% on the stan-
dard method. Nevertheless, both approaches present accuracy gains,92.6% for
decomposition and87.4% for the combination of both algorithms performing
together. The EUC, MSE and PSNR of both approaches are roughly51%, 76%
and2% respectively.

Conclusion

The current work presents interval extensions of the 1D and 2D HWT, for both
decimated and undecimated approaches, normalized and non-normalized ver-
sions, covering the most studied formulations for the Haar transform. The error
analysis is compatible based on the time complexity of the algorithms. Accu-
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(a) Undecimated 2D Standard HWT(b) Undecimated 2D Non-Standard HWT

Figure 22. Execution times and error measurements for the 2D HWT using210x
210 matrix with random values on 4 levels of decomposition.

racy is improved through the proposed algebraic optimizations obtained for the
normalized versions of the transforms. As a consequence of the implemented
optimizations, our algorithms designed for interval arithmetic are faster than
the original decimated formulations, but slower than the original undecimated
algorithm, presenting in all scenarios an increase in accuracy.

The task of data compression in the wavelet context is also stressed. Two
interval extensions are designed, the Hard and the Soft Decision procedures, al-
lowing an entire new branch of applications to be treated in the interval context.
In addition, the precision gains obtained with the proposed simplifications rep-
resent a significant contribution to the research area. Further research considers
the study of the DWT together with corresponding parallel and/or distribution
Int-DWT library extension, by making use of massive parallel architectural of
GPUs and considering CUDA programming language.
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Abstract 

Wavelet transform is an effective mathematical tool able to provide a 

time–frequency representation of signals defined in the time domain. So far 

this innovative multiscale analysis has been successfully applied in various 

fields of science, such as, for example, geophysics, astrophysics, 

telecommunications and climatology. In this chapter the wavelet analysis is 

employed to analyse Sicily temperature data. Sicily represents one of the hot 

spot for the study of climate change in the Mediterranean area, because of its 

vulnerability to desertification processes. Precipitations and temperature 

trends forecasted for the XXI century by Regional Climate Models (RCM) 

show an increasing temperature trend and a non-clear precipitation trend. To 

better characterize the temperature trend, the 1865-2016 temperature time 
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series of Palermo and the 1962-2014 time series of four Sicilian localities 

have been analysed by means of Continue and Discrete Wavelet Transforms. 

Such analyses allow to identify the fast and slow events contained in the time 

series and to identify the major features of the Sicilian climate dynamics. 

 

Keywords: wavelet analysis, climatic data, trends, anomalies, temperature 

Introduction 

The increasing of temperatures and the intensification of the hydrologic cycles 

are the most evident effects caused by climate change in the Mediterranean 

basin. One of the most significant consequences of temperature increase and of 

changes in precipitations is the dramatic modification of hydrologic regimes. 

During the last 15 years an impressive series of extreme weather events 

occurred in different places of Sicily, producing damages and, in some cases, 

even victims. 

For example, one can cite the following tragic sequence of severe 

meteorological events occurred between the years 2007 and 2011: 

 

 25th October 2007, which took place at Santa Margherita, 

Giampilieri and Scaletta (Messina), with flash flood and 

precipitations of 175 mm in 2 hours, against an annual average 

value of 800-1000 mm;  

 22nd November 2011 at Barcelona and Saponara (Messina) with 

precipitations of 351 mm in 10 hours (recorded by the Castroreale 

weather station); 

 01st October 2009 at Giampilieri; this latter was a tragic and 

disastrous event with 37 victims. 

 

With reference to these three events, the recovery costs of the disaster 

damages were estimated to be about 900 million euros [1, 2].  

These findings are in agreement with the predictions of the Mediterranean 

Regional Climate Model as shown in the report “The future climate of Italy: 

analysis of projections of regional models” [3]. The Model predicts that the 

accumulated yearly precipitations will slightly decrease, while the maximum 

rain rate is expected to increase in most of Italy, with the exception of Sicily. 

One more interesting parameter is the forecast of the maximum number of 
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days without rain: it will increase from 5 to 40% respect the average 1971-

2000. It is therefore not surprising that many of the arguments concerning both 

climate variability and climatic change are directly related to the detection of 

trends in hydro-climatic parameters, such as temperature and precipitation [4]. 

One way to accomplish trend assessments is through time-series analysis. 

Wavelet analysis offers several advantages in respect to Fourier Transform or 

Windowed Fourier Transform analysis, these latter using a single analysis 

window. The main problem with the fixed window used in the Windowed 

Fourier Transform is that it loses the time localization at high frequencies 

when the window is sliding along the time series because there are too many 

oscillations captured within the window. It also losses the frequency 

localization at low frequencies because there are only a few low-frequency 

oscillations included in the window [5-7]. The wavelet transform can handle 

these issues by decomposing a one-dimensional signal into two-dimensional 

time–frequency domains at the same time [8-11]. Wavelets are usually 

irregular and asymmetric in shape and this property makes a wavelet ideal for 

analysing signals that contain sharp changes and discontinuities [12-15]. 

Wavelet transforms use different window sizes, which are able to compress 

and stretch wavelets in different scales used to decompose a time series. 

Narrow windows are used to track the high-frequency components or rapidly 

changing events of the analysed signals (which are represented by the lower 

detail levels), whereas wider window sizes are used to track the signals’ low-

frequency components including trends (which are represented by the higher 

detail levels and the approximation component). Moreover, wavelet analysis is 

able to show many properties of a time series or data (such as trends, 

discontinuities, change points, and self-similarity) that may not be revealed by 

other signal analysis techniques. In summary, the wavelet transform is capable 

of analysing a wider range of signals more accurately when compared to the 

Fourier analysis [16-19]. The results of wavelet analysis can be used to 

determine the main components or modes that contribute to producing trends 

[11, 21, 22].  

The main purpose of this study is to combine the use of the Discrete 

Wavelet Transform (DWT) technique and the Continues Wavelet Transform 

(CWT) in order to investigate trends, periodicities and singularities present in 

four datasets concerning the temperature of Sicily by analysing their monthly 

and annual time series collected from 1962 to 2014.  
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A Background on Wavelet 

Any climate signal can be interpreted as a result of interactions between 

physical and dynamic processes that occur on a wide range of spatial and 

temporal scales. The scale of the processes involved extends into the space 

between a few meters and thousands of kilometres and in time in a few hours 

and millions of years [23]. To analyse such behaviour we need to use special 

mathematics tools. The wavelet analysis represents a powerful instrument to 

extract information from a time series. It can be used to analyse time series 

that contain non-stationary power at many different frequencies. In the case of 

meteorological and climatological series, this type of analysis is particularly 

appreciated because it is able to extract valuable information from the signal 

[24, 25]. For example, if compared to the simple Fourier transform, the 

wavelets analysis allows to find not only in the value of certain frequencies in 

a non-stationary series, but also to identify the time interval in which these 

frequencies are present and predominant. A wavelet function is a function 

having a wave shape and a limited but flexible length with a mean value that is 

equal to zero, and is localized in both time and frequency domains. Let 

consider a complex-valued function ψ satisfying the following conditions: 

 

 ∫ |𝜓(𝑡)|2𝑑𝑡 <  ∞
∞

−∞
 (1) 

 

 𝐶𝜓 = 2𝜋 ∫
|Ψ(𝜔)|2

|𝜔|
𝑑𝜔 <  ∞ 

∞

−∞
 (2) 

 

where Ψ is the Fourier transform of 𝜓. The first condition implies finite 

energy of the function 𝜓, and the second condition, the admissibility 

condition, implies that if Ψ(𝜔) is smooth then Ψ(0) = 0. The function 𝜓 is the 

mother wavelet [26]. 
Wavelet transforms involve shifting forward the wavelet in a number of 

steps along an entire time series, and generating a wavelet coefficient at each 

step. This measures the level of correlation of the wavelet to the signal in each 

section. The variation in the coefficients indicates the shifting of similarity of 

the wavelet with the original signal in time and frequency. This process is then 

repeated for each scaled version of the wavelet, in order to produce sets of 

wavelet coefficients at the different scales. The lower scales represent the 

compressed version of the mother wavelet, and correspond to the rapidly 

changing features or high-frequency components of the signal. The higher 
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scales are the stretched version of a wavelet, and their wavelet coefficients are 

identified as slowly changing or low frequency components of the signal. 

Therefore, wavelet transforms analyse trends in time series by separating its 

short, medium, and long-period components [27]. WT can be performed using 

two approaches: Continuous Wavelet Transform (CWT) and Discrete Wavelet 

Transform (DWT). CWT operates on smooth continuous functions and can 

detect and decompose signals on all scales, while Discrete Wavelet Transform 

(DWT) operate on scale that have discrete numbers. 
 

 

Figure 1. Geographic position of the four analysed weather station. 

Site and Data Description 

Sicily, being located in the centre of the Mediterranean, represents a privileged 

point of observation to study climate changes. Its climatic characteristics are 

able in fact to be considered with a good approximation, as representative of 

the whole Mediterranean basin. The choice of the data sets used in this work, 

has been done taking into account the geographic position of each station and 

its characteristics. All the selected weather stations are in fact very close to the 

sea coast, with a maximum altitude of 54 metre and, for this reasons, they can 

be considered as good indicators of the mean Mediterranean climate. The 

Palermo’s temperature time series starts from 1865 and is the longest series 
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available in Sicily. The geographic positions and the characteristics of each 

station are shown in Figure 1 and in Table 1, respectively. 
The Palermo and Messina weather stations are positioned inside the town; 

the Cozzo Spadaro weather station is located inside a lighthouse building in a 

small fisherman village, while the Trapani weather station is sited in the 

military airport located 12 kilometres far from the nearest city. In order to 

uniform and to compare the time series length for wavelet analysis, we have 

taken into account the longest common period, i.e., 1962-2014. During this 

time interval, Sicily had a great economic growth; the populations of the towns 

of Palermo and Messina increased and several new building have been built, 

beginning from early seventies. This anthropogenic change could affect the 

temperature signal, producing a higher increase in respect to the signals of 

Trapani and Cozzo Spadaro, where minor or no environment changes occurred 

since 1960. The monthly and annual temperatures of these four weather 

stations were analysed. The stations used in this study were chosen on the 

basis of completeness and length of their available record for the period of 

1962-2014. This time interval is considered to be long enough to obtain valid 

statistics mean values in assessing the temperature trend [28]. Furthermore, 

Partal (2010) [29] considered 40-years data adequate for trend analysis studies. 

Moreover, although up to three-percent missing data is considered acceptable 

for meteorological studies [30], we chose only the stations with fully complete 

records over the chosen time period. This was done in order to avoid possible 

uncertainties associated with the computation of extrapolation procedures. 

Therefore, we concluded that having 53 years data is sufficient for the purpose 

of trend detection. 

Table 1. Meteorological stations employed to record temperature  

and precipitation data 

WMO 

ID 

Station Name Latitude 

(°) 

Longitude 

(°) 

Elevation 

(m a.s.l.) 

Observation 

Period 

16405 Palermo 38°07’00” 13°18’44” 36 1865-2015 

16420 Messina 38°12’02” 15°33’11” 54 1962-2014 

16480 Cozzo Spadaro 36°41’10” 15°07’57” 44 1952-2015 

16429 Trapani-Birgi 37°54’50” 12°29’28” 4 1962-2014 
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Data Analysis 

The temperature data sets of the four stations are composed by monthly and 

annual mean values. In addition, the temperature data set of Cozzo Spadaro 

weather station also contains the daily 12 UTC temperatures. In order to 

identify the trends, the conventional discrete wavelet analysis of signals was 

performed on each time series using the multilevel 1-D wavelet decomposition 

function in MATLAB. This produces the wavelet transform of the input data 

at all dyadic scales. The Mayer (dmey) wavelet was used in this study because 

the Meyer mother wavelet has two features that make them very useful in 

analysing temperature records: first, they are fairly smooth and second, they 

have limited frequency bands. The smoothness feature makes them more 

capable of detecting the smooth component of the signal. Moreover, smoother 

wavelets are preferred here because the trends are supposed to be gradual and 

represent slowly changing processes. Smoother wavelets should be better at 

detecting long-term time-varying behaviour (good frequency-localization 

properties) [31]. The finite frequency bandwidth enables them to detect and 

isolate the various periodic components of the record. For each monthly 

dataset, seven levels of decomposition were used. This number is based upon 

the number of data point, equal to 636 average monthly temperature, as well as 

the mother wavelet used. Decomposing the signals using specified filters 

(wavelet and scaling functions) produces two types of coefficients: the 

approximation or residual, and detail vectors [32, 33]. These coefficients 

resulted from the convolution of the original signal with a low-pass filter and a 

high-pass filter. The low-pass filter is the scaling function and the high-pass 

filter is the wavelet function. The convolutions of signals with the low-pass 

filter produced the approximation coefficients, which represent the large-scale 

or low frequency components of the original signal. Convolutions with the 

high-pass filter produced the detail coefficients, which represent the low-scale 

or high-frequency components [34, 35]. The data were also analysed by using 

the CWT in order to identify discontinuities, singular episode and periodicities 

contained in the signal. In this case, one of the most widely used continuous 

wavelet, a Morlet mother wavelet, was used. It consists of a plane wave 

modified by a Gaussian envelope [36]:  

 

 𝜓0(𝜂) = 𝜋
−1

4⁄ 𝑒𝑖𝜔0𝜂𝑒
−𝜂2

2
⁄

 (3) 
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where 𝜔0 is the nondimensional frequency, here taken to be 6 to satisfy the 

admissibility condition [37]. 

 

 

Figure 2. Palermo mean annual temperature data (blue curve); 5 years mean values 

(red and dark blue curves) and linear trend (black line). The orange arrows show the 

correspondence of negative peaks with the major volcanic eruptions occurred during 

the last 150 years. 

Results and Discussion 

The analysis of Palermo’s annual mean temperature 1865-2016 graph (Figure 

2) allow us to make some general considerations regarding the influence of the 

world biggest volcanic eruption on the temperature signal. Volcanic eruptions 

can inject into the stratosphere a huge volume of chemically and micro 

physically active gases and solid aerosol particles, which affect the Earth’s 

radiative balance and climate and disturb the stratospheric chemical 

equilibrium. The resulting disturbance to the Earth’s radiation balance affect 

surface temperatures trough directs radiative effect as well as trough indirect 

effects on the atmospheric circulation. In the analysed signal we found in fact 

the footprint of the Hearth’s major volcanic eruptions occurred during the last 

150 years. They are all remarked in the figure with an orange arrow in 

correspondence of the year of the eruption. The linear trend of temperature 

was also calculated and it was equal to 0,0104°C/years that means a total 
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temperature increase of 1,58°C for the whole period. The first analysis 

performed on Palermo longer time series of monthly temperature was a 

Discrete Wavelet Transform. The detail of reconstruction at level 9 is shown 

on Figure 3. It shows a positive trend of temperature with 2 main slopes: the 

first starts on 1870 and continue till 1910. A range of about 40 years in which 

the temperature stay about stationary before stating to increase again becoming 

from 1960 and continuing till 2010 follows it. The total amount of temperature 

increasing was about + 1,55°C on line with the value obtained using the linear 

regression.  

After this result obtained for Palermo, we started to analyse the 53 years 

long temperature series for Messina, Palermo, Trapani and Cozzo Spadaro, 

respectively. For each data set a Discrete Wavelet Transform decomposition at 

level 7 and a Continuous Wavelet Transform was performed. For the DWT we 

used the temperature data sets, while for CWT, in order to eliminate the strong 

yearly periodicity, the temperature anomalies were calculated and used. 

 

 

Figure 3. Palermo DWT signal (on the top) and approximation at level 9 (on the 

bottom) of the 1865-2016 mean monthly temperature values. 
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Figure 4. Messina DWT (on the top) and approximation at level 7 (on the bottom) of 

the 1962-2014 mean monthly temperature values. 

 

Figure 5. Palermo DWT data (on the top) and approximation at level 7 (on the bottom) 

of the 1962-2014 mean monthly temperature values. 
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Each signal shows some differences and some common trend 

characteristics. Messina, Palermo and Trapani show, for example, a decreasing 

trend during the last years. Palermo seems to reach the maximum temperature 

in 2005 while Messina and Trapani reach the maximum value in 2010, before 

that the temperature starts to decrease. Messina shows also an almost flat trend 

during the 1962-1975 time range and then a rapid up-slope till 1990, while 

Palermo and Trapani show a more regular trend. The Cozzo Spadaro trend is 

quite different; it is the only one that shows a negative trend from 1962 to 

1978; moreover, it shows a continue temperature increase till the end of the 

signal. In Table 2 the minimum and maximum values reached, the difference 

and the increasing of temperature obtained subtracting the value of 2014 to the 

values of 1962, are shown. 

 

 

Figure 6. Trapani DWT data (on the top) and approximation at level 7 (on the bottom) 

of the 1962-2014 mean monthly temperature values. 

A Continuous Wavelet Transform has also been performed on the mean 

monthly temperature anomaly of four time series using a Morlet mother 

wavelet. The anomaly was first calculated subtracting from the monthly mean 

temperature, the average monthly temperature of the 30 years 1971-2000. This 

operation cleans the signal of the strong annual frequency, making the CWT 

graph more readable.  
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Figure 7. Cozzo Spadaro DWT data (on the top) and approximation at level 7 (on the 

bottom) of the 1962-2014 mean monthly temperature values. 

Table 2. Minimum, Maximum, Max difference and temperature increase 

of each weather station 

Weather Station Minimum Maximum Max 

difference 

Temperature 

increasing 1962-

2014 

Messina 18,13 19,56 1,435 +1,27°C 

Palermo 17,35 18,81 1,453 +1,37°C 

Trapani 17,08 18,12 1,041 +0,94°C 

Cozzo Spadaro 17,98 19,25 1,278 +0,95° 

 

Messina CWT shows the presence of periodicities longer than 2 years 

from 1980, when a 24-36 months signal started. It disappears around 1990. 

During these 10 years, an abrupt episode is present in 1987. At the same time, 
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a periodicity of about 60 month appears and continues till 2008, overlapped to 

a 36-month periodicity that finishes in 2010. A second strong singular episode 

is presents in 2003 (Figure 8). Palermo CWT graph also shows the absence of 

longer than 2 years periodicities from 1962 to 1980. Starting from these years 

a periodicity of 24 to 36 month appears and continues to be present until 2008. 

Two singular episodes are again visible in the graph in 1987 and in 2003. A 

longer periodicity of about 60 months appears in the graph in correspondence 

of the singular episode of 1987 and continues until 2012 (Figure 9).  

Trapani CWT, as also seen for Messina and Palermo, maintains the same 

characteristics: absence of periodicities longer than 2 years till 1980 when a 24 

to 36 months periodicity appears and continues until 1990. The point at 1987 

shows a well-defined singularity, while a second one appears in 1999. Starting 

from this point a new periodicity of about 60 months appears and continues till 

2010 (Figure 10). The CWT of Trapani contains also another important 

feature: the presence of a well-defined periodicity of about 128 months from 

1962 to the middle of 1980s. This periodicity is typical of solar cycles and is 

more or less present also in the others CWT.  

 

 

Figure 8. CWT of Messina 1962-2014 mean monthly temperature anomaly. 
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Figure 9. CWT of Palermo 1962-2014 mean monthly temperature anomaly. 

 

Figure 10. CWT of Trapani 1962-2014 mean monthly temperature anomaly. 
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Figure 11. CWT of Cozzo Spadaro 1962-2014 mean monthly temperature anomaly. 

 

Figure 12. Cozzo Spadaro daily 12 UTC temperature surface plot. 
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Finally, concerning the Cozzo Spadaro CWT, the graph shows the absence 

of periodicities until 1985. A periodicity of about 30 months appears and 

continues till 1990. The singular episode of 1987 is here well marked as the 

beginning of the 60 months periodicity that continues till the end (Figure 11). 

The availability of Cozzo Spadaro daily 12 UTC temperatures from 1951 to 

2015, let us allow to further explore it in order to understand how the 

temperature is changing. For this reason, the data have been arranged in a 

matrix of 365 rows per 65 columns, where the rows represent the days of each 

year from January 1st (on the bottom) to December 31st (on the top) and the 

columns (from left to right) the years from 1951 to 2015. To better visualize 

the temperature changes, a colour scale has been used to represent the 

temperature. The obtained plot is showed in Figure 12. 

Conclusion 

The aim of this chapter was to use the Wavelet analysis on a 53 years long 

temperature time series of four localities of Sicily, in order to detect the 

temperature trends and to identify the climate dynamics that drives the process 

of global warming in Sicily and in general in the Mediterranean area. The first 

step of this work was to compare the annual mean temperatures of Palermo 

(the longest available time series), with the big world volcanic eruption 

calendar. It soon appears a strong correlation between the occurrences of an 

eruption, which is immediately followed by decreasing temperature. As 

second step, we performed a Discrete Wavelet Transform on the temperature 

signal, in order to identify the trends present in the signal. For Palermo, the 

DWT performed on the 150 years temperature time series, identifies a total 

positive trend of 1,55°C, with two periods of more intense warming during 

1880-1910 and 1960-2000, together with a range in which the temperature 

values have been stationary or decreased. This is about the same trend 

recorded for the global temperature trend of the Northern Hemisphere. In order 

to make comparable the four data series, only the common years 1962-2014 

have been analysed during the next step. The DWT of the four time series, 

show that during these years, all the four weather stations have registered a 

temperature increase. The amplitude of this warming, oscillates from less than 

1°C to about 1,4°C, depending on the position and on the characteristics of 

each weather stations. Both the weather stations positioned inside the town of 

Palermo and Messina, showed for example, the major increasing of 

temperature, respectively of 1,37°C and 1,27°C. This is due to the major 
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anthropogenic impact occurred in the two cities and to the urban heat island 

effect. The places where the anthropogenic impact was negligible registered a 

temperature increase of about 1°C during last 53 years.  

The next step was to analyse the four time series using the CWT. The 

obtained results show some common features:  

 

 Two strong singularities that appear in the signal in 

correspondence of the year 1987 and 2003; 

 A 60 months periodicity starting in 1987 and continuing at least 

until 2010. 

 A 128 months periodicity starting in 1962 and continuing to about 

middle 1980s. 

 

This means that in 1987 something occurred in the climate dynamics of 

Sicily and requires further analysis. An interesting and intriguing hypothesis is 

described in different literature papers and regards the sea-atmosphere 

interaction. Conversi et al. 2010 [38] states “1987 appears to be a year of 

change for the entire Mediterranean basin surface circulation.” Furthermore 

Demirov and Pinardi’s [39] simulations of the interannual surface 

Mediterranean circulation from 1979 to 1993 identify two periods, 1981–87 

and 1988–93, which differ in precipitation and winter wind regimes. Pinardi et 

al. [40] and Korres et al. [41], using data-validated simulations describe the 

dramatic reversal of the Ionian gyre in the summer of 1987 from its “usual” 

cyclonic state to an anticyclonic pattern. In particular, they show a reversal in 

the surface current directions in the Ionian sea, with the Atlantic/Ionian stream 

(and associated nutrients and hydrographical properties), branching further 

northward, at 35.5°N, and linked it to the surface circulation changes to the 

previous winter anomalies in the winds and heat fluxes. The alteration lasted 

approximately 10 years, until 1997, when the gyre re-reversed.  

The presence of the 128 months periodicity in the CWT, let us to make the 

hypothesis that before 1985 was the Sun to mainly drive the temperature 

trends, while starting from the middle 1980s, other cyclic oscillations like 

ENSO or NAO or others unknown, become most significant in the 

determination of the increasing temperature.  

Finally, the Cozzo Spadaro 12 UTC daily temperature analysis allows to 

understand the way in which the temperature is changing. Starting from the 

beginning of the ’1980s, a long sequence of red spot is visible in Figure 12. 

Each red spot could be assimilated to a heat wave with temperature higher of 
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35°C. This means than the temperature pattern is changing, showing an 

increasing number of summer hot days and heat waves. Another distinguishing 

feature is expressed by the colours in the plot where the expansion of the 

orange area corresponding to an increasing length of the summer season is 

registered. Counting the number of the days comprised from the first and the 

last day of the year in which temperature reached 30°C (summer days), the 

average length passed from about 58 days in 1950s to about 74 days in 2010s, 

with an average increase of 16 summer days (Figure 13).  

Moreover the graph shows that in 1987, 1999 and 2003, the number of 

summer days exceeded 100 days. This result is coherent with the presence of 

the singularities we have found in the CWT of the four Sicilian weather 

stations. These new evidences let us to state that the year 1987 is confirmed to 

represent an important year for climate change in Sicily because for the first 

time the number of summer days reached the record value of 100 days. This so 

high number, was reached again only 12 years later in 1999 and then again in 

2003; both years were characterized by a sequence of very long heat wave, one 

of which is still remembered as “killer heat wave” because during the summer 

2003 caused a record high temperature across the whole Europe with at least 

30.000 deaths (more than 14.000 in France alone).  
 

 

Figure 13. Cozzo Spadaro number of days comprised from the first and the last day of 

the year in which temperature have reached 30°C (Summer days). 
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In conclusion, the use of discrete and continuous wavelet analysis coupled 

with other graphics tools such as the matrix temperature arrangement and the 

surface graph visualization, reveals to be very powerful tools capable to 

extract additional and very useful information on the climate dynamics 

contained in a simple data set of temperature.  
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Abstract 

Wavelet transform is an innovative and powerful tool for analyzing 

complex data such as those obtained by spectroscopic techniques. In 

particular, it allows to locally resolve a non-stationary signal by means of 

functions called mother wavelets so producing a time-scale view of the 

signal. In addition, thanks to the wavelet multiscaling properties it is possible 

to get information both on a global and on a local view, to characterize 

transitory signal characteristics, trends, drifts, spectra abrupt changes and to 

perform signal denoising. 

The aim of this chapter is to highlight how wavelet transform can be 

effectively employed to extract precious information from experimental 

results obtained by spectroscopic techniques, such as Infrared, light and 

neutron scattering spectroscopies. 

In particular, it will be shown how it is possible to characterize, following 

different approaches, the registered spectral profiles as well as, by means of 

Wavelet Cross Correlation, to evaluate spectra and images similarity degree. 
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Introduction 

Wavelet analysis (WT) has revealed to be a new, effective and powerful tool 

in signal treatment, especially when these contain non-stationary or transitory 

features such as rapid changes, discontinuities, self-similarity features, noise, 

etc. WT analysis is capable of extracting data features that other signal 

analysis techniques miss. This is possible using long time windows for 

extracting low-frequency information, and short time windows for extracting 

high-frequency information and, in doing so it does not work on a time 

frequency space, but on a time-scale space [1-5]. 

Let L2(ℝ) be the space of Lebesgue measurable functions and ψ(t) ∈

L2(ℝ) a fixed function; 

ψ(t) is said to be a wavelet if it satisfies the following three conditions: 

 

1) admissibility condition: 

 

 Cψ = ∫
|ψ̂(ω)|2

|ω|

∞

0
dω < ∞ (1) 

 

where ψ̂ denotes the Fourier Transform of ψ(t); 

 

2) zero average: 

 

 ∫ ψ(t)dt =
∞

−∞
ψ̂(0) = 0; (2) 

 

3) finite energy: 

 

 𝐸 = ∫ |𝜓(𝑡)|2𝑑𝑡 < ∞
∞

−∞
. (3) 

 

Continuous WT (CWT) provides the wavelet coefficients and defines a 

scalogram, i.e., a local time–frequency energy density: 

 

 PW(s, τ) = |W(s, τ)|2 (4) 
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where s is the scale parameter, τ the shift parameter and W(s, τ) is the wavelet 

coefficient matrix. In other words, PW(s, τ) provides the time evolution of 

energy by viewing a map of the square of the wavelet coefficients; in different 

words, it reveals pockets of high and low energy in different frequency basis 

[6-10]. 

Since many data are constituted by a finite number of values, it is 

important to consider also a discrete version of the CWT. Generally, the 

orthogonal (discrete) WT are employed because this method associates the 

wavelets to orthonormal bases of L2(ℝ). In this case, the WT is performed on 

only a discrete grid of parameters of dilation and translation. Within this 

framework, an arbitrary signal h(t) of finite energy can be written using an 

orthonormal wavelet basis: 

 

 h(t) = ∑ ∑ dj
iψj

i(t)j ,i  (5) 

 

where the coefficients of the expansion are given by  

 

 dj
i = ∫ y(t)

∞

−∞
ψj

i(t)dt. (6) 

 

Another quantity associated to WT is the WT cross correlation that 

furnishes a measure of the correlation degree between two spectra: WT cross 

correlation is defined as: 

 

 XWT = W1,2(s, τ) = W1(s, τ)W2
∗(s, τ) (7) 

 

where W1(s, τ) represents the WT of the first signal, W2(s, τ) is the WT of the 

second signal, and * denotes the complex conjugation. More precisely, XWT 

provides the WT cross-spectrum|W1,2(s, τ)|, that allows to quantify the power 

correlation and the relative phase between two signals [48–50]. The cross-

correlation coefficients are complex numbers and can be represented as 

W1(s, τ) = |W1(s, τ) exp ϕ1(s, τ)|. |W1(s, τ)| is the wavelet amplitude while 

ϕ1(s, τ) is the absolute phase defined in the scale–time plane. |W1,2(s, τ)| 

shows the regions where W1(s, τ) and W2(s, τ) have a high common power. 

The phase difference between the two time signals is: 

 

 ϕ1,2(s, τ) = ϕ1(s, τ) − ϕ2(s, τ) (8) 
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where ϕ1(s, τ) = phase of e and ϕ1(s, τ) is the phase of I can be evaluated as it 

follows: 

 

 ϕ1,2(a, τ) = tan−1 (
Im(〈s−1W1,2(s,τ)〉)

Re(〈s−1W1,2(s,τ)〉)
) (9) 

 

where <> represents the average operator. It should be stressed that a high 

correlation between two time signals is connected both with a high common 

power at a given time and scale (frequency) and an in-phase behaviour [11-14]. 

In this chapter it will be shown how WT makes possible to characterize 

the registered spectral profiles performing an analysis at different space scales, 

to perform a spectra analysis at different frequency scale and to evaluate, by 

means of the Wavelet Cross Correlation operator, the similarity degree of 

spectra and images. 

 

 

Figure 1. Comparison between the results of an FT and the WT spectral analysis 

obtained for a damped time oscillation. 
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In order to perform a comparison between the Fourier Trasform (FT) and 

WT, Figure 1 shows a comparison between the results of the FT and the WT 

spectral analysis for a damped time oscillation while Figure 2 shows the same 

comparison for a chopped chipir function. It is evident that, in this latter case, 

FT furnishes only an average frequency value while WT furnishes information 

on the time evolution of the frequencies content. 
 

 

Figure 2. Comparison between the results of an FT and the WT spectral analysis 

obtained for a chopped chipir function. It is evident that FT furnishes only an average 

frequency value while WT furnishes information on the time evolution of the 

frequencies content. 

Detection of Anomalies and Discontinuities in Data 

Trend 

WT analysis is capable to detect aspects of data such as anomalies and 

discontinuities in the data trend that other signal analysis techniques miss. On 

that score, in Figure 3, a signal with a sudden spike is shown; the wavelet 

analysis, which defines a local time−frequency energy density, clearly reveals 

the spike of the signal [15-16]. 
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Figure 3. On the left a signal with a spike and on the right the relatively 2D scalogram 

plot. As it can be seen the wavelet transform clearly reveals the spike of the signal. 

 

Figure 4. MSD as a function oftemperature for D2O hydrated lysozyme/glycerol 

(50:50) for h=0.1 on the top and its relative 3D scalogram which shows a kink 

at T~233 K. 

 

A further example of application of WT analysis which show how WT is 

capable to detect discontinuities in the data trend is reported in Figure 4 where 

the so called Mean Square Displacement MSD = 〈u2(T)〉tot versus 

temperature, evaluated by means of Elastic Incoherent Neutron Scattering 

(EINS), for D2O hydrated lysozyme/glycerol (50:50) is reported [17]; in such 

a case the 3D scalogram obtained by WT analysis allows to localize the kink 

in the MSD vs T trend at T ∼ 234 K. 
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Spectra Denoising 

It is well known that in many cases the noise can corrupt a signal (e.g., 

spectrum) in a significant way. The procedure of noise removal is generally 

referred to as denoising. There is a wide range of applications in which 

denoising is important including, for instance, medical image/signal analysis, 

data mining, radio astronomy, spectral analysis and so on. There are many 

approaches in the literature for denoising. They can be roughly divided into 

two classes: i) denoising in the original signal domain (e.g., time or space) and 

denoising in the transform domain (e.g., Fourier or Wavelet Transform). WT 

is a powerful tool for removing noise from a variety of signals due to its ability 

to decompose a signal into different scales. Such a property is very important 

for denoising and it improves the analysis of the signal significantly. In 

particular, it allows to analyse the noise level at different scales and to adapt a 

denoising algorithm accordingly. Furthermore, WT does not require particular 

assumptions about the signal nature, also in the presence of discontinuities. 

Whereas classical denoising methods of a signal remove the high frequency 

components which are usually associated with the noise, i.e., provide a signal 

smoothing, WT attempts to remove whatever noise is present and retain 

whatever signal is present regardless of the signal frequency content. This 

approach has been proven to be optimal when the smoothness of the signal is 

unknown. The general wavelet–based method for denoising is to transform the 

data into the wavelet domain, threshold the wavelet coefficients, and invert the 

transform; inparticular WT allows to: i) decompose the signal by choosing a 

wavelet and a level nand then to compute the wavelet decomposition of the 

signal S down to level N; ii) to threshold detail coefficients for each level from 

1 to N and iii) to reconstruct the signal. In Figure X is reported, as an example, 

a Noised Signal (NS) decomposed by means of Discrete WT into a Signal (S) 

and Noise (N) contribution; furthermore a decomposition of the signal into 

approximate and detail coefficients [18, 19]. 

Spectral Analysis of Spatial Data 

WT allows to perform a spatial analysis of spectroscopic data simultaneously 

on different space scales. A remarkable example of such a WT analysis is 

obtained by taking into account neutron elastic intensity data collected as a 

function of exchanged wavevector [20-28]. 
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Figure 5. A Noised Signal (NS) decomposed by means of Discrete WT into a Signal 

(S) and Noise (N) contribution; furthermore a decomposition of the signal into 

approximate and detail coefficients. 

In such a case WT allows to characterize the protons dynamics in different 

wave-vector ranges. As it can be seen in Figure 6, which report the 3D 

scalogram of EINS data at the temperature value of T = 264 K, two different 

contributions at low and high wavevector values, i.e., Q<0.25Å-1andQ > 

0.25Å-1 clearly emerge. WT allows to evaluate the correlation degree at 
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different scales between collected spectra. Figure 7 shows, as an example, the 

results of a wavelet cross-correlation analysis between different couples of 

Infrared spectroscopy spectra of pure polyethylene oxide with molecular 

weight 600 Dalton (PEG600) and a mixture of PEG600 with Ethylene Glycole 

(EG), in the proportion [(75% PEG600):(25% EG)], i.e., [PEG600]–[(75% 

PEG600):(25% EG)]. XWT analysis for the pairs of spectra [PEG600]–[(75% 

PEG600):(25% EG)] was performed at T=43°C [29-31]. 

The color scale is proportional to the WT cross-correlation power, 

represented in octaves. The arrows superimposed on the color representation 

show the local “phase” difference between the two spectra. More precisely, the 

phase arrows show the relative phasing of each pair of spectra. 

 

 

Figure 6. 3D scalogram for trehalose/19 H2O mixtures at three different temperatures, 

264K Spectral correlation. 

The arrows superimposed on the color representation show the local 

“phase” difference between the two spectra. More precisely, the phase arrows 

show the relative phasing of each pair of spectra: arrows pointing right denote 

in-phase spectra while arrows pointing left denote anti-phase spectra. Arrows 

pointing up denote that the second spectrum leads the first spectrum by 90° 

while arrows pointing down denote that the first spectrum leads the second 

spectrum by 90°. The shaded regions indicate the cone of influence. 
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Figure 7. Wavelet cross-correlation (XWT) analysis for the pairs of spectra [PEG600]–

[(75% PEG600):(25% EG)] at T=43°C; the color scale is proportional to the WT cross-

correlation power, represented in octaves.  

The arrows which point towards right denote in-phase spectra while 

arrows which point towards left denote anti-phase spectra [32-39]. Arrows 

pointing up denote that the second spectrum leads the first spectrum by 90° 

while arrows pointing down denote that the first spectrum leads the second 

spectrum by 90°. The shaded regions indicate the cone of influence. 

Conclusion 

The goal of this chapter is to highlight how WT can be effectively employed to 

extract precious information from experimental results obtained by means of 

different spectroscopic techniques. Specific reference is made to Infrared 

spectroscopy, light and neutron scattering. In particular, it will be shown how 

it is possible to characterize the registered spectral profiles performing an 

analysis at different space scales, to perform a spectra analysis at a different 

frequency scale and to evaluate, by means of the Wavelet Cross Correlation 

operator, the similarity degree of spectra and images. Finally it is shown how, 

thanks to the wavelet multiscaling properties, it is possible to get information 

both on a global and on a local view. 
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Abstract

An iterative à trous coarsening algorithm combined with a wavelet ex-

trapolation procedure is presented and analyzed to filter and identify the

mean trend of simulated 1D data with non trivial boundary conditions.

Results show that the wavelet extrapolation based algorithm considered

for the data-driven analysis is robust and reliable, enabling the increase

of the confidence region of the wavelet transform. Relative errors for the

simulations were found to be in the order of 0.2% or less for each simu-

lated 1D data set, independent of noise intensity, decomposition level or

coarsest signal shape near data boundaries, confirming the contribution of

the wavelet extrapolation to the non-linear analysis scheme. The intrin-

sic interpolatory property of the wavelet transform, combined with the

à trous coarsening algorithm, also allowed the proposal of an automatic

local curve approximation procedure for regions where strong localized

∗Corresponding Author Email: alicek@ufsm.br.
†Corresponding Author Email: aas@ufsm.br.
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influences are present and need to be removed in order to diminish dis-

tortions in the mean signal pattern. The proposed procedure avoids the

necessity of model fitting for the regions to be treated. Numerical sim-

ulations for the analysis of noisy data are also presented and discussed,

highlighting the potential of the proposed scheme to be considered for a

wide range of applications.

PACS: 02.60.Ed, 02.60.Gf

Keywords: à trous transform, wavelet extrapolation, data-driven analysis,

adaptive filtering process

AMS Subject Classification: 42C40, 60G35, 65T60

1. Introduction

The wavelet boom goes back to the 80’s and 90’s, when most of the contri-

butions were focused on the theory development [3, 6], creation of different

wavelet families [8,25] and design of fast algorithms [17,33]. In fact, this rather

new wavelet approach brought to the scientific community, in a wide range of

applications, a complementary powerful tool (with respect to Fourier Trans-

form) for analyzing and representing information according to different scales

of resolution [6]. In particular, astronomical data – generally having a fractal

structure – greatly benefits from the multiscale analysis wavelet transforms can

provide [28].

One of the formulations for the fast wavelet transform, and the one consid-

ered in this work, is its undecimated version, known as the à trous transform,

where the number of points in each resolution level is kept equal to the initial

amount of points of the input data. The à trous algorithm, belonging to the class

of stationary wavelet transforms, is known for being ingenious and conveniently

easy to implement. It uses scaling functions with compact support, assuming a

formulation based on their filters and its reconstruction algorithm is quite sim-

ple [30]. The à trous algorithm was first developed for music synthesis [13]

and has been applied in a variety of signal and image processing studies ever

since [7, 22]. Along with other wavelet transforms, it has been widely used in

astrophysical data analysis [29] (and references therein) from X-ray imaging of

extended sources to studies of spatial distribution of galaxies. In particular, the

à trous algorithm has proven to be very useful in extracting information from

noisy spectra [27,31].
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It is well known that the quality of the results obtained by any transformation

at the vicinity of the domain boundaries may lack reliability due to the assump-

tions considered to produce approximated values outside the domain, which are

necessary for computing interior values. These assumptions involve the defini-

tion of the basis functions and/or the type of extrapolation computed [11, 32] –

the periodic extension been one of the most common used. In many applica-

tions the edge effects are rarely mentioned or simply neglected [34]. Of course,

in many cases disregarding these effects may cause no significant damage to the

analysis, but this can not be considered as an ad hoc universal true, specially

when treating information through multiresolution approaches and involving

non-linear analysis, since the extrapolation procedure requested at any level of

the decomposition may cause a significant impact in the final analysis result.

This issue motivates the study presented here.

One of the first attempts to circumvent the periodicity assumption for data

extension was proposed by Cohen et al. in [5], where a modified family of

orthogonal wavelets for a finite closed interval was introduced. Their proce-

dure implied the construction of new filters for the wavelet transform which

should be utilized whenever data at the boundaries or beyond the finite domain

should be considered for the standard transform. This formulation, presented

in 1993, is effective in theory but not entirely satisfactory for practical applica-

tions. Since then, alternative constructions for the interval wavelet have been

proposed [2, 14, 15] as well as new families of wavelets such as countourlets,

ridglets, curvelets, bandlets and other families incorporating geometrical and

directional properties in the wavelet design [23,26,29].

Attempts involving biorthogonal wavelets on the interval again go back to

the 90’s, having another seminal work from Cohen et al. in [4] as main refer-

ence, in which the starting point is the modification of the scaling, the wavelet

and their associated dual functions on the boundaries and their inner vicinity.

More recent formulations involving spline-wavelets [19] despite being more sta-

ble, still require the reformulation of all four families of functions involved in

the transformation on the boundaries. As an alternative, different types of strate-

gies to extrapolate data had also been investigated. In [11], different wavelets

families had been considered: Daubechies for the extrapolation and Spline-

wavelets for the transformation. In [32], the extrapolation was handled through

the Fourier transform, associated to the wavelet analysis. In fact, hybrid formu-

lations for sparse and redundant data representation have been gaining space,

specially in the context of methods based on dictionaries [20], in which differ-
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ent types of wavelet transforms can be part of the many different steps of the

dictionary learning process [18].

The current chapter combines the data extrapolation procedure, presented

in work [11], with the undecimated wavelet transform assuming spline-wavelet

filters to propose an iterative algorithm for determining the mean trend of simu-

lated data. The Daubechies orthonormal compactly supported wavelets are only

deployed throughout the one dimensional extrapolation construction, and for

the discrete wavelet transform itself we make use of the à trous transform [9,24]

with bi-orthogonal spline wavelets filters, providing a simplification in the de-

sign of the transformation as well as its inverse. In [11], the algorithm for

data extrapolation considered is based on the vanishing moments property of

the Daubechies orthogonal wavelet family and follows the approach presented

by [35] for image processing and analysis. In [35], the scheme for the extrapo-

lated discrete wavelet transform was particularly designed to generate well con-

ditioned transformation matrices and to have a critically sampled output. The

construction of the inverse transform outlined in [35], however, had the draw-

back of loosing the dyadic structure in case of extrapolated data storage.

Both set of Daubechies and spline filters form a basis for the square-

integrable space L2(R) and are numerically very close to each other [4]. In this

sense, the à trous and the multiresolution approach of the Cascade Algorithm

have been combined in a consistent way in order to perform the undecimated

wavelet transform. It should be noted that, due to the choice of the à trous

wavelet transform with splines filters, the inverse transform on the extrapolated

data is performed in an exact manner, completely avoiding the storage of the

extrapolated values obtained for each level of the direct transform. Therefore,

no Gibb’s phenomenon occurs at the boundaries, increasing the confidence zone

for the data analysis.

In the present chapter, the proposed non-linear analysis algorithm is then

tested using data from simulated spectral energy distribution of stars added

to noise with the goal of determining the continuum associated to the spec-

trum. The continuum determination is similar to the baseline extraction issue

in biomedical signal processing applications [16], and also similar to the deter-

mination of the coarsest trend in empirical mode decomposition schemes [10],

where the mean signal behavior, usually associated to the information with the

lowest frequencies (and lowest scales), has to be identified. In the case of stel-

lar spectra, data is often associated to a single or a combination of black-body

energy distribution curves (mean trends) affected by other high frequency phe-
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nomena such as noise and other perturbations like absorption and emission lines

and non-thermal continuum components.

This kind of simulated data is suitable for the demonstration of the efficiency

of our extrapolation and analysis technique, since it is a non stationary and

non periodical signal with different behaviors at each one of the boundaries,

drifted by noise and other influences, which makes the standard extrapolation

techniques to fail, as illustrated in our section of numerical experiments.

In Section 2 of this chapter we briefly present the Cascade and the à trous

formulations for the discrete wavelet transform. In Section 3 we summarize

the discussion presented in [11] in order to address the intrinsic boundary ex-

tension problem in such a way the scale dependency of the algorithm can be

highlighted. This is relevant to enable the complete reproduction of the results

when associating the extrapolation procedure to the data-driven à trous based

algorithm presented in Section 5. Before presenting the main results of this

work, a quantitative analysis of the wavelet extension is carried out in Section

4 using known functions to build discrete data sets. In Section 5 we describe

an iterative à trous coarsening algorithm employing the wavelet extrapolation.

This algorithm is then used in Section 6 for continuum determination of simu-

lated noisy spectra with and without features (strong perturbations summed to

the signal), validating the data-driven proposed procedure as a robust tool for

data analysis. Conclusions are summarized in Section 7.

2. Discrete Wavelet Transform

One of the most important properties involving discrete orthogonal wavelets is

the scaling relation for the scale function φ(x) as well as for the wavelet function

ψ(x):

φ(x) =
N−1

∑
k=0

a[k]φ(2x−k), ψ(x) =
N−1

∑
k=0

b[k]φ(2x−k),

where b[k]=(−1)k a[N−1−k] and p = N/2 is the number of vanishing moments

of the wavelet family, which determines the filter values a and b. The equations

for φ(x) and ψ(x) above are the main relations in the conception of the Cascade

algorithm for the direct wavelet transform [17].

Considering the input data vector cm given with respect to a fine grid with

2m points, the direct discrete wavelet transform for one level of decomposition
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is given by following relations:

cm−1[n] =
1√
2

2n+N−1

∑
k=2n

a[k−2n]cm[k] , (1)

dm−1[n] =
1√
2

2n+N−1

∑
k=2n

b[k−2n]cm[k] , (2)

for n = 0,1, . . .,2m−1−1, the vector dm−1 contains the wavelet coefficients from

the transformation and the vector cm−1 contains the scale coefficients, both at

one coarser level m−1, discretized with the half amount of points than the finer

reference level m.

In order to reconstruct the original vector cm, considering now as input data

both components cm−1 and dm−1 obtained according to (1) and (2), the inverse

discrete wavelet transform is given by

cm[n] =
k2

∑
k=k1

a[n−2k]cm−1[k]+b[n−2k]dm−1[k]√
2

, (3)

for k1 =d (n−N+1

2
e given by the ceiling function, k2 =bn

2
c given by the floor func-

tion and n = 0,1, . . .,2m−1−1.

2.1. The à trous Algorithm

The à trous algorithm, also called redundant wavelet transform, is a non-

decimated version of the wavelet transform [9, 24]. It modifies the standard

decomposition scheme given by (1) and (2) by changing the low-pass and high-

pass filters at each consecutive level by introducing ‘holes’ (à trous), i.e., zero

values between each of the filter’s coefficients. Considering a change of vari-

ables, while the number of filter coefficients can be kept unaltered, the func-

tion values set for the transform are chosen according to the space step 2 j−1,

which depends on the scale j. In this sense the holes of the à trous scheme are

transferred to the function values. The following expressions express this for-

mulation for the direct transform. The wavelet coefficients are straightforward

computed as the difference between the low passed signals from two consecu-

tive levels as

c j[n] =
s

∑
k=−s

h[k] c j−1[n+2 j−1k] , (4)

d j[n] = c j−1[n]−c j[n] , (5)
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for n = 0,1, . . .,L− 1 , j = 1,2, . . .,J, where c0 is the initial data set with L

points (usually but not necessarily 2q points, q being a positive integer), j = 0 is

now the finest level of resolution, J is the number of decomposition levels and h

is a low-pass filter initially defined with size 2s + 1. The choice of the index to

indicate the finest level may change considerably according to the algorithmic

formulation of the wavelet transform. In general, for the cascade algorithm, cm

is considered the vector on the finest resolution level. In the à trous algorithm,

however, the recursion algorithm is easier to delineate if c0 is denoted as the

finest initial level vector.

The inverse à trous transform is simply computed by adding the wavelet

coefficients from all levels to the final low-resolution signal as c j−1[n] = c j[n]+

d j[n] for n = 0,1, . . .,L−1, j = 1,2, . . .,J.

It is important to point out that for this transformation all decomposition

levels contain the same amount of discrete information and therefore all vectors

are the same size as the initial resolution level. It should also be noted that the à

trous algorithm can also be used with other wavelet filter families, for instance,

the bi-orthogonal spline wavelets, interpolating wavelets, etc.

2.2. The Missing Boundary Neighbors Issue

The equations for the direct wavelet transform (DWT) (1), (3) and (4), inde-

pendently of the chosen algorithm and for the inverse transform in the case

with decimation, all require discrete values from the initial vector for indexes

j beyond the finite range j = 0,1, . . .,2m− 1 in order to carry out the proper

calculations, which constitutes the missing boundary neighbors issue. For the

direct transform, the absent positions occur only at the right boundary, beyond

the last vector position. The lacking positions for the inverse transform of the

cascade algorithm are at the left boundary from both cm−1 and dm−1 vectors,

considering a wavelet transform defined by four-point filters a and b. Naturally,

the larger the filter length, the greater the number of missing points needed on

both boundaries vicinities.

The same kind of circumstance occurs when the à trous algorithm is con-

sidered for the direct wavelet transform, only that, in this case, missing data

points occur on both exterior boundary vicinities. Furthermore, as the level of

the transform increases, even more absent points will be necessary for the trans-

formation due to the scaling factor, as schematically shown in Fig. 2 of [11].
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2.3. Boundary Extensions and Related Effects

In order to deal with the missing points issue and calculate the discrete wavelet

transform at the boundary vicinities of a given data set two alternatives are pos-

sible: either different wavelets filters are constructed for the boundary regions,

as proposed by [5] where the entire wavelet family was adjusted to the inter-

val or, else, ghost values for the missing positions (see Fig. 2 in [11]) have to

be obtained via any extrapolation procedure, independently of the considered

algorithm, Cascade [17] or à trous [24].

Even though the data extrapolation may cause some kind of distortion at the

boundaries for one reason or another, some known and widely used approaches

to extend the original data set for i = 1,2, . . . are: the periodic extension: c j[0−
i]=c j[L−1− i]; the null extension: c j[0− i]=c j[L−1 + i]=0; the linear ex-

trapolation; c j[0− i]=c j[0]+ i(c j[0]−c j[1]), c j[L−1+ i]=c j [L−1]+ i(c j[L−
1]−c j[L−2]); the continuity extension: c j[0−i]=c j[0], c j[L−1+i]=c j [L−1];

and the mirror extension: c j[0− i]=c j[0 + i], c j[L−1 + i]= c j[L−1− i]. The

periodic extension is the way periodized wavelet transform is carried out, avoid-

ing the construction of new wavelet basis adapted to boundary conditions. If the

considered data is non-periodic itself, the region affected by the periodic contin-

uation depends on the size of the wavelet filter, which is related to the vanishing

moments of the wavelet family. The null extension is frequently used in the con-

text of the Fourier transform as an attempt to keep the region of analysis free

of the Gibb’s phenomenon which also occurs at the boundaries of the Fourier

transform. The linear extrapolation as well as the continuity and the mirror

extensions will be noticed by the wavelet coefficients around the boundary po-

sitions and, due to the decomposition levels, this perturbation will be dragged to

all levels of the wavelet transform since the discontinuities in any of the deriva-

tives of the function are detected by the wavelet transform.

3. Wavelet Extrapolation

The aim of the current section is to provide a self-contained presentation of the

extrapolation procedure initially proposed in [35] and adapted in [11] for 1D

data analysis. The level by level computed extrapolation procedure enables the

efficient application of the à trous algorithm for the discrete wavelet transform,

since its undecimated property is relevant for the final data-driven proposed al-

gorithm. By efficiency we mean the capability of diminishing as much as possi-
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ble the boundary effects and distortions occurring in the traditional approaches

discussed above and consequently increasing the trusted region of the signal

analysis.

The alternative approach we propose for the à trous wavelet transform with

spline filters is to construct the missing boundary values through an adaptation

of the extrapolation strategy presented by [35] where, originally, the extrapo-

lation was developed for the Daubechies wavelet transform and presented in

a matricial form associated to the the Cascade Algorithm. Here, no matricial

form is considered and the extrapolation obtained through Daubechies wavelet

filters is performed as an auxiliary process. Thus the extrapolation is performed

level by level in order to generate all missing points necessary to keep consistent

the à trous formulation. This means that the spacing considered for the à trous

transform at each level will be preserved in order to pick up points inside the

domain to construct the Daubechies extrapolation. For the à trous transform,

Spline-Wavelet filters are considered.

The fact of considering two different families of wavelets, Daubechies for

the extrapolation and Spline-Wavelets for the wavelet transformation itself does

not compromise the final result. Since the cubic splines considered for the à

trous transform are piecewise polynomials functions of order three, at least lo-

cally, they can be considered as belonging to the Daubechies scaling functions

span spaces. This means that no perturbations are introduced when extrapolat-

ing data, avoiding the increase of the wavelet coefficients associated to bound-

ary positions. In fact, spline wavelets belongs to the family of the bi-orthogonal

wavelets, i.e., although not orthogonal to its translations, spline wavelets are

orthogonal to dual functions, constructed through filters and retaining the same

general properties of the primal functions. Cohen et al. [4] present this con-

struction in great detail. One interesting aspect of this bi-orthogonal family

is the freedom of choosing different dual functions for the same primal spline

function, implying in different possibilities in forming the direct and inverse

transforms associated to each spline filter. Another characteristic pointed out

by [4] is the fact that Spline wavelet filters and its dual filters are numerically

close to Daubechies wavelet filters, expressing how similar these families of

wavelets are to each other.

A noticeable advantage of the present à trous transform over the Cascade

algorithm used by [35] is the fact that the inverse transform is computed in a

straightforward manner by simply adding up all components obtained in each

decomposition level. This is a remarkable property of the à trous algorithm
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as opposed to the Cascade algorithm in view of the inverse transform. When

extrapolated data is incorporated to the vectors obtained by the wavelet trans-

form, the Cascade algorithm looses its dyadic structure causing also the neces-

sity of recomputing the transform in order to avoid the storage of redundant data

(see [35] for more details).

In order to systemize and analyze the core of the proposed extrapolation

procedure some free parameters need to be chosen. We consider the initial

resolution level m with L points and an orthonormal wavelet function with

p = N/2 vanishing moments. Therefore, to be able to compute the wavelet

transform at these L discrete values independently of the transform algorithm,

N−3+1 = 2(p−1) = N−2 points need to be extrapolated on the right bound-

ary as well as on the left boundary before the transform can be performed. This

implies that for each transformation level L+2N−4 function values have to be

available. The main assumption for the construction of a polynomial extrapola-

tor is the fact that when a wavelet family with p = N/2 vanishing moments is

considered, polynomials with degrees up to p−1 can be exactly generated as

linear combinations of the scaling functions φ j,k(x) = 2 j/2φ(2 jx− k), at a cer-

tain level j. Consequently, the extrapolation function itself can be obtained as a

linear combination of the wavelet basis.

As starting point, let the sequence of the scaling coefficients cm[n], n =

0,1, . . .,L− 1 at the finest resolution level be given as the discrete values of

the analyzed function F(x), discretized in a uniform grid Γ : cm[n] = F(xn),

xn ∈ Γ. Let the scaling functions of the orthonormal wavelet family for the

same level m be denoted as φm,k(x) = 2m/2φ(2mx− k), k ∈ Z, spanning a sub-

space V = {φm,k} of the space of the square-integrable functions, L2(R). The

projection P of F(x) onto V is then given by PF(x) = ∑k∈Z cm[k]φm,k(x) =

2m/2 ∑k∈Z cm[k]φ(2mx− k). Even though the variable k runs for all values

in Z, we are interested just in finite dimensional applications and therefore

we are concerned only with coefficients for the positions of the original data,

k = 0, . . .,L−1, the positions of the extrapolation for the left boundary at level

m, k = (−N + 2)×2m, (−N + 2)×2m + 1, . . .,−1, and the positions of the ex-

trapolation for the right boundary also at level m, k = L, . . . ,L−1+(N−3)×2m.

Under the assumption that PF(x) ∈ V has a polynomial representation of

order p−1 in the vicinity of the left and right boundaries, respectively at x = 0

and x = xL−1, the following expressions defines the relations necessary for the
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construction of the extrapolation polynomials on the left and right sides:

PF(y) =
p−1

∑
l=0

λ
†
l yl , (left boundary) (6)

PF(y) =
p−1

∑
l=0

λ
‡
l (y−ym)l , (right boundary) (7)

where y = 2mx. The polynomial coefficients λ
†
l and λ

‡
l above can be determined

from a system of equations obtained by taking the inner product of (6) and (7)

with the M orthonormal scaling functions φ(y− j) for j = 0,1, . . .,M−1:

< PF(y),φ(y− j) > = 2m/2 ∑
k∈Z

cm[k] < φ(y−k),φ(y− j) >

=























p−1

∑
l=0

λ
†
l < yl,φ(y− j) >, (left boundary)

p−1

∑
l=0

λ
‡
l
< (y−ym)l,φ(y− j) > . (right boundary)

The inner product <yl ,φ(y− j)> (or < (y− ym)l,φ(y− j)>) is known as the

µ[ j, l] moment of the scaling function φ and can be exactly evaluated [35] by

the following relations, where a provides the filter coefficients for the scaling

function:

µ[0,0] =

Z +∞

−∞
y0φ(y−0)dy = 1 , (8)

µ[0, l] =

Z +∞

−∞
ylφ(y−0)dy =

1

2(2l−1)

l−1

∑
i=0

(

l

i

)

[

N−1

∑
k=0

a[k]kl−i

]

µ[0, i] , (9)

µ[ j, l] =
l

∑
i=0

(

l

i

)

jl−i µ[0, i] . (10)

Since we are considering an orthonormal wavelet basis, scaling functions

and wavelets are orthogonal, i.e., <φ(y− k),ψ(y− l)> =0, <φ(y− k),φ(y−
l)> =δk,l for each k, l ∈Z. Wavelets are also orthogonal across scales, i.e.,

<ψ(2iy−k),ψ(2 jy− l)> = δi, jδk,l , for each i, j,k, l ∈ Z. Besides, this wavelet

family has the property of p vanishing moments, which implies that polynomials
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with degree up to p−1 are spanned only by scaling functions, i.e., <yl ,ψ(y−
j)> = 0 or <(y− ym)l,ψ(y− j)> = 0, for l = 0,1, . . ., p− 1. Therefore, no

additional equations are required and the subsequent systems of equations for

the left boundary follows:

cm[ j×2m] = 2−m/2
p−1

∑
l=0

λ
†
l µ[ j, l] , (11)

for j = 0,1, . . .,M−1 , and for the right boundary:

cm[L−1+ j×2m ] = 2−m/2
p−1

∑
l=0

λ
‡
l µ[ j, l] , (12)

for j = 0,−1, . . .,1−M .
The corresponding systems of equations in the matrix form 2−m/2AX = B

for the polynomial coefficients λ
†
l and λ

‡
l are obtained by applying equations

(11) and (12) to the listed j values, i.e., for the first and last M points of cm with

spacing 2m. Therefore, for the left boundaries we have:











µ[0,0] . . . µ[0, p− 1]
µ[1,1] . . . µ[1, p− 1]

.

.

.
. . .

.

.

.

µ[M− 1,0] . . . µ[M− 1, p− 1]























λ†
0

λ
†
1

.

.

.

λ†
p−1













= 2m/2











cm[0×2m]
cm[1×2m]

.

.

.

cm[(M− 1)×2m]











, (13)

and for the right boundary we have:











µ[0,0] . . . µ[0, p− 1]
µ[−1,0] . . . µ[−1, p− 1]

.

.

.
. . .

.

.

.

µ[1−M,0] . . . µ[1−M, p− 1]























λ‡
0

λ
‡
1

.

.

.

λ‡
p−1













= 2m/2











cm[L− 1− 0×2m]
cm[L− 1− 1×2m]

.

.

.

cm[L− 1− (M− 1)×2m]











. (14)

There is a certain flexibility in choosing the parameter M. For M 6= p

the above set of equations can be solved using a minimum least squares ap-

proach by transforming the systems (13) and (14) into square systems through

2−m/2(ATA)X = ATB. The resulting set of equations can then be solved such

that X = 2m/2(ATA)−1ATB. According to [35], one suitable choice for the ex-

trapolation parameter M is M = N = 2p and in this work we adopt the same

choice for the M parameter.
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Denoting ξ†[l, i] and ξ‡[l, i] the elements of the corresponding p×M matri-

ces (ATA)−1AT from X = 2m/2(ATA)−1ATB, we obtain the following relations

for the polynomial coefficients λ
†
l and λ

‡
l , i.e., the solution of systems (13) and

(14):

λ
†
l

= 2m/2
M−1

∑
i=0

ξ†[l, i] cm[i×2m] , (15)

λ
‡
l = 2m/2

M−1

∑
i=0

ξ‡[l, i] cm[L−1− i×2m ] . (16)

for l = 0,1, . . ., p−1.

Considering all the above relations, we are now able to extrapolate the func-

tion F to obtain discrete approximations for positions beyond the left boundary

of cm. Using (15) and (16) respectively into (11) and (12), the exterior scaling

functions coefficients cm[k] on level m (2m spacing) for the left boundary are

given by:

cm[ j×2m] =
p−1

∑
l=0

M−1

∑
i=0

µ[ j, l] ξ†[l, i] cm[i×2m] , (17)

for j = −N +2,−N +1, . . . ,−1, and for the right boundary by:

cm[L−1+ j×2m ] =
p−1

∑
l=0

M−1

∑
i=0

µ[ j, l] ξ‡[l, i]× cm[L−1− i×2m ] , (18)

for j = 1,2, . . .,N−2.

4. Analysis of the Extrapolation Procedure

Prior to merging the extrapolation scheme presented in the previous section with

the à trous transform, we illustrate the extrapolation scheme functionality and

verify its accuracy with respect to the error in euclidean norm by applying it

to three different sources of discrete data sets: 1) a polynomial function for

which extrapolation values are expected to be exact; 2) a sine function as a

basic example of continuous periodic function and 3) an arbitrary scale black-

body spectral energy distribution function per unit of wavelength fλ given by the

Planck’s law fλ = α/[λ5 (eβ/λ−1)], where α is a normalization constant and
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β = hc/kBTeff is a parameter dependent on the black-body effective temperature

Teff (c is the speed of light, h is the Planck constant and kB is the Boltzmann

constant), as a basic continuum tracer for the spectrum of stars, star clusters and

normal galaxies. This sort of data, added with Gaussian noise, will be further

analyzed in the following sections where the extrapolation procedure will be

performed in association to the à trous wavelet transform in an iterative way in

order to minimize the border effects during the decompositions in scale (level).

Figure 1. Display of the data sets used to test the extrapolation algorithm. The

5th order polynomial function p5(x) used in Example 1 is shown by the black

solid for the lower−x and left−y scales while the black-body spectral energy

distributions used in Examples 3, 4 and 5 are shown by the solid blue, green

and red lines as a function of the wavelength λ from 0.4 µm to 1.2 µm for the

upper−x and right−y scales. These curves correspond to energy distributions

with maximum flux f max
λ at 0.2 µm (blue line), 0.6 µm (green line) and 1.2

µm (red line), respectively for black-body effective temperatures Teff of 14490

K, 4830 K and 2415 K. For visualization purposes, the flux fλ has been nor-

malized with respect to the maximum relative flux within the wavelength range

displayed.
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Figure 2. Extrapolation results for the Example 1 case (p5(x)). Only the re-

gions around left and right boundaries at x =−1 and x = 1 are displayed. Panel

(a): the black line is the original p5(x) data set and the points obtained by the

extrapolation procedure for the number of vanishing moments p = 6 are shown

by blue times symbols (×) for the scale parameter j = 3 (23 spacings) and in

red for j = 5 (25 spacings). The zones where the extrapolation actually occurs

are outlined by gray backgrounds as opposed to white background zones where

points displayed are the original data set points. In panel (b) the blue and red

lines display the absolute difference between the results obtained and the origi-

nal data set, respectively for j = 3 and j = 5. As expected for a pure polynomial

function with degree less or equal to p, the absolute errors are negligible, in the

order of 10−10, and increase monotonically with distance to the boundary.

The number of points at the starting (finest) resolution level for all the exam-

ples will be given by L = 210. We point out that when applying the extrapolation

equations, the M known point values considered to construct the systems (13)

and (14) must all be interior points in order to avoid seeking data points be-

yond the opposite boundary (see cm indexes in (13) and (14)). This imposes a

constraint to the maximum number of decomposition levels η one can consider

depending on the number of data points L and on the chosen wavelet (since
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Figure 3. Same as Fig. 2 for the Example 2 case (sin(πx)). In addition to the

extrapolation points obtained using p = 8 and j = 4 (blue × points) and j = 5

(red × points), we also show in panel (a), for comparison, Taylor polynomial

approximations of degree 3 (yellow line) and 5 (green line) for the sin(πx) func-

tion around points x = −1 and x = 1. In panel (b) the errors with respect to the

original data set (black line in panel (a)) are shown by blue and red lines, re-

spectively for j = 4 and j = 5, and in yellow and green lines for the 3 and 5

degree polynomial approximations. The darker gray background regions, de-

limited by the errors curves from the Taylor approximations, show clearly that

the absolute errors for the j = 4 spacings case, corresponding to extrapolation

polynomials of degree p−1 = 3, are comparable to the expected errors for the

Taylor polynomials of degree 3 and 5, in the order of 10−5.

M = 2p) such that L≥ 1+(2 p−1) × 2η−1. In the present case, for p = 3 and

L = 1024, we have η≤ 8. Therefore, the extrapolations are performed according

to a given scale parameter j≤ η = 8 which, in turn, sets the spacing 2 j between

stencil points considered in the extrapolation procedure. This scale parameter j

allows one to easily determine where the necessary extrapolated values (missing

points) occur beyond the boundaries for any given stencil spacing, which is an

essential piece of information, particularly when the extrapolation is associated
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to the à trous transform. Besides the value of the scale parameter j, we also

analyze in this section the influence of the choice of the number of vanishing

moments p of a wavelet function which determines the polynomial order p−1

of the data projection onto the V space (equations (6) and (7)).The data sets

used in this section (except for the obvious sin(πx) function) can be visualized

in Fig. 1 which shows the polynomial function p5(x) used in Example 1 (black

line) and the black-body energy distribution functions used in Examples 3, 4

and 5, corresponding to effective temperatures Teff of 2415 K (blue line), 4830

K (green line) and 14490 K (red line), respectively.

4.1. Example 1

In this first example of the extrapolation procedure we have taken an arbi-

trary 5th order polynomial p5(x) = 0.25x(x− 0.5) (x+ 0.8) (2.0− x) (x+ 5.0)

for x ∈ [−1,1] as the source for the data set with 1024 discrete points. Fig. 2

presents the extrapolation results (panel (a)) and the corresponding relative er-

rors (panel (b)) on both boundaries considering a wavelet function with p = 6

vanishing moments. The data points (extrapolated or not) are shown by times

symbols (×) while the p5(x) curve is shown by black lines. Results for two

choices of the scale parameter j are presented: j = 3 (blue points) and j = 5

(red points), corresponding to stencil spacings of 8 and 32 points, respectively.

The zones where the extrapolation actually occur are marked by gray back-

grounds whereas in the white background zones the original data set points are

displayed. As expected for a polynomial data set with degree less or equal to

the number of vanishing moments p, the absolute errors shown in panel (b) are

negligible, in the order of 10−10, and increase monotonously with the distance

of the extrapolated point to the boundary.

4.2. Example 2

In this case the source of the discrete data set is taken from a sin(πx) function

for x∈ [−1,1]. The extrapolated results for p = 8 vanishing moments and scales

j = 4 and j = 5 (24 and 25 stencil spacings, respectively) are shown in panels

(a) and (b) of Fig. 3. In addition to the blue ( j = 4) and red ( j = 5) points, we

present for comparison Taylor polynomial approximations of degree 3 (yellow

line) and 5 (green line) for the sin(πx) function around points x =−1 and x = 1,

i.e., around the corresponding boundary points. The absolute errors presented in

panel (b), in the order of 10−5, show that the results obtained for the j = 4 choice
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Figure 4. Same as Fig. 2 for the Examples 3, 4 and 5 cases, namely, black-body

energy distribution functions from 0.4 µm to 1.2 µm. The extrapolation proce-

dure was applied using p = 4. In panels (a) and (b) we show the extrapolation

results (black × points) for the j = 3 scaling for the 3 cases of effective temper-

atures Teff: 14490 K (blue line), 4830 K (green line) and 2415 K (red line). The

corresponding absolute errors in panel (b) are in the order of 10−3 in the left

boundary and in the order of 10−6 in the right boundary. In panels (c) and (d)

we present the results for j = 5 scaling for the Teff = 4830 K black-body case

(green line). As in Fig. 3, we also present, for comparison, Taylor polynomial

approximations of degree 4 (blue line) and 5 (red line) for the black-body energy

distribution function fλ around λ0 = 0.5 µm for the left boundary and around

λ0 = 1.1 µm for the right boundary. The errors of the extrapolation points in

panel (d) (green line) occur right within the darker background region delimited

by the blue and red error lines from the Taylor approximations.
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are comparable to the Taylor approximations presented – the errors occurring

within the region delimited by the error curves from the 3rd and 5th order Taylor

polynomials (darker gray background).

4.3. Examples 3, 4 and 5

The last examples used to verify the extrapolation algorithm functionality refer

to 3 cases where source of data is taken from the spectral energy distributions

fλ of a black-body at a given effective temperature Teff for λ(µm)∈ [0.4,1.2], as

illustrated in Fig. 1. This set of numerical experiments probe the performance

of the extrapolation procedure when the source of data is neither a polynomial

nor a periodic function, testing to the limit the capacity of the algorithm to em-

ulate the behavior of the data function beyond the original data domain. The

results for the Daubechies functions with p = 4 and j = 3 scaling (23 spac-

ings) are presented in panels (a) and (b) of Fig. 4 for Teff = 14490 K (blue line),

4830 K (green line) and 2415 K (red line). The absolute errors shown in panel

(b) are quite small, in the order of 10−3 in the left boundary and 10−6 in the

right boundary, considering that the number of vanishing moments p = 4 is not

so large, i.e., extrapolation polynomials of degree 3. The worst result among

these three data sets is for the black-body function with Teff = 4830 K (green

line), mostly because the spectral energy distribution in this case is not a strictly

increasing or decreasing function of λ as for the other two cases (See Fig. 1) –

circumstances which would favor the extrapolation. Results for a more demand-

ing situation are presented in panels (c) and (d) of Fig. 4 for this Teff = 4830 K

case for which the extrapolated points have been taken even further away from

the boundaries by a j = 5 scaling or 25 spacings. Even though the absolute er-

rors are somewhat larger than the corresponding j = 3 case, in the order of 10−2

in the left boundary and 10−4 in the right boundary, they are comparable to the

expected errors from Taylor expansions of degree 4 and 5 for the black-body

function fλ around λ0 = 0.5 µm for the left boundary and around λ0 = 1.1 µm

for the right boundary, as can be seen in Fig. 4d, being in fact smaller than the

errors from the 4th order Taylor expansion (blue line).

4.4. Discussion

The effect of the scale parameter j and the number of null moments p on the

value of the extrapolated points can be outlined by the content of Table 1 which

shows the negative log of the absolute error (i.e., the magnitude of the error)
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in the euclidean norm for the first extrapolated point on both boundaries as a

function of j and p for all five data sets analyzed. We point out that ‘first ex-

trapolated point’ does not necessarily mean a close point to the border once its

distance depends on j by 2 j spacings. In general, the errors on Table 1 increase

as j increases and decreases as p increases as expected, reaching minimum val-

ues at p = 6. The error values for p = 8, on the other hand, should be taken with

some skepticism. In fact, results free of systematic errors for values of p > 7

can be quite difficult to obtain using the extrapolation equations (17) and (18)

due to the existence of very large numbers in the matrices ATA (coming from

the moment matrices µ) which need to be inverted in the calculation of matrices

ξ† and ξ‡. The conditional number of matrix ATA can be as low as 10−15 for

p≥ 8. This difficulty persists even if equations (13) and (14) are solved without

explicit matrix inversion as in a LU decomposition. The presence of systematic

errors in the results of Table 1 is evidenced by the increase of the error values

when p increases from 6 to 8, specially for the p5(x) case.

The examples above show that, even though we are not looking for an ex-

trapolation method per se but rather a viable mechanism capable to provide

missing data beyond boundaries so that a wavelet transform can be carried out

on the entire data set without special filters for the boundaries, the extrapolation

algorithm proposed in Sect. 3 has proven to be effective and can produce quite

acceptable results when the number of null moments p is properly set. The

assumption made there that the projection of the data set onto Vm has a polyno-

mial representation is fully supported by the results for the p5(x) data set and

the comparison between the data from the other examples and the correspond-

ing Taylor approximations. In addition to that, the results for the sin(πx) and

Teff = 4830 K black-body cases show that the extrapolation values are compa-

rable to corresponding Taylor approximations (Figs. 3b and 4d).

5. Wavelet Extrapolated à trous Transform

The construction presented in the previous sections took into account the or-

thonormal Daubechies wavelet family and its capacity to exactly represent poly-

nomials in scaling function bases (vanishing moments property) in order to de-

vise an extrapolation procedure to generate points beyond both data set bound-

aries. With this procedure in hand, we now turn our attention to the à trous

wavelet transform. Even though the filters for the à trous wavelet transform

are not the Daubechies filter family but rather the Bi-orthogonal Spline wavelet
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Table 1. Negative log of the absolute euclidean errors for the first

extrapolated point on the left and right boundaries as a function of the

number of vanishing moments p and scale parameter j for the five data

sets analyzed

data j −log(|error|), left boundary −log(|error|), right boundary

p 2 4 6 8 2 4 6 8

1 5.55 8.10 11.72 9.65 5.52 7.40 12.27 10.13

p5(x) 3 4.10 6.19 10.97 8.64 4.08 5.47 11.57 9.13

5 2.45 4.09 10.08 7.49 2.45 3.32 10.68 7.99

1 5.34 8.67 11.89 10.41 5.34 8.67 11.91 11.46

sin(πx) 3 3.89 6.28 8.40 9.28 3.89 6.28 8.40 10.18

5 2.25 3.67 4.74 5.85 2.25 3.67 4.74 5.85

black-body 1 6.27 8.01 10.20 10.17 8.20 10.16 13.81 12.31

Teff = 3 4.81 6.22 7.40 8.74 6.74 8.21 10.87 11.25

2415 K 5 3.15 4.49 4.57 5.32 5.08 5.99 7.49 8.60

black-body 1 5.68 7.09 10.08 9.83 7.71 9.83 12.61 11.27

Teff = 3 4.25 5.17 7.36 8.46 6.26 7.85 9.98 10.46

4830 K 5 2.66 3.06 6.00 4.97 4.63 5.56 6.62 8.17

black-body 1 6.27 8.43 11.13 11.44 6.97 9.75 12.47 10.04

Teff = 3 4.82 6.35 7.95 9.27 5.51 7.89 9.67 9.05

14490 K 5 3.20 3.97 4.70 5.87 3.87 6.22 6.37 8.04

family as considered in [24], splines are polynomials (at least piecewise) and

therefore they can be exactly represented by the Daubechies basis used in the ex-

trapolation procedure, regarded that the number of vanishing moments p should

be greater than the degree of the spline in consideration. As the smoothness of

the polynomial functions generating extrapolated points is also determined by

p, data at the boundaries should be smooth enough not to drag perturbations

inside the domain for the entire set of decomposition levels. Therefore, once

the extrapolation is carried out level by level, the à trous transform would nei-

ther be biased by the spline wavelet filters nor be affected by spurious errors for

the analyzed data, which characterizes an harmonious match between the two

heuristics where border effects are diminished in an optimized way.

As already mentioned, one of the characteristics of the à trous formulation

is the simple way direct and inverse transforms are calculated. This simplic-
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Algorithm 1 Iterative à trous coarsening algorithm via a wavelet extrapolation

boundary extension. The input parameters are the input data vector c0,0, the

input data size Lm = 2Jmax , the spline wavelet filter h, the wavelet filter size

r = 2×s+1, the maximum number of decomposition levels η and the trend

tolerance tol. The output parameters are the family of decomposition levels

dη,k, the family of the coarsest levels (trends) cη,k and the sum of trends st.

1: st ← 0; dη,0 ← 0; k ← 0

2: variation← 2× tol; residue[0] ← 0

3: while variation > tol do

4: for n = 1,2, . . .,η do

5: scale ← 2n−1

6: boundary extrapolation(cn−1,k, scale,n)

7: for j = 0,1, . . .,Lm−1 do

8: cn,k[ j]← 0

9: for i = −s,−s+1, . . ., s do

10: cn,k[ j]← cn,k[ j]+h[i]×cn−1,k[ j + i×scale]

11: end for

12: dn,k[ j]← cn−1,k[ j]−cn,k[ j]

13: end for

14: end for

15: c0,k+1← c0,k−cη,k

16: st← st+cη,k

17: residue[k +1]← max( |dη,k−dη,k−1 | )
18: variation← |residue[k +1]−residue[k] |
19: k ← k +1

20: end while

ity is preserved in the case of the extrapolation procedure considering that it

requires just one additional step to the basic à trous routine as outlined by Algo-

rithm 1 in lines numbered 4–14. The additional step is the call to the procedure

boundary extrapolation (cn−1,k, scale,n) in line 6 with proper parameters to cal-

culate the extrapolation points needed for the à trous transform at level n on both

boundaries, as described in Sect. 3. The parameter scale is used to control the

‘holes’ of the à trous transform according to the level n, as well as the spac-

ing between points sorted out inside the data domain to build the stencil for the
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construction of the extrapolation. Regarding the size of the Daubechies filters

N = 2 p and the size of the Spline filters r = 2s + 1, we claim (Sect. 3) that the

choice for the number of vanishing moments for the Daubechies wavelet should

be p ≥ (s + 2)/2, since the number of extrapolated values on each boundary is

N−2 = 2 p−2 and this would be enough for covering the s values required for

the à trous transform on the boundaries.

The Algorithm 1 as a whole has been coded based on [31] to obtain the

sum st of the coarsest à trous levels η by an iterative loop (indexed by k) which

removes each coarsest level cη,k from the current input data c0,k until the maxi-

mum absolute difference (residue) between two consecutive decomposition lev-

els is smaller than a given tolerance tol, i.e., until no significant variation of the

details dη,k can be found in the coarsest level. The sum st converges to a smooth

featureless data array, or mean trend, corresponding to the convolution between

the input data and a broadband filter.

This mean trend st can be quite useful, for example, to identify low fre-

quencies components in data or to obtain the continuum of a spectrum. For

instance, an important application in bio-medical signal analysis is the removal

of the ‘baseline’ component from ECG [12, 21], which allows a better under-

standing of the high frequency contributions. In the case of the input data being

a stellar like spectrum, the st trend would closely resembles the continuum of

the spectrum. In fact, as shown by [31], this is a very effective approach to

the often arduous problem of obtaining the continuum of noisy spectra in com-

parison to polynomial fitting or filter smoothing techniques, particularly when

the spectrum shows emission lines or broad absorption bands. These features

are usually blanked out prior to the fitting when their presence is conspicuous

enough or ignored when they are too shallow to be distinguished from the con-

tinuum background, resulting in error in the continuum determination on both

cases.

6. Numerical Simulations

In order to verify the performance of our boundary treatment strategy we present

in this section results obtained from applying the à trous coarsening Algorithm

1 to simulated spectra for which the efficacy of the extrapolation procedure can

be evaluated in the case of determining the continuum of the spectra over the

entire data set available.
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6.1. Featureless Noisy Spectra

As a simple first test to determine the continuum we have taken the three black-

body spectral energy distributions presented in Sect. 4 (Teff = 2415 K, 4830 K

and 14490 K) with L=210 =1024 points as input data c0[0, . . .,L−1] and added

gaussian noise to obtain simulated spectra with signal-to-noise ratios (SNR) of

100, 150 and 50, respectively.

As featureless noisy spectra, this sort of data is ideal to test the perfor-

mance of the extrapolation procedure since the effects from spectral charac-

teristics like strong emission and/or absorption lines or broad-band features will

not be present, particularly when the extrapolation scheme is to be compared

with other (traditional) boundary extension conditions. Fig. 5 presents in panel

(a) the simulated spectra (black lines) and the continua obtained by Algorithm

1 with p = 3 and tol = 0.01 using three usual extensions discussed in Sect. 2.3,

namely, a null boundary extension (light gray lines), a mirror extension (green

lines) and a continuity extension (blue lines), as well as the continuum obtained

with the wavelet extension from the extrapolation procedure (red lines). The

number of decompositions levels η used in each case was chosen according

the amount of noise present in the simulated spectra: η = 6 for SNR = 150

(Teff = 4830 K case) and η = 7 for SNR = 50 and 100 (Teff = 14490 K and 2415

K cases). The corresponding errors, i.e., the difference between the true and the

obtained continuum, are shown in panel (b) of Fig. 5. Apart from the results for

the null extension (light gray lines) which can be quite bad near the boundaries,

the errors found for all other cases are considerably small, in the order of 0.2

per cent or less.

6.2. Discussion

The first noticeable aspect in Fig. 5 is that, depending on the behaviour of the

continuum near the edges, a simple boundary extension can indeed produce a

convincing result over a wide range of data points, as long as the proper type of

boundary extension has been selected. For instance, the null extension choice

(light gray lines) only works well when the data obviously approach small val-

ues near the boundaries, as in the cases Teff = 2415 K and 14490 K for the left

and right boundaries, respectively. It is also evident that an extension type can

work well for one edge and not so well for the other edge as seen in the results

for the continuity (blue lines) and mirror (green lines) extensions choices for the

Teff = 4830 K and 14490 K cases. Therefore, a suitable single choice of one of
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Figure 5. Continua results for simulated featureless spectra obtained using the à

trous coarsening Algorithm 1 with distinct boundary extension conditions. The

input data used were the black-body spectral energy distributions from Exam-

ples 3, 4 and 5 of Sect. 4 added with Gaussian noise with different signal-to-

noise ratios (SNR), resulting in the black lines shown in panel (a), as indicated.

The continua obtained are shown by light gray curves for the null extension,

green curves for the mirror extension, blue curves for the continuity extension

and red curves for the wavelet extrapolation extension. The curves in panel (a)

have been arbitrarily moved up or down to help visualizing the data. The differ-

ence (error) between the true continua and the obtained continua are shown in

panel (b) with the corresponding color. A black dashed line marks the zero of

the scale for each of the three cases.
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those boundary extensions or a combination of extensions, i.e., a different one

for each boundary, that would lead to an acceptable continuum for the entire

data array may not exist at all for a given spectrum.

The effects of a poor boundary extension choice can extend to points dis-

tant from the edges as shown in the results for the null, mirror and continuity

extensions for the Teff = 14490 K case (SNR = 50) in the left half of the spectra.

This is due to a ‘dragging effect’ over data values caused by the iterative na-

ture of the à trous coarsening algorithm. For a data array of size L = 1024 and

filter size r = 5 (cubic spline wavelet) one can apply the à trous transform for

the center half of the points up to 8 levels of decomposition prior to using data

from extrapolated points. In the case of the coarsening algorithm, this is true

only for the first iterative step of the process as subsequent steps will perform

the à trous transform over a data array that has been subtracted from its coarsest

level whose points near the edges were calculated using values provided by the

boundary extension.

Thus, contrary to what one might expect, rather than minimize or being

compensated by, the dragging effect is actually enhanced by the iterative process

when the boundary extension is not appropriate. So, the effect can propagate

itself far away from the edges into region that one may naively perceive as a

wavelet transformed safe zone. The net outcome will depend on the various

parameters involved in the whole iterative coarsening process like the number

of data points L, the maximum number of decompositions η, the number of

vanishing moments p of the wavelet family, the type and size r of the wavelet

filters and choice of boundary extension, not to mention noise and shape of the

data array. For instance, for the Teff = 4830 K and 2415 K cases that have better

signal-to-noise ratios (SNR = 150 and 100, respectively) the dragging effect is

less intense even though it occurs on both edges.

The results obtained with the wavelet extension (red lines) are quite rea-

sonable and justify our proposition of carrying out an extrapolation scheme per

level of the à trous transform to generate missing points beyond data bound-

aries. The curves provide an overall best fitting for the continuum in all three

cases on both boundaries and are much less affected by the dragging effect. The

average error is very consistent, in the order of 0.1 per cent, independent of the

amount of noise present in the input data. This is particularly evident in the

Teff = 14490 K case for which SNR = 50 is relatively low.

The parameters p and tol were found to have only a marginal influence

over the qualitative and quantitative character of the results above. No apparent
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improvement could be obtained by using a value for p larger than the required

minimum of 3. The tolerance value tol = 0.01 used for all the tests would induce

a relatively small number of iterations, around 15 on average. The choice of the

maximum number of decomposition levels η, though, is more subtle, being a

trade-off between a high value, enough to remove the noise signature (details)

from the resulting continuum, and a low value, desirable in order to minimize

the dragging effect. Hence, in the above examples we have used η = 6 for the

Teff = 4830 K case (SNR= 150) and η = 7 for the Teff = 14490 K and 2415 K

cases (SNR= 50 and 100).

6.3. Noisy Spectra with Features

The presence of features in the spectrum may influence considerably the de-

termination of the continuum through wavelet decomposition techniques since

features, contrary to noise, contain a very distinct curve shape characterized by

the presence of low frequency components (large scale information) around its

location in the spectrum. This kind of signal is detectable in all wavelet trans-

form scales and remains perceptible through the scaling coefficients of the low-

est scale of the wavelet transform, affecting the continuum determination [31].

To trace a parallel with ECG signals, features are comparable to QRS complexes

which, in certain analysis, have also to be removed in order to allow the recog-

nition of other data components. The obvious approach in this situation is to

identify the features, obtain fitting models to the corresponding data points and

then subtract them from the data, all that prior to the continuum determination.

This implies in arbitrarily choosing several additional parameters like the over-

all shape of the fitting model for each feature, the number of features in case of

wide bands, constraints between modeling parameters and so on, not to mention

the shape of the continuum itself around the features. Even though one may find

many sophisticated algorithms to executed this task [1], we propose here an al-

ternative to feature removal prior to continuum determination, considering the

interpolating properties of the wavelet transform when the details involved are

null.

By analyzing wavelet transform steps one notes that, essentially, the main

step is to predict function values on a finer resolution level using values one

level below. In this sense the predicted approximation is the one obtained by the

convolution with the wavelet filters and the function values – the wavelet co-

efficient being the difference between the original value and the predicted one.
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Nevertheless, the prediction procedure can be used instead to produce values

in even finer resolution levels, without introducing any extra variations to the

original data (in the sense of wavelet variations) since wavelet coefficients are

all assumed to be zero. Therefore the wavelet transform can also be used as a

tool for locally producing smooth values in regions where features need to be

removed. Therefore we execute a very simple yet efficient iterative procedure as

follows: 1) replace the data points around each feature with an initial continuum

approximation; 2) execute Algorithm 1; 3) use the results from the previous step

to define new continuum for the features; 4) repeat steps 2–3 until two consecu-

tive continuum approximations for the features differ less than a given tolerance.

This loop converges first because any possible discontinuities for the continuum

approximation of the features occur at their edges, being captured by the details

in different levels until their contribution no longer counts for the scaling coef-

ficients in the last levels of the transform, and second because the absence of

details in the feature’s continuum approximations will force an interpolation for

the data points with their surroundings, providing a self-consistent continuum

approximation for the features. This heuristic requires no information about the

(possible) features other than their location in the spectrum.

In Fig. 6 we illustrate the effects of strong line features in the continuum

determination and the results obtained when the iterative procedure described

above is employed. As input data we have used the spectral energy distribution

from Example 4 (Sect. 4, Teff = 4830 K case) added with gaussian noise with a

signal-to-noise ratio of 200 and gaussian profiled features with relative intensity

0.3 and −0.4, respectively at 0.50 µm and 0.65 µm, as well as a shallow wide

band built from the superposition of 10 gaussian profiles with relative intensity

of−0.02 spread evenly from 0.985 µm to 1.030 µm. The gaussian profiles were

made with FWHM = 0.001 µm. In panel (a) it is shown the simulated spectrum

(black curve) and the resulting continua obtained using Algorithm 1 for p = 3,

η = 6 and tol = 0.001 with and without feature removal, respectively, by the

red and blue lines. In panel (b) the corresponding errors with respect to the

true continuum are displayed. The blue curve show a typical outcome for the

continuum (feature’s residues and symmetric wings) when no data treatment for

presence of strong or wide features in the spectrum is attempted. Even a shallow

feature like the wide absorption band at 1.0 µm can have a significant impact on

the resulting continuum. The red curve show the results for the same input data

when features are treated as described above. The orange line segments show

the initial continua approximations used to replace the data around each feature.
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The green curve shows the input data with the final continua obtained for each

feature (noiseless segments). The resulting errors are quite negligible, less than

0.3 per cent, and no systematic effects can be found in the residues, not even for

the strong features for which a rough constant initial continuum approximation

was used. These results were obtained using an absolute tolerance of 0.001.

The number of iterations was around 80 for the above procedure and around 10

for Algorithm 1.

6.4. Final Remark

During the construction and analysis of the numerical simulations for this work

it became clear that continuum results near boundaries for any extension type

used could be improved if a local average between the first few data points was

carried out prior to the first level of wavelet decomposition. This average would

diminish the impact of noise on the boundary analysis – in particular for those

cases (not shown) of low signal-to-noise ratios (SNR < 30) – by promoting a

softer transition between the extrapolated smooth data in the extension side of

the boundary and the noisy data in the other side.

Conclusion

In this work we have applied an alternative approach to the boundary exten-

sion problem by means of an extrapolation technique for one-dimension data

sets using orthonormal wavelets from the Daubechies family. The extrapola-

tion approach has been combined with the à trous wavelet transform from the

Bi-orthogonal Spline family, providing an efficient wavelet tool to analyze data,

capable to avoid Gibb’s phenomenon in the data boundary vicinities and expand

the region of confidence and applicability of the transform. Analysis from data

sets made with known functions show the quality of the wavelet extrapolation in

terms of data precision and the perfect amalgam between the two wavelet fami-

lies. An iterative à trous coarsening algorithm was then proposed, where an iter-

ative undecimated wavelet transform is used in conjunction with the wavelet ex-

trapolation procedure to determine the continuum of simulated featureless noisy

spectra of stars. In comparison with other boundary treatments, the wavelet ex-

trapolation has proven to be a robust and reliable alternative, independent of

noise level, decomposition level and continuum shape near boundaries. Rela-

tive errors were found to be in the order of 0.2 per cent or less for the entire set

Complimentary Contributor Copy



120 Alice J. Kozakevicius and Alex A. Schmidt

Figure 6. Continuum results for a simulated spectrum with noise and features.

Panel (a): the input data (black curve) from Example 4 (Sect. 4, Teff = 4830 K

case) with added gaussian noise (SNR = 200), two gaussian profiled features, at

0.50 µm and 0.65 µm, with relative intensity 0.3 and −0.4 and a shallow wide

band constituted by 10 Gaussian profiles with relative intensity −0.02 spread

evenly from 0.985 µm to 1.030 µm. All Gaussian profiles have FWHM = 0.001

µm. The continua obtained using Algorithm 1 (p = 3, η = 6, tol = 0.001)

and wavelet extrapolation extension with and without prior removal of features

are shown respectively by the red and blue curves. The orange line segments

display the initial local continuum approximation used for each feature when

considering feature removal. The green curve shows the input data with the

final continuum approximation for each feature (noiseless segments; see text

for more details). All curves have been arbitrarily moved up or down for a

better visualization. Panel (b): the corresponding errors (difference) between

the true and the obtained continuum shown in panel (a).
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of points of each spectrum. In the case of spectra with features, numerical sim-

ulations have shown that one can take advantage of the interpolatory properties

of the wavelet transform in an iterative algorithm to determine local continuum

approximations without the need of model fitting and feature removal, greatly

simplifying data treatment due to the presence of strong features and/or wide

bands. Although not discussed in the text, the techniques presented in this work

can be applied to two-dimension data sets (images) straightforwardly.
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The “à trous” Transform with Wavelet Extrapolated Boundary ... 123

[17] S.G. Mallat. A theory for multiresolution signal decomposition: the

wavelet representation. IEEE Trans. on Pattern Anal. and Mach. Intell.,

11(7):674–693, Jul 1989.

[18] Boaz Ophir, Michael Lustig, and Michael Elad. Multi-scale dictionary

learning using wavelets. IEEE Journal of Selected Topics in Signal Pro-

cessing, 5(5):1045–1057, 2011.

[19] Miriam Primbs. New stable biorthogonal spline-wavelets on the interval.

Results. Math., 57:121–162, 2010.

[20] Ron Rubinstein, Alfred M. Bruckstein, and Michael Elad. Dictionaries

for sparse representation modeling. Proceedings of the IEEE, 98(6):1045–

1057, 2010.

[21] Limin Shao and Peter R. Griffiths. Automatic baseline correction by

wavelet transform for quantitative open-path fourier transform infrared

spectroscopy. Environ. Sci. & Tech., 41(20):7054–7059, 2007.

[22] Chen Shao-hui, Hongbo Su, Zhang Renhua, and Tian Jing. Fusing re-
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Abstract

Noninvasive brain research is extensively used in modern neuro-

science for studying human cognitive behavior and intellection mecha-

nisms. One of the important technologies for recording brain dynamics

is the electroencephalography (EEG). This method is very convenient for

monitoring brain activity in a wide frequency range with a relatively high

spatial resolution. The EEG data of psychophysiological experiments are

usually processed for detecting characteristic patterns associated with var-

ious cognitive functions, as well as for other types of brain activity. In this

chapter, we show that the wavelet transform has several advantages and

benefits over classical methods of spectral analysis and other approaches.

We demonstrate the success of wavelet processing on the example of

psychophysiological data registered in the experiment with visual percep-

tion of ambiguous objects. Nowadays, ambiguous images are extensively

∗Corresponding Author Email: pavlov.lesha@gmail.com.
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explored for studying visual perception and decision making [1, 2, 3].

However, despite high efforts of many researchers, the main mechanisms

of image interpretation are not yet well understood. Although it is known

that perception is a result of nonlinear processes in a distributed neural

network of occipital, periental and frontal regions of brain cortex [4, 5],

further detailed investigation of these processes is required.

PACS: 87.85.D-, 87.19, 42.66.Si

Keywords: brain, EEG, data processing, wavelet

AMS Subject Classification: 92F, 92C, 68W, 42C40, 65T60

Introduction

The brain is likely the most convoluted and enigmatic object for compre-

hensive studies attracting the burning interest of the broad scientific commu-

nity [6, 7, 8, 9, 10, 11]. Nowadays, the brain is the subject of intensive re-

search of diverse areas of science and technology, including neurophysiology,

medicine, physics, engineering, mathematics, and nonlinear dynamics. The

multidisciplinary approach providing insight into the brain mystery and a deeper

understanding of mechanisms underlying its dynamics, opens promising op-

portunities for humanity in medicine and neurotechnology in the near future.

Different types of complex brain dynamics are resulted from many kinds of

cognitive activity, such as the formation of memory traces [12, 13], information

processing [14, 15], spatial orientation [16, 17], intelligence [18, 19], etc. Due

to their great importance, different brain activities were the research subject of

many scientists [12, 13, 14, 15, 16, 17, 18, 19]. Modern studies of cognitive

processes are usually based on the analysis of the brain dynamics using neu-

rophysiological data noninvasively recorded by electroencephalography (EEG)

and magnetoencephalography (MEG).

The registration of a large number of experimental data requires qualitative

and automated processing. Today, neuroscience uses a variety of mathemati-

cal methods for the analysis of experimental data representing brain activity,

based on modern approaches of nonlinear physics, radiophysics and mathemat-

ics, such as spectral analysis, time-frequency analysis, various modifications of

wavelet and bi-coherent wavelet analyses [6], Hilbert-Huang transform [20, 21],

statistical analysis, linear and nonlinear correlation analyses [22, 23].
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The processing based on the wavelet analysis has advantages and benefits in

comparison with classical spectral approaches and other methods. To demon-

strate the wavelet methods efficiency, we focus on the problem of ambiguous

images perception. These objects were extensively explored because they are

good models for studying cognitive brain functions and decision-making pro-

cesses [1, 2, 3]. However, despite high interest of many researchers, the main

mechanisms of image interpretation are not yet well understood. Nowadays, it

is only known that perception is the result of nonlinear processes taking place

in the distributed neural network of occipital, parietal and frontal regions of

brain cortex [4, 5]. However, which of the brain processes are responsible for

perception decision-making still remains unknown.

Along with fundamental significance, the solution of the problem under con-

sideration has clear practical application. From this point of view, the proposed

approach is aimed on the development of methods for studying different mea-

surable brain activity recordings (EEG, MEG, and diffusive tensor visualiza-

tion) with accompany cognitive processes of ambiguous images interpretation

under objective and subjective factors influence. Clarification of regularities and

understanding of ambiguous images perception mechanisms can be applied to

the development of test software for studying adaptation capabilities and stress

tolerance, i.e., preservation of personal working properties in the presence of

external stimuli. This software type can find application in training and testing

high-class specialists of various professions, where specific personal character-

istics, like attention, monotonous process of concentration in the presence of

external disturbances, fast response and fast adaptation ability to stress are im-

portant. Traditionally, examples of such professional niches are pilots, police,

special forces as well as more rare professions in politics, intelligence, etc.

Furthermore, a study of the mechanisms of cognitive activity arbitrary

regulation in the presence of stress factors is one of the perspective trends in

applied sciences. It is established that the ability disturbance in controlling

cognitive activity at stress situations is one of the main causes of cognitive and

behavioral malfunctions, typical for persons with emotional disorders [24, 25],

alcohol and drug addiction [26], feeding behavior disorders [27, 28], and

other types of neuropsychic disorders. Therefore, understanding of the mech-

anisms underlying cognitive regulation dysfunctions plays a key role in the

development of new branches of diagnostics, treatments, and prevention of

neuro-psychical diseases.
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For a better understanding of the wavelet processing capabilities, we pro-

vide a brief description of our experiment work on data recording during the

perception of an ambiguous image. In our experiments, we used the Necker

cube [29] (Fig. 1), the popular object of many psychological experiments

[30, 31, 32, 33, 34, 35] and theoretical models [32, 36, 37]. This ambiguous

image is a 2D geometric figure which looks as a cube with transparent faces and

visible ribs. An observer without any perception abnormalities sees the Necker

cube as a 3D-object due to the specific position of the cube’s ribs. Bistability in

perception consists in the interpretation of this image as to be either left-oriented

or right-oriented depending on the contrast of different inner ribs. The contrast

I ∈ [0,1] of three middle lines centered in the left middle corner is used as a

control parameter. The values I = 1 and I = 0 correspond, respectively, to 0

(black) and 255 (white) pixels’ luminance of the middle lines. Therefore, we

can define a contrast parameter as I = y/255, where y is the brightness level of

the middle lines using the 8-bit grayscale palette.

Experiment Description

Forty healthy subjects, males and females, between 20 and 30 years old with

normal visual acuity participated in the experiments. All of them provided in-

formed written consent before their participation in the experiment. The exper-

imental studies were performed in accordance with the Declaration of Helsinki

and approved by the Local Research Ethics Committee of the Yuri Gagarin State

Technical University of Saratov.

The most ambiguous image is the cube with equally contrast inner ribs,

i.e., with I = 0.5. While observing the most ambiguous image (central cube

in Fig. 1) for a prolonged time, the mean duration of a particular interpretation

of the cube orientation (left or right) is known to vary from one second to sev-

eral minutes depending on the observer and stimulus conditions (see, e.g. [38]),

whereas the mean response time is rather consistent and varied only by a few

hundred milliseconds (see, e.g. [39]). In order to fix the first impression of

the person and avoid switches between two possible percepts, we presented

the Necker cube images with different wireframe contrasts (as those shown

in Fig. 1) for short time intervals, each lasting between 1.0 and 1.5 seconds.

Such short durations of the stimuli presentation were chosen to reduce the sta-

bilization effect [40, 41], because the probability of the image interpretation,
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Fully left-oriented
Fully right-oriented

I=0 I=0.15 I=0.5 I=0.86 I=1

degree of ambiguity

Figure 1. Examples of Necker cube images. The ambiguity of the Necker cube

is controlled by contrast parameter I. The left-hand image with I = 0 corre-

sponds to the fully left-oriented cube, whereas the right-hand image with I = 1

to the fully right-oriented cube. The middle image with I = 0.5 has the highest

ambiguity.

persisting until the subsequent presentation, strongly depends on the duration

of the previously observed image. There was a high probability for a percep-

tual configuration to persist to the next stimulus presentation only when it was

seen consistently for a relatively long time until the stimulus disappeared. For

the Necker cube, the required time of the consistent observation is known to be

about 1 second [40, 41]. Although the “memory” effect cannot be completely

avoided, it can be significantly diminished by making the length of the stimu-

lus exhibition ν shorter than 1.5 seconds. Moreover, a random variation of the

control parameter I also prevents the perception stabilization. Lastly, to draw

away the observer’s attention and make the perception of the next Necker cube

independent of the previous one, different abstract pictures were exhibited for

about η = 5.0−5.5 seconds between subsequent demonstrations of the Necker

cube images.

All participants were instructed to press either the left or right key depending

on their first impression about the cube orientation at each presentation. The

whole experiment lasted around 45–50 minutes for each participant, including

short recordings of the brain background activity before and after the stimuli

presentation. During experimental sessions, the cubes with different I were

randomly presented (each configuration for about 100 times) and the electrical

brain activity was recorded using the EEG recorder Encephalan–EEGR–19/26

(“Medikom MTD”, Taganrog, Russia) with a two–button input device. The

recorder provided simultaneous registration of neurophysiological data from 19

– 31 EEG channels. The monopolar registration method and the classical ten-
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Figure 2. a Scheme of electrodes’ positions and b typical set of registered EEG

traces. Different segments of the EEG recording are named I, II, III, which

correspond, respectively, to a 1-sec time interval preceding the cube presentation

(before perception), ∼ 1-sec interval during the cube observation (perception),

and 1-sec interval after the cube observation (after perception).

twenty electrode system were used (see Fig. 2 a). The gray-scale images were

demonstrated on the 24” BenQ LCD monitor with resolution of 1920× 1080

pixels and a 60-Hz refresh rate. The subject was located at a 70–80-cm distance

from the monitor with an approximately 0.25-rad visual angle.

Wavelet Processing of EEG Data

Wavelet Approaches to Estimation of Wave Components Dynamics

of EEG Signals

In order to process EEG signals, we focused on the channels in the projec-

tion zone of primary and secondary visual analyzers, where, as is commonly

assumed [4, 5, 42, 43], visual stimulus perception is concentrated. We ana-

lyzed the EEG signals recorded by five electrodes (O1, O2, P3, P4, Pz) placed

on standard positions of the ten-twenty international system [44], using con-

tinuous wavelet transformation. In Fig. 2 a these electrodes are highlighted.

The wavelet energy spectrum En( f , t) =
√

Wn( f , t)2 was calculated for each

EEG channel Xn(t) in the frequency range f ∈ [1,45] Hz. Here, Wn( f , t) is the
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complex-valued wavelet coefficients calculated as [6]

Wn( f , t) =
√

f

t+4/ f
Z

t−4/ f

Xn(t)ψ∗( f , t)dt, (1)

where n = 1, ...,N is the EEG channel number (N = 5 being the total number of

occipital channels used for the analysis) and “∗” defines the complex conjuga-

tion. The mother wavelet function ψ( f , t) is the Morlet wavelet, often used for

the analysis of neurophysiological data, defined as [45, 6, 46]

ψ( f , t) =
√

f π−1/4e jω0 f (t−t0)e− f (t−t0)
2/2, (2)

where ω0 = 2π is the wavelet parameter.

We estimated the value of frequency fmax(t) corresponding to the maxi-

mum energy in the wavelet spectrum using Eq. (1), at every time moment.

The whole experimental series were split into number Ntr 3-sec trials associ-

ated with perception of each individual stimulus. Each trial consisted of three

subsequent segments: (I) before image presentation, (II) during presentation,

and (III) after presentation, as illustrated in Fig 2 b. Then, every trial was split

into Nδt
= 15 time intervals of δt = 0.2 sec long, and its power spectrum was

split into Nδ f
= 15 bands of δ f = 0.2 Hz width each. For the considered time-

frequency plane (t ∈ [0,3] s, f ∈ [1,40] Hz) the distribution of frequency fmax

corresponding to the maximum energy was calculated as follows

L( f , t) = ∑
Ntr

∑
N∆t

∑
N∆ f

γ,γ =

{

1, fmax(t) ∈ δ f ∧ t ∈ δt

0, otherwise.
(3)

In order to quantitatively characterize the distribution L( f , t) for each partici-

pant, the ratios LI
α/LII

α and LI
β/LII

β were calculated as

L
I,II

α,β =

Z

∆tI,II

Z

∆ fα,β

L( f ′, t ′)d f ′dt ′, (4)

where ∆ fα,β is the range of alpha and beta activities and ∆tI,II is the duration of

segments I and II.

Depending on the values LI
α/LII

α and LI
β/LII

β two different scenarios were

identified. The first scenario (Sc. 1) was characterized by a significant decrease
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in the alpha energy during the segment II (perception) with a simultaneous rel-

atively high increase in the beta energy. The second scenario (Sc. 2) was distin-

guished by a strong contribution of alpha-rhythm and much lower pronounced

generation of beta-rhythm during all segments. A more detailed analysis of the

spectral properties associated with the first and second scenarios was performed

for three frequency bands: ∆ fδ = [1−4] Hz (δ-rhythm), ∆ fα = [8−12] Hz (α-

rhythm), and ∆ fβ = [20−30] Hz (β-rhythm), corresponding to typical patterns

of the human cognitive activity. The EEG power spectrum was characterized by

the location of the dominant (most pronounced) spectral components. In partic-

ular, the first (maximal) spectral component in the n-th EEG channel occurred at

frequency f n
1 (t) at which the global maximum En( f n

1 (t), t) took place. Respec-

tively, the second, third, . . ., M-th spectral components appeared at frequencies

f n
2,...,M(t), where En( f n

2,...,M(t), t) exhibited subsequent local maxima.

Using the values f n
2,...,M(t) the EEG spectral properties were characterized

by spectral coefficients Fn
α,β,δ(t) calculated for each channel at every time mo-

ment

Fn
α,β,δ(t) =

M

∑
j=1

Θn
α,β,δ( j, t), Θn

α,β,δ( j, t) =

{

1/ j, if f n
j ∈ ∆ fα,β,δ,

0, if f n
j /∈ ∆ fα,β,δ.

(5)

The obtained spectral coefficients Fn
α,β,δ(t) were averaged over all channels and

time intervals for each segment (I, II, III) as follows

〈Fα,β,δ〉∆tI,II,III =
1

N

N

∑
n=1

Z

∆tI,II,III

Fn
α,β,δ(t

′)dt ′. (6)

Then, for every subject the values of 〈Fα,β,δ〉∆tI,II,III were averaged over K = 400

trials associated with individual perceptions:

〈Fα,β,δ〉∆tI,II,III =
1

K

K

∑
i=1

〈Fα,β,δ〉∆ti
I,II,III

, (7)

where ∆t i
I, ∆t i

II, ∆t i
III are the time intervals of segments I, II, III, associated with

the i-th perception event and F defines the averaging over all presentations. Fi-

nally, the coefficients defined by Eq. (7) were averaged over the subjects demon-

strated Sc. 1 and Sc. 2 scenarios, as follows

|〈Fα,β,δ〉∆tI,II,III |Sc.1,2 =
1

NSc.1,2
∑

NSc.1,2

〈Fα,β,δ〉∆tI,II,III , (8)
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where NSc.1 and NSc.2 are the number of participants with prevailing scenario

Sc. 1 or Sc. 2, respectively.

Multifractal Formalism for EEG Signals

Besides the discussed time-frequency analysis of experimental data which in-

cludes investigations of rhythmic contributions of EEG signals, the continu-

ous wavelet-transform represents a preliminary processing stage within more

complicated algorithms, such as the multifractal formalism, revisited with

wavelets [47, 48]. Although other approaches to estimate the singularity

spectrum have been successfully applied in earlier studies [49], the wavelet-

transform modulus maxima (WTMM) method proposed by Muzy et al. [47] is

a more universal approach. Its advantages consist in the possibility to character-

ize both large and small fluctuations in complex signals (the structure-function

method [49] does not allow analysis of weak singularities) and the ability to

ignore slow nonstationarity (a polynomial trend) typically presented in physio-

logical processes of different origin.

To simplify further characterization of singularities in terms of the Hölder

exponents, the continuous wavelet-transform is written as follows

Wn(s, t) =
1

s

Z ∞

−∞
Fn(u)ψ

(

t −u

s

)

du, (9)

where s is the analyzed time scale, Fn(u) is the distribution function of the EEG

signal Xn(t), and ψ is a real valued wavelet function. A particular feature of

the considered analysis is that the estimated singularity spectrum does not de-

pend on the basic wavelets (theoretically, if we do not take into account a finite

length of time series and finite precision of data recording). In practice, one typ-

ically deals with wavelets constructed on the base of derivatives of the Gaussian

function, among which the MHAT-function

ψ(t) = (1− t2)exp

(

−
t2

2

)

, (10)

one of the most widely used wavelets. It represents the second derivative of the

Gaussian function and possesses two vanishing moments, although wavelets

with m > 2 vanishing moments can be selected while considering singulari-

ties in higher derivatives of the distribution function. In particular, when Fn(u)
represents a sum of a regular part Pk

n (u− t∗) obtained by the expansion of the
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distribution function into the Taylor series up to degree k around singularity

point t∗, and an irregular part described by the Hölder exponent h as

Fn(u) = Pk
n (u− t∗)+C|u− t∗|h, (11)

then the first part will be ignored for m > k, and the Hölder exponent is estimated

using the equation

W(s, t∗) = C

Z ∞

−∞
ψ(u)|su|h(t∗)du ∼ sh(t∗). (12)

Although this equation enables us to compute h(t∗), such approach is feasible

due to interferences produced by nearby singularities. Muzy et al. [47, 48]

proposed a robust method which uses partition functions. It includes extraction

of skeleton L(s) of the wavelet-transform, i.e., all lines of local maxima and

minima, and the construction of functions

Z(q, s) = ∑
l∈L(s)

|W(s, tl(s))|q ∼ sτ(q), (13)

where tl(s) denotes the position of the local maximum (or minimum) at line l.

The scaling exponents τ(q) are computed from the power-law dependence

of Z(q, s) versus q. The Legendre transform is then applied to estimate singu-

larity spectrum D(h)

D(h) = qh(q)−τ(q) (14)

and Hölder exponents h(q)

h(q) =
dτ(q)

dq
. (15)

The singularity spectrum quantifies the Hausdorff dimension D of data sub-

sets with different Hölder exponents h. The most frequently occurred singularity

h(0) associated with q = 0 is characterized by the largest D-value. The Haus-

dorff dimension takes smaller values for seldom singularities related to large

fluctuations (q > 0) and small fluctuations (q < 0), and the singularity spectrum

decreases up to zero when h is far from the mean value h(0).

The shape of D(h)-spectrum is often used to compare complex organiza-

tion of physiological signals related to different organism’s states [50, 51, 52].

Complimentary Contributor Copy



Wavelets in Processing of Neurophysiological Data ... 135

-2.5 -1.5 -0.5 0.5 1.5 2.5
q

-3.5

-2.5

-1.5

-0.5

0.5

1.5

τ

background

perception

-2.5 -1.5 -0.5 0.5 1.5 2.5
q

0.6

0.8

1.0

1.2

h

background

perception

(a) (b)

0.6 0.8 1.0 1.2
h

0.7

0.8

0.9

1.0

1.1

D

background

perception

(c)

Figure 3. Typical changes in multiscale properties of EEG signals observed

during the cube observation. (a) Spectrum of scaling exponents τ(q), (b) Hölder

exponents h(q), and (c) singularity spectrum. Here, the recording from the P4-

channel is considered.

Nevertheless, few numerical measures characterizing this shape need to be in-

troduced for diagnostic-related studies. Among measures which quantify the

D(h)-spectrum geometry, its position h(0) and width β = hmax − hmin are the

most important quantifies. The position of the singularity spectrum along the h-

axis characterizes correlation features of experimental data and has a relation to

scaling exponents quantifying the decay of the correlation function or the spec-

tral power. The width of D(h) reflects the degree of inhomogeneity of complex

processes and is used as a complexity measure. Thus, the singularity spectrum

consisting of a single point is associated with monofractal processes (e.g., 1/ f -
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noise) being simpler as compared with multifractal processes that require many

quantities to describe scaling features for different data subsets. It should be

noted that these quantities can be computed independently on the degree of sta-

tionarity; this circumstance is an advantage of the WTMM method over many

standard techniques for data processing.

Results and Discussion

The perception of an ambiguous image is associated with an increase in the elec-

trical neuronal activity in the occipital lobe [53, 54]. Therefore, in the present

work we analyze the EEG recordings from five channels (P3, O1, Pz, P4, and

O2) taken from the occipital lobe according to the scheme shown in Fig 2 a.

In order to study the perception process, the EEG signals corresponding

to each image presentation were partitioned into three segments: I, II, and III,

as shown in Fig 2 b. Segment I represents the EEG during the time interval

preceding the cube presentation. Segment II corresponds to the time interval

during the cube presentation until the observer presses a button on the joystick.

Finally, segment III starts immediately after the subject presses the button and

lasts for about 1 second. All EEG recordings were processed using the con-

tinuous wavelet transformation with the Morle wavelet function (for details see

section “EEG analysis”). The wavelet power spectra were calculated for each

segment in the frequency band ∆ f ∈ [1,40] Hz.

The wavelet analysis of the time-frequency EEG space showed that the per-

ception of ambiguous images can follow two different scenarios depending on

the relationship between α-, β-, and δ-rhythms dynamics. In order to reveal

selection criteria for one or another scenario, we analyzed the EEG data sepa-

rately for each subject and found that all perception trials can be classified into

two groups of events with distinct spectral relationships, referred to as type-1

and type-2 events, belonging to the first (Sc. 1) and second (Sc. 2) scenarios,

respectively.

In the experimental data, the location of the spectral component correspond-

ing to the maximal value of the wavelet energy was estimated for every segment

(I, II, III) and averaged over the whole session. Similar to the method of the

event-related potential [55], the 3-sec traces of EEG (the structure of the trace is

shown in Fig 2 b) were extracted from the whole recording. For each trace the

coefficient describing the location of the maximal spectral component was cal-

culated by Eq. (3). The obtained dependencies calculated for each segment were
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then lined up in time and averaged to diminish any brain activity unrelated to

the stimulus. As a result, for each subject the dependence L( f , t) reflecting the

dynamics of the main spectral component induced by the stimulus perception

was obtained. In order to quantitatively characterize the obtained 2-D depen-

dencies L( f , t), the coefficients LI
α/LII

α and LI
β/LII

β describing the variation of

the spectral properties in alpha and beta bands during visual perception were

calculated by Eq. (4).
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Figure 4. a Values of LI
α/LII

α (triangles) and LI
β/LII

β (circles) illustrating the rela-

tion between the power of alpha and beta waves in intervals I and II obtained by

the statistical analysis of the 40-min experimental session of 10 subjects from all

40 participants in the experiment. The horizontal dashed lines indicate thresh-

old values defining a > 40% decrease in alpha-activity (line 1) and a > 20%

increase in beta-activity (line 2) used to identify different perception scenarios

Sc. 1 and Sc. 2. The red (gray) boxes highlight subjects 3, 5, 6, 7, and 10 which

followed the first scenario Sc. 1. Other subjects were associated with the second

scenario Sc. 2.

In Fig. 4 we plot the coefficients LI
α/LII

α and LI
β/LII

β by circles and triangles,

respectively, for the group of 10 subjects. Having analyzed the obtained values,

we found that the subjects can be divided into two groups, according to two

different scenarios of the perception process. Each subject was classified into

one or another group based on a set of threshold values (dashed lines in Fig. 2)

defined by a > 40% decrease in alpha activity (line 1) and a > 20% increase in

beta activity (line 2). The solid red boxes in Fig. 4 highlight five subjects (3,

5, 6, 7 and 10) for which LI
α/LII

α and LI
β/LII

β satisfy the threshold values. These

subjects were associated with the first scenario, while other subjects belonged to

the second scenario. In the studies based on wavelet analysis, we have identified
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two different scenarios of brain activity in the perception of ambiguous images

(Necker cubes) for all participants.

Thus, simultaneous singularity spectra obtained by the multifractal analysis

enable separation between the background EEG and the EEG signals acquired

during the cube observation (perception). A typical example is illustrated in

Fig. 3. According to Fig. 3a, the analyzed signal is characterized by a multi-

scale structure, because the dependence of scaling exponents τ(q) is a nonlinear

function and its slope varies depending on the parameter q, i.e., on the con-

sidered range of scales. The latter is illustrated in Fig. 3b, where the Hölder

exponents h(q) being the local slopes of the function τ(q) are shown. The per-

ception process is characterized by reduced values of h(q) as compared with

the background activity, i.e., by changes in correlation properties of the EEG

data during the cube observation. Changes in the complexity measure β are

insignificant and comparable with variations in the characteristics for repeated

cube observations by the same subject. Figure 1c confirms that the singularity

spectrum is translated along the h-axis, but its width does not change. This il-

lustrative example reflects main features of the perception process consisting in

the reduced Hölder exponents. This effect may be interpreted as a transition to

a less “smooth” signal, in which the probability of alternation between the large

and small values increases.

1 2 3 4 5 6 7 8 9 10

subject

0.0

0.1

0.2

0.3

0.4

∆  

 

 

h

Figure 5. Statistical analysis of distinctions in EEG signals during background

activity and cube observation.
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Figure 5 provides the results of the performed statistical analysis. Here, we

show the difference ∆h = hbackgroud(0)−hperception(0). The authentic separation

between the perception process and the background electrical activity of the

brain is confirmed, although the revealed translation of the singularity spectrum

varies among subjects and, moreover, among different cube observations by the

same subject. Due to this fact, the appropriate selection of the EEG channel is

important to improve the characterization of the perception process.

Conclusion

The use of wavelet methods for processing experimental and model neurophys-

iological data is very promising for further development of neuroscience. This

chapter has introduced the reader into the time-frequency analysis of brain ac-

tivity signals and showed recent results on a study of their structure and com-

plexity. Our experimental research on the perception of ambiguous objects have

demonstrated the progress in wavelet mathematics for the EEG data analysis. In

particular, the conducted studies allowed us to reliably distinguish the periods of

the perception of the stimulus object and the background state of passive wake

with open eyes. The use of the continuous wavelet transform made possible to

divide all subjects into two groups demonstrating different scenarios of brain

dynamics in the perception process.

The success of the wavelet methods for the analysis of neurophysiological

data provides great optimism for the prospects in the application of the wavelet

approaches to the development of diagnostic systems and analysis of human

EEG behavior, as well as similar recordings of cerebral brain activity. In ad-

dition, the achievements of modern computational algorithmization suggest an

early possibility of full wavelet real-time signal processing, which will allow the

active use of wavelet approaches to develop systems based on a brain-computer

interface.
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