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Abstract—In the present research, we show the results of
time-frequency and functional connectivity analysis of electroen-
cephalography data recorded during VR-based sensorimotor
integration experiment. We focus on the differences in visually
cued motor reaction processing between two age groups of sub-
jects. Our results provide evidence of compensatory mechanism
engaged by elderly adult group of subjects for sensorimotor
integration task performance. Besides, young adults demonstrate
post-movement beta-rebound, which wasn’t found in older group
of subjects.

Index Terms—sensorimotor integration, age-related changes,
virtual reality, beta-rebound, functional connectivity, compen-
satory mechanism

[. INTRODUCTION

Studying age-related changes in brain functionality is cru-
cial not only in the fundamental meaning of understanding
the neural mechanisms underlying these changes, but also for
development of systems of early diagnostics of neurodegener-
ative diseases [1]. In this context, one of the most discussed
topics is a motor-related activity, since the age-related decline
in motor functions is one of the most prominent and affecting
quality of life [2], [3]. Besides, human motor system tends
to engage with other areas of the brain in a complex manner,
which is provides an extencive source of information about
brain functioning in advanced age [4]-{7].

In the present paper, we propose a whole-scalp electroen-
cephalography (EEG) analysis of dataset obtained from two
age groups during an experiment based on virtual reality (VR).
We implemented a multistage computational strategy based
on time-frequency analysis, functional connectivity analysis
and statistical testing aimed to provide extensive results on
age-related changes in neural responce during motor-related

This work has been supported by Russian Science Foundation (grant 23-
71-01064)

979-8-3503-0574-6/23/$31.00 ©2023 IEEE

activity. We demonstrated that two age groups implement
different strategies of processing VR-based sensorimotor task.
In particular, elderly adults tend to involve larger amount of
brain resouces to process motor action following a visual
cue compared to young adults. Our findings are in line with
modern ideas about how healthy aging affects brain electrical
activity.

II. METHODS

A. Experimental paradigm

EEG signals were recorded using BrainAmp EEG amplifier
with sample frequency 500 Hz and 64 sensors placed on the
subject’s head according to the international 10-20 system [8].
Each participant was seated in the special EEG chair and
instructed to react on target cues by pressing the button on
the gamepad. The cues were presented in VR-based fishing
imitation environment using Oculus Rift headset. There were
two types of cues: visual and audial, each one could be target
and non-target:

1) Target visual cue — sinkage of a float;

2) Non-target visual cue — the float twitches, but does not
sink under water;

3) Target audial cue — frog croaking;

4) Non-target audial cue — crow cawing.

We used data of two groups of subjects: young adult group
(YA, 27 subjects, 18-35 y.o., 12f) and elderly adult group
(EA, 18 subjects, 56-76 y.o., 12f). All participants signed
an informed consent. Experimental paradigm was approved
by ethical committee of Samara State Medical University.
All aspects of the research conformed to the tenets of the
Declaration of Helsinki.
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B. Dataset and preprocessing

For the present research, we used EEG data recorded
during target visual cue presentation only. Before proceeding
with time-frequecy and functional connectivity analysis, EEG
recordings were band-pass filtered (1-100 Hz), and the notch
filter (50 Hz) was applied. We also applied an artefact-removal
procedure using independent component analysis (ICA).

We selected 30 visual cue tasks for each participant. All
epochs were sliced on 6-second time series [-2,4] s centered
at the visual cue presentation.

C. Time-frequency analysis

We estimated spectral power in the range [1,40] Hz for
each set of epochs using Morlet complex-valued wavelet and
performed the baseline correction by substracting the mean of
2.5 seconds baseline preceeding the visual cue and dividing
by the mean of the baseline values. We chose the number of
cycles in the wavelet transform as f for each frequency f.
The obtained spectral power values were then averaged over
epochs for each subject.

To compare obtained time-frequency representations be-
tween groups and select the frequency ranges of interest, we
applied spatio-frequency permutation cluster test using the
tools provided by MNE library for Python [9], [10] (df1 =1,
df2 = 43, p = 0.001, Feriticas = 12.47) with » = 2000
random permutations. To compare the temporal dynamics of
spectral power, we used spatio-temporal cluster test with the
same set of parameters.

D. Functional connectivity

We chose phase lag index (PLI) as a functional connectivity
measure due to it being less sensitive to the intrinsic EEG
properties such as noise and artefacts. The frequency-domain
PLI defined as:

PLL j = [(sign(Im[Si ; ()|, (M

where S; ; is a complex-valued Fourier-based cross-spectrum
of i-th and j-th time-series, f corresponds to the frequency
band of interest, and operator (-) represents averaging over
the time points k.

We calculated the adjacency matrix 62 X 62 for each
epoch during the post-motor interval [0.5,1.5] s with baseline
correction. For each subject, we calculated the mean con-
nectivity matrix averaged over epochs and then performed
between-groups analysis using element-wise comparison of
mean connectivity matrices using one-tailed t-test for inde-
pendent samples.

ITII. RESULTS AND DISCUSSION

Fig. 1 shows the results of between-groups spatio-temporal
and spatial-frequency permutaiton test. The frequency cluster
shown on Fig. 1(A) occurs on the time interval [0.5,1.5] s
that corresponds to the mean reaction time in both groups
(YA - 528 ms, EA — 610 ms). Therefore, we suggest that
the spectral power pattern in this time interval can be caused
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A — Between-subject spatio-frequency cluster (left panel) and the

Fig. 1.
full-range spectral power averaged over the sensors of the corresponding
clusters (right panel) in the time interval [0.5,1.5] s; B — Between-subject
spatio-temporal cluster (left panel) and beta-1 spectral power averaged over
the sensors of the corresponding cluster(right panel).

by the motor execution (pressing a button). We can see that
subjects from both groups experience decline of spectral power
in motor-related rhythm starting approx. with 5 Hz. In YA
group, the desynchronisation is localised in the frequency
band corresponding to the alpha-rhythm, whereas EA subjects
show extended frequency range. The between-groups spatial-
frequency permutation test showed significant cluster in beta-1
range (16-20 Hz) that included sensors located on left motor
cortex (C1, CP1, CP3) and left parietal cortex (P1 and P2),
as shown on the left panel of Fig. 1(A). Due to the spatial
and temporal location of this cluster, we suggests that it
corresponds to motor-related event-related desynchronisation
(ERD) caused by pressing a button as a reaction on visual
stimulation. Beta-thythm EEG oscillations are known to be
actively involved in sensorimotor-related processes. ERD in
beta-rhythm during motor-related tasks is well reported [11]-
[13].

Despite the fact that we observe significance of this cluster
in beta-1 only, we can see that EA group generally demon-
strates broader interval of frequencies that exhibit the decline
in spectral power, whereas the YA group shows a relative
increase of beta-1 spectral power. This can indicate a rapid
increase of beta-rthythm spectral power that often occurs after
movement called a post-movement beta-rebound. To check
this, we performed a two-samples spatio-temporal permutation
cluster test in the frequency range of interest (see Fig. 1(B)).
The test revealed a similarly-located cluster and showed that
the short ERD after presentation of visual cue is followed
by rapid increase of beta-1 spectral power in YA, but not in
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Fig. 2. Between-groups analysis of beta-1 band functional connectivity during motor execution cued by visual stimuli. A — The connections that are significantly
stronger in YA group; B — the connections that are significantly stronger in EA group. Here, APLI is the difference between mean functional connectivity

(YA vs EA).

EA group. Despite the fact that ERD itself wasn’t statistically
significant, the beta-1 rebound was. Age-related decrease of
beta-rebound amplitude was reported previously in a number
of studies [14], [15]. Therefore, the differences demonstrated
by spatio-frequency and spatio-temporal permutation tests are
linked to age-related changes in neural response on motor
action proceeded by visual cue.

We proceed with connectivity analysis in the previously
discussed frequency range and time interval. On Fig. 2 we
demonstrate the results of between-group analysis of beta-1
functional connectivity. Fig. 2 (A) shows the connections that
are significally stronger in YA group. We see that YA group
demonstrates the stronger connections in frontal and temporal
areas.

Fig. 2(B) shows the connections that are significantly
stronger in EA group compared to YA. EA group demonstrates
stronger coupling in occipital, parietal and temporal lobes. We
can also see hubs in CPz and C2 sensors connected to temporo-
parietal, parietal and parieto-occipital lobes. Generally, we see
that EA group is characterised by stronger local and distant
coupling.

Motor execution cued by visual stimulation causes a broader
connectivity pattern in EA group compared to YA. Such
differences between functional connectivity network in beta-
1 range could mean the different activation pattern forming
in two age groups of subjects as a motor reaction on visual
cue. We show that, despite the fact that functional connectivity
network of both groups involves parietal, temporal, occipital
and motor sensors, EA subjects involve much more sensors,
demonstrating a strong almost full-scalp coupling pattern

during motor execution.

We reported a CPz sensor being a strong hub in EA group
providing large-scale connections with temporal, parietal and
occipital areas. In our previous studies on age-related changes
in motor-related neural reactions, we reported the similar result
in theta-thythm and interpreted in as a sign of an age-related
working memory decline [16]-[18]. However, we believe that
the results provided in the present paper can be a strong
evidence of the compensatory increase of number and strength
of connections in EA group. Compensatory mechanism is a
well-reported effect that is associated with pathological as well
as age-related changes in brain structural properties [19].This
is a reorganisation mechanism to prevent the cognitive decline
by recruitment of additional regions to process a task that
requires much less resources in control group [20]. It is
possible to explain the functional connectivity pattern shown
on Fig. 2 with an age-related demand for additional resources
that causes much stronger coupling for processing a motor-
related task in EA group that requires less connections in
young healthy adults.

IV. CONCLUSION

We applied time-frequency and functional connectivity anal-
ysis to reveal the age-related differences in processing of
VR-based sensorimotor task. First, we showed that motor
execution cued by visual stimuli causes significant ERD of
beta-1 frequency band in left-lateralized motor area that is
more pronounced in elderly adults group. This difference
is explained by post-movement beta rebound that occurs in
young adult group, but not in elderly adults.
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Second, we demonstrated that the functional connectivity
pattern in elderly adults engages much more connections
between remote areas as well as on the local level with
particularly strong coupling in motor, parietal and occipital
sensors. We believe that this result is an illustration of a well-
known compensatory mechanism that elderly adults engage to
compencate for age-related brain functionality loss.

Results presented in this paper are in line with both modern
and classical ideas about age-related changes in brain function-
ality.
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