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Abstract—We study motor-related brain activity in the group
of elderly individuals (aged 55-76) using the continuous wavelet
transform and the recurrence quantification analysis (RQA).
Detecting motor patterns on electroencephalograms (EEGs) is a
complex task due to the nonstationarity and complexity of EEG
signal, which leads to the high inter- and intra-subject variability
of traditionally applied methods. It is especially demanded to use
these methods in the context of the elderly group analysis due
to the additional age-related changes of the brain motor cortex
functioning. In the present paper, we show that RQA measure
of complexity is very useful in detection of transitions from
background (normal) to motor-related brain activity captured
via EEG signals. Moreover, used RQA measure of determinism
calculated to quantify brain processes during upper limbs move-
ments reflects contralateral properties of motor-related neuronal
activity, which is helpful at distinguishing between two types of
executed movements.

Index Terms—recurrence quantification analysis, neuroreha-
bilitation, age-related effects, brain-computer interface, event-
related desynchronization, electroencephalography

I. INTRODUCTION

Development of new methods for motor-related brain activ-
ity identification and quantification is of strong demand due to
its social significance, i.e. in the area of neurorehabilitation,
motor skills training, sports etc. [8], [10], [23]. It is known

This work was supported by the Russian Foundation for Basic Re-
search (Grant no. 19-52-55001) and the President Program (Grant no. NSH-
2594.2020.2).

that event-related desynchronization (ERD) or suppression
of µ-oscillations (8-13 Hz) in somatosensory brain cortex
is the hallmark of the motor-related activity in magneto-
and electroencephalographic (M/EEG) data [17], [20]. Most
studies use the data obtained from healthy young individuals
aged 18-40. However, in the context of neurorehabilitation, it
is important to explore the motor activity of elderly groups,
because the age-related changes of brain plasticity significantly
affect the neuronal processes underlying cognitive and motor-
related brain activity. In the present paper, we perform our
analysis within the group of elderly participants aged 55-76
and compare the obtained results with our earlier study [24].

Traditionally, methods of time-frequency analysis are used
to detect ERD in EEG signal [20], [21]. Usually, ERD patterns
are easily observed from the averaged data, but may be
hardly identified from single trials due the nonstationarity and
complexity of EEG signals or inter- and intra-subject vari-
ability. Thus, single-trial analysis requires extracting highly
relevant features and application of the advanced mathematical
tools for their identification. In the present paper we use
averaged spectral power of EEG signals corresponding to the
motor execution to reveal how ERD pattern is formed in the
group of elderly individuals. Besides, we propose a strategy
for the analysis of signal complexity based on the recur-
rence quantification analysis (RQA). RQA was introduced in
1994 [26] to perform the analysis of recurrences emerging
in dynamical systems. RQA was successfully applied in the
climate research [4], [6], analysis of biological data [2], [5]
and neuroscience [1], [3]. In the present paper, we use RQA978-1-7281-8763-1/20/$31.00 ©2020 IEEE
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to analyze the complexity of the motor-related EEG.
In particular, we use windowed calculation of the RQA

measure of determinism (DET) to reveal the transitions of
EEG time series from the background (normal) to motor-
related brain activity. We show that the motor action causes the
reduction of random fluctuations inherent in the background
brain activity and triggers more regular and deterministic
behavior, which is considered as another evidence of motor-
related processes.

II. MATERIALS AND METHODS

A. Dataset

In the present research we used dataset containing EEG
and EMG data of 15 right-handed subjects (7 female). All
participants were relatively healthy, aged 55-76 and had no
history of nervous system injuries and had never participated
in BCI-based training.

We used the same experimental paradigm described in [24].
Subjects were sitting in a comfortable chair and performed two
types of movements according to commands:

1) first short audio signal (1 s): squeeze left hand into fist,
hold it tight until the second short signal, and relax it
after;

2) first long audio signal (1.5 s): squeeze right hand into
fist, hold it tight until the second long signal, and relax
it after.

Subjects performed 30 movements with each hand. Com-
mands were presented randomly in order to avoid the adapta-
tion effect.

The intervals between two tasks (end of the previous task
and beginning of the next) were randomly chosen in the range
6-8 seconds. The time intervals for one task accomplishment
was also selected randomly in the range 4-5 seconds.

Raw EEG signals were filtered using highpass filter with
cutoff frequency of 1 Hz to exclude low-frequency arti-
facts. Specific artifacts as eye-movements, blinking and heart-
beat were removed using independent component analysis
(ICA) [13]. Then, all recordings were additionally filtered in
the range 8-14 Hz using fifth-order Butterworth bandpass filter.
Finally, we collected 30 epochs for each type of executed
upper limb movements (18 second long, 6 seconds baseline).

B. Equipment

During the experimental session, we recorded 31-channel
EEG layout using the noninvasive EEG/EMG system
“Encephalan-EEGR-19/26” (Medicom MTD company, Tagan-
rog, Russian Federation) with sampling rate fs = 250 Hz.
Ag/AgCl EEG electrodes were located on the scalp according
to the ”10-10” International electrode system. In the present
study, we used the subset of 6 EEG electrodes covering the
left and right hemispheres of the brain motor cortex (Fc3, Fc4,
C3, C4, Cp3, Cp4).

To record the muscle electrical activity, we used 2 elec-
tromyography (EMG) electrodes for each hand (1 reference
and 1 recording). EMG signals were used to determine the
exact moments of the motor executions for each participant

during the data preparation and were not used for further
analysis.

C. Time-frequency analysis

On the first step of our study we analyzed the spectral
power of the obtained epochs for each subject. We used the
continuous wavelet transform (CWT):

W (f, t0) =
√
f

∫ +∞

−∞
x(t)ψ∗(f(t− t0))dt (1)

with ∗ representing complex conjugation and ψ — the mother
function:

ψ(η) =
1
4
√
π
eiω0ηe

−η2
2 (2)

as a complex Morlet wavelet, which is widely used in the
analysis of neurophysiological signals [12]. Here, i =

√
−1

and ω0 = 2π – central frequency of the Morlet wavelet.
Then, obtained wavelet coefficients were averaged over the

µ-rhythm (8-14 Hz) and the θ-rhythm (4-8 Hz):

Wµ(t) =

∫
f∈φ

W (f, t)dt (3)

Each of presented subsets of multivariate time series is
considered as a 3D-trajectory. We use this method of state
space trajectory construction to avoid the single variable
embedding problem [7], [14]–[16].

CWT along with the EEG preprocessing steps was per-
formed using MNE package for Python [11].

D. Recurrence quantification analysis

The idea of recurrence plots (RP) uses the natural property
of many dynamical processes to recur. These recurrences are
represented as the neigbouring points of the reconstructed
phase space trajectory. Two states xi and xj of the sys-
tem X are considered similar, if they enter each other’s
ε-neighborhood. Therefore, to visualize them, we construct
binary matrix Ri,j :

Ri,j = Θ(εi − ||xi − xj ||), xi ∈ Rm, i, j = 1...N, (4)

where Θ is a Heaviside function, εi is a recurrence threshold,
||·|| is a norm, and N is a number of considered stated xi [25].
Resulting recurrence matrix Ri,j contains various structures,
such as diagonal and vertical lines, which quantification allows
to uncover hidden dynamical regimes of the system.

In the present paper, we estimate the RQA measure of
determinism (DET) in a 3-sec floating window (750 data
points). Determinism is quantified as follows:

DET =

∑N
l=lmin

lRi,j(ε)∑N
l=1 lRi,j(ε)

, (5)

with lmin = 2 – minimal considered length of the diagonal
line. A diagonal line in RP means that the system’s state
repeatedly passes along its past trajectory for a finite time

Authorized licensed use limited to: Chulabhorn Royal Academy. Downloaded on May 14,2021 at 08:48:34 UTC from IEEE Xplore.  Restrictions apply. 



Left hand

35

30

25

20

15

10

5
0-5 5 10 s

Hz

35

30

25

20

15

10

5
0-5 5 10 s

Hz

35

30

25

20

15

10

5
0-5 5 10 s

Hz

35

30

25

20

15

10

5
0-5 5 10 s

Hz

35

30

25

20

15

10

5
0-5 5 10 s

Hz

35

30

25

20

15

10

5
0-5 5 10 s

Hz

Right hand

35

30

25

20

15

10

5
0-5 5 10 s

Hz

35

30

25

20

15

10

5
0-5 5 10 s

Hz

35

30

25

20

15

10

5
0-5 5 10 s

35

30

25

20

15

10

5
0-5 5 10 s

35

30

25

20

15

10

5
0-5 5 10 s

Hz

35

30

25

20

15

10

5
0-5 5 10 s

Hz

FC3 FC4

C3 C4

CP3 CP4

Hz Hz

FC3 FC4

C3 C4

CP3 CP4

A B

Fig. 1. Event-related desynchronization (ERD) in the brain motor cortex during the left hand (A) and right hand (B) motor executions in the time frequency
domain. Blue areas highlight the significant spectral power decrease as compared to the preceding baseline level.

interval equal to the length of a diagonal line. Therefore,
DET quantifying the percentage of the recurrence points
forming diagonal structures of RP is a parameter describing
the regularity of the process. The less chaotic the time series
is, the longer diagonal lines it causes on the RP.

In this study we considered EEG epochs as a set of two
three-dimensional multivariate subsets representing right and
left hemispheres of the brain motor cortex:

1) right hemisphere (RH): XR(t) = (xCp4(t), xC4(t),
xFc4(t))T;

2) left hemisphere (LH): XL(t) = (xCp3(t), xC3(t),
xFc3(t))T;

RQA has been performed using pyunicorn package for
Python [9].

III. RESULTS

At the first stage we calculated spectral power of EEG time
series corresponding to the motor executions performed by the
elderly people. We used non-parametric cluster-based analysis
with random partitions to detect the areas of statistically signif-
icant ERD in the time-frequency domain as described in [19].
Fig. 1 shows the results of our calculations. Both right and
left hands movements cause significant ERD shortly after the
audio command (marked as vertical dashed line at 0). Note that
the most pronounced ERD is observed in the frequency range

10-25 Hz covering both µ (8-14 Hz) and β (15-30 Hz) bands.
It is also important that contralaterality of ERD traditionally
found in the primary motor area M1 (sensors C3 and C4) is
not observed in the group of the elderly participants [22].
In contrast, the primary somatosensory cortex (sensors CP3
and CP4) demonstrate well-pronounced contralateral ERD
cluster in both left and right hand movements. Therefore,
one can access age-related changes of brain motor-activity by
comparing these results for elderly group and our previous
results for young subjects. For example, it is known that β-
activity has a tend to increase with age [18].

Next, we use XR(t) and XL(t) subsets to analyze the
complexity of the motor-related EEG. For each participant,
we average time dependencies of DET over the epochs and
exclude the averaged baseline level (3 seconds before the audio
command). The results are shown in Fig. 2. First, the DET time
dependence reaches two maxima corresponding to the first and
second motor actions (hand squeezing and relaxing). We also
observe the presence of significant differences between left and
right hemisphere during the right hand movement. Moreover,
the peak of DET is pronounced in left hemisphere, which is
consistent with the well-known effect of contralaterality of the
brain motor activity. However, such effect is insignificant in
the case of the left hand movement.

Finally, we considered the difference between the left and
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Fig. 2. DET time dependence averaged over the epochs (mean±SE) for the
left hand (A) and right hand (B) movements calculated in the right hemisphere
(blue) and left hemisphere (red).
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Fig. 3. Difference between DET in the right and left hemisphere in the case
of the right hand (blue) and left hand (orange) movements.

right brain hemisphere for each hand. One can see from Fig. 3,
the contralateral effect is observed in the motor-related EEG of
elderly group only in the case of right hand movements: while
∆DET for the right hand takes negative values, the ∆DET for
the left hand fluctuates near the zero-level. Therefore, features
revealed via RQA measures of complexity, such as DET, can
be used for classification of two types of movements using
EEG time series.

IV. CONCLUSIONS

We revealed important features of motor-related EEG of
elderly people using time-frequency analysis and recurrence
quantification analysis. An important result is that motor-
related ERD pattern in elderly people is observed rather
in β-band that µ-band, and is pronounced in CP-channels.
Moreover, we repeated our earlier result [24] and confirmed
on another group of subjects, that motor-related EEG is
indeed associated with decrease of signals complexity and
suppression of random fluctuation. Despite the fact the effect
of contralaterality is not pronounced as good as with healthy
young individuals, this study made an important contribution
in research of aging effects of brain EEG patterns formation
and plasticity.
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