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Characterizing chaotic dynamics from integrate-and-fire (IF) interspike intervals (ISIs) is relatively

easy performed at high firing rates. When the firing rate is low, a correct estimation of Lyapunov

exponents (LEs) describing dynamical features of complex oscillations reflected in the IF ISI

sequences becomes more complicated. In this work we discuss peculiarities and limitations of

quantifying chaotic dynamics from IF point processes. We consider main factors leading to

underestimated LEs and demonstrate a way of improving numerical determining of LEs from IF

ISI sequences. We show that estimations of the two largest LEs can be performed using around 400

mean periods of chaotic oscillations in the regime of phase-coherent chaos. Application to real data

is discussed. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4907175]

Characterization of chaotic oscillations in complex non-

linear systems is easily performed when the equations

describing the analyzing dynamical regime are known.

Such a characterization is provided based on the

Lyapunov spectrum that is clearly determined with the

standard approach.
1

However, in many practical situa-

tions, as in Neuroscience or in Earth Sciences, the mathe-

matical model is unknown. Instead often only a scalar

time series representing the discretized phase space coor-

dinate is available. Then, estimation of the Lyapunov

exponents (LEs) can be provided for the reconstructed

attractor.
2

A more complicated problem discussed in

this paper is extracting complex dynamics from point

processes such as, e.g., interspike intervals (ISIs). Here,

we consider spiking events produced by the integrate-

and-fire (IF) model. At a high firing rate, the reconstruc-

tion based on the measured output point process enables

clear and correct estimation of the two largest Lyapunov

exponents. However, quantifying complex oscillations has

limitations at a low firing rate. The aim of this paper is to

improve the quality of extracting chaotic oscillations

from interspike intervals. We discuss features of recon-

struction based on this type of point processes.

I. INTRODUCTION

Point processes in which information about systems dy-

namics is carried by times of some events are widely known

in many areas of natural sciences.3 A typical example is a

sequence of electrical pulses of similar shape produced by a

sensory neuron (a spike train). Such sequences encoding

external stimuli are used by the central nervous system of a

human or an animal as a source of information that provides

an internal representation of the external world in the cortex

of the brain.4 A feature of this kind of data series is a limita-

tion of available knowledge about the continuous-time evo-

lution of the analyzed system. Understanding the processes

of information encoding by neurons and their networks is

still a challenging problem.

From a more general point of view, we may consider a

threshold device with an input and an output: the input signal

S(t) reflects a continuous-time dynamics produced by a com-

plex system, and the output point process Ti, i¼ 1, 2,…,n is

an available data series based on which we need to character-

ize dynamical features of S(t). The works5 addressed this

problem in the context of the reconstruction of dynamical

systems from ISIs Ii¼Tiþ1 – Ti. Two types of quite simple

models of spike generation were considered in these studies,

namely, IF (or integrate-and-reset) and threshold-crossing

(TC) models.6 IF models describe a generation of spiking

events when the integral from S(t) reaches a given threshold

level with the further resetting of the value of the integral.

Besides spiking phenomena in neural networks, IF models

are used, e.g., within delta-sigma data converters7 and in

many other applications. TC models assume a generation of

spikes when a signal S(t) crosses some threshold value H in

one direction. If S(t) is a low-dimensional chaotic signal, the

obtained sequence of ISIs has a relation to return times into

the Poincar�e section.

Point processes generated by IF models represent a sim-

pler case as compared with TC models. Thus, an embedding

theorem was proved for IF ISIs8 being an analogue to the

Takens theorem for time series.9 Therefore, an attractor

reconstructed from an IF ISI sequence associated with cha-

otic oscillations S(t) keeps metric and dynamical properties

of the attractor related to the input dynamics. A reconstruc-

tion based on the sequences of Ii with the standard delay

method provides a possibility to estimate metric characteris-

tics of chaotic regimes such as, e.g., the correlation dimen-

sion.5 A direct application of this method for determining

dynamical properties (in particular, the Lyapunov spectrum)

is less effective, and special approaches may be useful for

increasing the quality of numerical estimations.10,11 Thus, a

transition from TC ISI sequences to time dependencies of
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the instantaneous frequency of oscillations provides an effec-

tive way to quantify chaotic and hyperchaotic regimes at the

input of TC models.12 For IF ISI sequences, a restoration of

the input signal can be performed at high firing rates12 and,

therefore, the input dynamics can be quantified based on a

variety of standard techniques proposed for time series.

Nevertheless, an ability of quantifying dynamical prop-

erties of a chaotic regime from IF ISI sequences at a low

spiking rate is not obvious. In the previous studies,11,12 limi-

tations of the reconstruction techniques for point processes

were discussed with main attention to TC ISIs. In particular,

it was stated that the largest LE can be estimated from return

times if the mean ISI does not exceed the prediction time for

chaotic oscillations.13 Moreover, such estimations are per-

formed for both, chaotic and hyperchaotic regimes even if

some oscillations are missed.12 However, restrictions of

extracting dynamics from IF ISIs were not studied in detail.

In this work, we describe possibilities provided with the

reconstruction methods based on IF ISI sequences. We dis-

cuss a way for increasing the precision of numerical estima-

tions of LEs from IF point processes reflecting chaotic input

dynamics and show that quite short data series are enough

for a correct characterization of dynamical regimes of com-

plex processes from IF ISIs.

This paper is organized as follows. In Sec. II, we

describe a theoretical background of reconstruction based on

IF ISI sequences. In Sec. III, we discuss peculiarities and

limitations of extracting dynamics from point processes and

consider how the obtained results depend on the algorithmic

parameters. In Sec. IV, we briefly describe a possible appli-

cation to natural systems. Some concluding remarks are

given in Sec. V.

II. RESTORATION OF AN INPUT SIGNAL FROM
INTEGRATE-AND-FIRE INTERSPIKE INTERVALS

Integrate-and-fire model of spike generation is widely

used in neurobiology for describing neuron firings associated

with voltage spikes.4,6 It can be treated as a threshold system

with an input signal S(t) that is integrated from a time

moment T0. At the times Ti, i¼ 1, 2,…,n, when the integral

reaches a given value h (a firing threshold), spikes are gener-

ated, and the integral is reset to zero (Fig. 1). This procedure

is defined as

ðTiþ1

Ti

SðtÞdt ¼ h; Ii ¼ Tiþ1 � Ti: (1)

Here, we consider a low-dimensional chaotic process as the

input signal S(t). Analysis of dynamical properties of S(t)
from an output sequence of timings Ti associated with spik-

ing events is easily performed at high firing rates, i.e., for

small interspike intervals Ii. In this case, the integral (1) can

be estimated based on the rectangular rule

ðTiþ1

Ti

S tð Þdt ’ S
Ti þ Tiþ1

2

� �
Ii: (2)

Therefore, the signal S(t) is restored from an IF ISI sequence

(Fig. 2) as

S
Tiþ1 þ Ti

2

� �
’ h

Ii
; (3)

and the precision of such a restoration increases with reduc-

ing Ii.

An obvious limitation of the given approach occurs

when the firing rate becomes small, and the error of the

approximation (2) increases. According to the mean value

theorem, time moments t̂ i can be introduced at which the

values Sðt̂ iÞ are estimated from ISIs

S t̂ið Þ ¼
h
Ii
; Ti � t̂ i � Tiþ1: (4)

Because we deal with point processes and information on the

dynamics between the times Ti is not known, an uncertainty

d in determining of t̂i appears

t̂ i ¼
Ti þ Tiþ1

2
þ di

� �
: (5)

FIG. 1. Transformation of the input signal S(t) into a sequence of spikes by

the integrate-and-fire model (1).

FIG. 2. Restoration of the input signal S(t) from the output IF ISI sequence

at a high firing rate. The original signal is shown by the solid line, and the

signal restored from IF ISIs is given by the dashed line.
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This uncertainty increases for larger Ii associated with the

larger threshold h (Fig. 3).

Larger d imply larger errors in the restoration of sample

points Sðt̂iÞ. Further, we shall discuss limitations of the

appropriate reconstruction of the attractor’s dynamical char-

acteristics based on IF ISI sequences at the increased thresh-

old level. Since time intervals between the data points Sðt̂iÞ
are varied, in order to use the standard approach for the

reconstruction,14 these samples are interpolated by a smooth

function (e.g., by a cubic spline). The interpolation increases

the number of points in the reconstructed phase space allow-

ing a reduction of the orientation errors and provides a way

to apply the widely used method for LEs estimation from

time series.2

Note that the value of h is unknown when dealing with

the output point processes. Restoring the input signal, we

can take h¼ 1 in Eq. (3). In this case, a linear transformation

of the input signal kS(t) is obtained; however, the value of

k¼ 1/h does not influence the further reconstruction and the

estimation of LEs.

III. EXTRACTING DYNAMICAL CHARACTERISTICS
FROM INTEGRATE- AND-FIRE POINT PROCESSES

Aiming to discuss abilities of quantifying dynamics

based on IF ISI series, we consider the R€ossler system as the

source of chaotic oscillations at the input of the IF model

dx

dt
¼ � yþ zð Þ;

dy

dt
¼ xþ ay;

dz

dt
¼ bþ z x� cð Þ

(6)

with the parameter set a¼ 0.15, b¼ 0.2, and c¼ 10.0 related

to a chaotic regime. Avoiding negative values of the input

signal, perform a translation of the coordinate x(t) as

S(t)¼ x(t)þ 40. The threshold h defines the firing rate of IF

model. According to the description in Sec. II, an increased

error of determining metric and dynamical characteristics is

expected with growing h.

In this study, we estimate Lyapunov exponents as nu-

merical measures of complex dynamics produced by Eqs. (6)

using the approach.2 Within this approach, the largest LE is

computed as an average rate of the exponential growth of

small perturbations

rðtÞ ¼ r0 exp ½k1ðt0Þðt� t0Þ�; (7)

where r0 represents the distance between the fiducial and a

neighboring trajectories in the reconstructed phase space at

the time moment t0. Evolution of this perturbation is charac-

terized by the increment k1(t0) that varies for different points

in the phase space (the latter is indicated by its dependence

on the time moment t0). After averaging local values of

k1(t0) along a typical phase trajectory, the largest LE is

obtained. Note that the dependence (7) is valid only for small

distances r(t). If the value of r(t) does not satisfy the condi-

tion of a linear approach (i.e., the exponential divergence of

trajectories), renormalizations are required that assume

selections of replacement vectors of smaller size. In general,

a maximal available distance l between the trajectories can

be introduced. If r(t)> l, renormalizations are performed.2

Typically, l takes the value 5%–10% of the attractor size.

Further, we show that this parameter is of a high importance

when computing LEs from point processes. Besides, renorm-

alizations are performed after a fixed time interval that pro-

vides a higher quality of estimations for inhomogeneous

attractors. We used time intervals between renormalizations

comparable with the mean period of oscillations.

At high firing rates, estimations of LEs from IF ISI se-

ries should be nearly close to the values computed from the

coordinate x(t) using the approach2 or with the standard

method.1 Figure 4 verifies a correspondence between LEs

estimated with the three mentioned techniques in a wide

range of h. Up to about h¼ 60, the error of determining LEs

from IF point processes is quite small.

FIG. 3. Restoration of the input signal S(t) from the output IF ISI sequence

at a reduced firing rate. Arrows indicate uncertainties d in positions of time

moments t̂ i that increases with the threshold value h.

FIG. 4. Two largest LEs estimated from IF ISI series for different values of

the threshold level h. Dashed line indicates the expected value of

k1¼ 0.0873 obtained with the standard method.1 Dotted line corresponds to

the value k1¼ 0.0894 computed from the coordinate x(t) using the

approach.2
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The latter value of h is associated with the mean IF ISI

(�I) equal to about 25% of the averaged period of chaotic

oscillations x(t). Larger �I does not allow a correct estimation

of both, k1 and k2. According to Fig. 4, the second LE takes

positive values in the region h> 60 providing spurious iden-

tification of the analyzed dynamical regime. Similar results

are obtained for other sources of chaotic oscillations in the

regime of a phase-coherent attractor. Thus, we consider the

condition �I < Tb=4 as the limitation of an appropriate quan-

tifying the chaotic dynamics from IF ISI sequences, where

Tb is the mean period of the chaotic oscillations, i.e., the pe-

riod associated with the basic frequency in the power spec-

trum.12 Here, we discuss the case of weak (phase-coherent)

chaos. For strongly developed chaotic dynamics, this condi-

tion may be corrected.

Independently of h, LEs computed from IF ISI sequen-

ces do not demonstrate essential changes at the variation of

the reconstruction parameters such as the time delay (s) or

the embedding dimension (d) (Fig. 5). Due to fluctuations of

k1, averaging for different s and d is necessary to obtain a

reduced error of determining LE from the considered type of

point processes. According to Fig. 5, underestimated values

of k1 are obtained for large thresholds (h> 60), and an

appropriate selection of the reconstruction parameters does

not significantly improve the results.

Figure 6 illustrates how the value of k2 depends on the

same reconstruction parameters. Note that in the region

h> 60, the analyzed chaotic regime is wrongly diagnosed as

hyperchaotic. Here, the selection of the time delay s and the

embedding dimension d do not essentially influence the

obtained result (although k2 varies with s and d, the value

k2> 0 is obtained for h> 60).

The selection of the algorithmic parameters becomes

more important when considering the dependence of k1 on

the maximal size of the perturbation vector l that defines the

condition of a linear approach associated with the exponen-

tial growth of perturbations in the vicinity of the fiducial tra-

jectory. According to Fig. 7(a), the value of l should

appropriately be chosen for correct determining of k1.

Let us discuss features of the dependencies shown in

Fig. 7(a) starting from the case h¼ 5 (marked by stars). For

this threshold level, the firing rate is high (about 50 spikes

per period of chaotic oscillations) and the uncertainty d is

fairly small and can be excluded from the consideration.

FIG. 5. The largest LE estimated from IF ISI series for different h depending on the time delay s between successive coordinates of the reconstructed vector.

Circles show the values related to the embedding dimension d � [4, 8]. The considered range of s corresponds to about 8%–33% of the averaged period of cha-

otic oscillations. The values h¼ 5, 20, 60, 80 are related to the firing rate of about 50, 12, 4, and 3 spikes per mean period of oscillations, respectively. The

dashed line is the same as in Fig. 4.
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There are two main factors reducing k1 in the regions of

small and large l, respectively. For small l, underestimated

values of k1 are caused by orientation errors occurring during

replacements of the perturbation vectors in the reconstructed

phase space.2 The less l is, the more often are the replace-

ment procedures performed, and the corresponding error can

be accumulated in the course of averaging of the rate of tra-

jectories divergences.

FIG. 6. The second LE estimated from IF ISI series for different h depending on the time delay s between successive coordinates of the reconstructed vector.

Circles show the values related to the embedding dimension d � [4, 8]. The considered range of s corresponds to about 8–33% of the averaged period of cha-

otic oscillations. The solid line indicates zero value of the second LE.

FIG. 7. The largest LE estimated from IF ISI series depending on the maximal size of the perturbation vector l (a), and the width of the corresponding depend-

ence for different threshold levels (b). The value of Dk is estimated at the level 80% of the maximum of k1(l). The dashed line is the same as in Fig. 4.
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For large l, the value of k1 is restricted by the condition

of a linear approach. When the distance between the fiducial

and a neighboring trajectory increases up to about 10% of

the attractor size, the divergence of trajectories becomes not

exponential leading to underestimated values of k1. In this

case, the vector size before the replacement is typically less

than the expected value. Such limitation may be roughly

described by the dependence

k1 lð Þ � 1

t�
ln A� B � lð Þ; (8)

where t* is the time between replacements, A and B are some

constant values, A� B. The dependence (8) is illustrated by

the inset 2 in Fig. 7(a). The latter limitation always occurs

when computing LEs from time series with the approach.2

The interplay between two considered factors reduces k1,

and the estimated value may become less than the expected

LE.

When dealing with IF ISI sequences considered at large

h, an additional factor appears that limits the value of k1 in

the range of small l. In this region, the size of the perturba-

tion vector r0 becomes comparable with the value of d char-

acterizing uncertainty in determining the time moment

associated with the current value of S(t) (Fig. 3). Within the

first approximation, when considering equal uncertainty for

the replacement vector and the perturbation vector before the

replacement, k1 can be roughly estimated as follows

k1 lð Þ � 1

t�
ln

lþ d
r0 þ d

� �
: (9)

The latter dependence reduces k1, and the resulting LEs for

larger d associated with larger h decrease what is illustrated

by the inset 1 in Fig. 7(a). This inset shows dependencies of

scaling coefficients that reduce k1 for different l and two val-

ues of d.

Aiming to characterize the dependence k1(l) (Fig. 7(a)),

its width Dk is introduced. Here, we consider Dk as the dis-

tance between two values of l related to the level 80% from

the maximum of k1(l), i.e., the values k1 ’ 0.07. Let us note

that the width Dk of the dependence k1(l) decreases with the

growing threshold level (Fig. 7(b)) providing a way for quan-

tifying effects of uncertainties d leading to underestimated

LEs. Thus, computing of the dependencies k1(l) allows esti-

mating more precise values of LEs (related to their maxima)

and characterizing effects of low spiking rate by reducing

Dk.

Aiming to avoid possible effects of short data series,

estimations of LEs in Figures 4–7 are performed for sequen-

ces consisting of 10 000 IF ISIs. From numerical estimations,

we have found, however, that a reduced number of data

points is enough for a correct determining of Lyapunov

exponents from integrate-and-fire point processes. Figure 8

demonstrates the dependencies of k1 and k2 versus the dura-

tion n of IF ISI sequences.

Both LEs are close to the expected values marked by

dashed lines at large n. A good precision of determining k1

(with an error less than 10%) is obtained for n> 1500 IF ISIs

that corresponds to about 125 mean periods of chaotic oscil-

lations (Tb). If the two largest LEs need to be estimated, e.g.,

to clearly separate between chaotic and hyperchaotic dynam-

ics, the length of data series should be increased up to about

4500 IF ISIs.

IV. APPLICATION TO REAL DATA

The considered approach can be used to analyze real

data; however, its several features need to be mentioned.

First of all, we should be careful with interpretations of the

obtained results. Thus, for natural systems, we cannot be

sure in the exponential divergence of trajectories in the

reconstructed time space (due to noise, nonstationarity, etc.).

That is why the values of k1,2 are better to interpret as nu-

merical measures quantifying complexity (or instability) of

the analyzed regime. Second, the threshold value is an

unknown quantity when dealing with the output point proc-

esses. However, the knowledge of the threshold value is not

important for the estimation of k1,2 from ISI sequences and

the latter can be computed if the firing rate is quite high.

As an example of real data, let us consider an electrocar-

diogram (ECG) and perform estimations of k1,2 from the

whole ECG (Fig. 9) and from a sequence of beat-to-beat

intervals being times between the consequent R-peaks. For

this purpose, we used ECGs of 5 young (20–22 years) healthy

humans recorded under normal conditions. In the case of the

whole ECG-recordings, we obtained the values (indicated as

mean 6 SE) k1¼ 0.49 6 0.12 and k2¼ 0.28 6 0.09. Applying

the considered approach for about 1000 beat-to-beat intervals

representing an example of the output point process, we got

quite similar values k1¼ 0.46 6 0.14 and k2¼ 0.23 6 0.12.

Thus, the consideration of point processes provides similar

quantities of complexity as the analysis of the whole ECG.

These quantities can be used to characterize the state of an or-

ganism under different physiological conditions.

FIG. 8. Two largest LEs estimated from IF ISI series depending on the num-

ber of data points n for h¼ 20. The used definitions are the same as in

Fig. 4. Here, we considered about 3 * n data points after the interpolation.

The results are nearly insensitive to the selected interpolation step as

compared with the maximal size of the perturbation vector.
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V. CONCLUSION

In this study, we have considered potentials and limits

of extracting dynamical features of chaotic processes at the

input of the IF model from the output sequences of interspike

intervals. Although this problem can easily be solved at high

firing rates, its solution becomes more complicated when the

spiking activity reduces. As a result, the diagnosed chaotic

regime at the input of IF model can wrongly be characterized

as hyperchaotic if the mean ISI exceeds the value of about

Tb/4, where Tb is the mean period of oscillations in the re-

gime of phase-coherent chaos.

We have described features of the dependence of k1 on

the maximal distance between the trajectories in the recon-

structed phase space l associated with the limits of the linear

approach, and we have shown that the width of this depend-

ence decreases with growing h. On the one hand, this de-

pendence provides an opportunity of selection the optimal

parameter l leading to a more precise estimations of LEs.

Thus, taking into account restrictions occurring for small and

large l, the better selection of l is associated with the maxi-

mum of k1(l). On the other hand, a reduced width of the

given dependence characterizes effects of uncertainties

occurring at a low firing rate. Low values of Dk may serve as

a sign of underestimated LEs in the course of their comput-

ing with the standard method.2

Unlike the case when the equations describing the ana-

lyzed dynamical regime are known, estimations of LEs from

time series with the reconstruction technique are accompa-

nied by orientation errors when performing renormalizations

of perturbations in the reconstructed phase space. These

errors have a tendency to essentially accumulate for each se-

quential LE. Due to this, we have restricted by only two LEs

that can be estimated with an appropriate quality.

Based on the obtained results, we can also conclude that

a quite short the input signal is enough for a correct

characterization of the analyzed dynamical regime. Thus, if

only the largest LE should be estimated from IF point proc-

esses, this can be done with an error of 10% from an input

signal consisting of about 120–150 mean periods of oscilla-

tions. In order to clearly distinguish between chaotic and

hyperchaotic regimes from IF ISI sequences, the duration of

the input signal should be increased up to about 350–400

mean periods. This approach can be used as an alternative to

other recent methods for characterizing chaos-hyperchaos

transitions.15 It can be applied to real data aiming to charac-

terize, e.g., the state of a natural system under different

conditions.
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FIG. 9. An example of the considered ECG recording (a short fragment).
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