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Abstract: Experiments show activation of the left dorsolateral prefrontal cortex (DLPFC) in motor
imagery (MI) tasks, but its functional role requires further investigation. Here, we address this issue
by applying repetitive transcranial magnetic stimulation (rTMS) to the left DLPFC and evaluating its
effect on brain activity and the latency of MI response. This is a randomized, sham-controlled EEG
study. Participants were randomly assigned to receive sham (15 subjects) or real high-frequency rTMS
(15 subjects). We performed EEG sensor-level, source-level, and connectivity analyses to evaluate the
rTMS effects. We revealed that excitatory stimulation of the left DLPFC increases theta-band power
in the right precuneus (PrecuneusR) via the functional connectivity between them. The precuneus
theta-band power negatively correlates with the latency of the MI response, so the rTMS speeds up
the responses in 50% of participants. We suppose that posterior theta-band power reflects attention
modulation of sensory processing; therefore, high power may indicate attentive processing and cause
faster responses.

Keywords: motor imagery; transcranial magnetic stimulation; sensorimotor integration; motor
imagery latency; dorsolateral prefrontal cortex; precuneus

1. Introduction

Motor imagery (MI) is defined as the mental simulation of a given movement in
working memory without any overt motor output [1]. MI is widely used motor and as
a technique in neurorehabilitation [2–7], motor and skill training [8–11]. Although the
contribution of MI to the improvement of motor performance is well established [12],
the neural mechanisms underlying MI are not fully understood.

Neuroimaging studies reveal that MI consistently recruits a network of bilateral pre-
motor (supplementary motor areas, the dorsal and ventral premotor cortices, the cingulate
and putamen), rostral inferior and middle superior parietal (the inferior and superior
parietal lobules), basal ganglia, and cerebellar regions [13–16].

A recent meta-analysis identified the involvement of the left dorsolateral prefrontal
cortex (DLPFC) in MI rather than in movement execution or motor observation [15]. Nev-
ertheless, the functional contribution of the DLPFC to MI is still undefined,impair th giving
rise to several hypotheses [17]. It is assumed that involvement of this area in MI may be
due to the necessity of working memory activation during MI [18,19] or the similarity of MI
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to frontal-executive functions related to action preparation [20]. Alternatively, as the role
of DLPFC in movement inhibition is well established [21–23], it is supposed that DLPFC
activation in MI tasks reflects control of overt movement prevention.

In line with these hypotheses, numerous studies have shown a greater involvement
of DLPFC in MI than in motor execution [24–30]. Kim et al. showed that connectivity
between the premotor cortex and DLPFC is crucial for performing MI [31]. Moreover,
the connectivity strength from the supplementary motor area to the DLPFC is positively
correlated with MI performance [32,33]. Mizuguchi et al. found that the right DLPFC
and the right inferior parietal lobule showed a higher level of activation during MI while
holding an object [34].

Transcranial magnetic stimulation (TMS) is a non-invasive technique that uses mag-
netic fields to stimulate specific regions of the brain. TMS allows for the direct modulation
of neural activity in targeted brain regions, providing insights into their causal role in
cognitive processes [35,36]. It has been widely used in neuroscience research to investigate
the involvement of different brain areas in various cognitive processes, including MI. TMS
studies focusing on MI have aimed to identify the brain regions involved in this process and
understand the underlying neural mechanisms. Specifically, TMS applied over the primary
motor cortex (M1) during MI tasks has been shown to modulate corticospinal excitability,
as measured by motor-evoked potentials recorded from muscles [37–39]. This suggests that
M1 plays a crucial role in MI processes. Also, TMS studies have shown that stimulating
the supplementary motor area (SMA) during MI tasks can affect response times, accuracy,
and motor cortex excitability [40,41]. These findings suggest that the SMA contributes
to MI by coordinating and planning motor sequences. Furthermore, TMS studies have
revealed that stimulating the dorsal premotor cortex (PMd) during MI tasks can modulate
corticospinal excitability [42,43]. This shows that the PMd is involved in motor planning
and execution processes during MI. Also, the parietal cortex has been implicated in sen-
sorimotor integration and spatial processing during motor imagery. TMS studies have
shown that disrupting the parietal cortex during MI tasks can impair performance [44–46],
suggesting its involvement in motor imagery-related processes. Interestingly, Martel and
Glover have shown recently that inhibitory TMS over the right DLPFC slowed MI without
affecting overt actions, suggesting a specific role for this region in the control of movement
inhibition during MI tasks [17].

The mentioned studies, among many others, highlight the utility of TMS in elucidating
the causal role of specific brain areas during MI. However, it is worth noting that the
interpretation of TMS results requires careful consideration, and additional research is
often necessary to fully understand the complex interplay of brain networks involved in
cognitive processes. Particularly, the functional role of the DLPFC in MI tasks requires
further investigation.

The present study aimed to investigate the functional contribution of the left DLPFC
to the MI using transcranial magnetic stimulation (TMS). We applied a single session of
high-frequency repetitive TMS (rTMS) to the left DLPFC before healthy subjects started MI
tasks. We hypothesized that rTMS would alter neurophysiological correlates of MI (e.g.,
the characteristics of EEG event-related desynchronization (ERD) [47,48]). We analyzed
the effects of rTMS on the neural source power distributions and functional connectivity
between the left DLPFC and other areas involved in the MI task. Moreover, we estimated
how rTMS influences the performance of MI using the latency of the MI-related ERD. This
approach will allow us to gain insights into the neurophysiological correlates of MI and the
specific contribution of the left DLPFC to this cognitive process.

2. Materials and Methods
2.1. Subjects

Thirty right-handed healthy adult volunteers (21 females/9 males; age range:
18–34 years old; age (mean ± standard deviation (SD)): 20.93 ± 2.14 years) with no pre-
vious psychiatric or neurological history participated in the experiment. 70% (21/30) of
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volunteers were students of medicine and biology, followed by 20% (6/30) engineering
students and 10% (3/30) other students (pursuing degrees in law, business, etc.). The Ed-
inburgh inventory was applied to identify hand laterality (mean ± SD: 0.77 ± 0.18) [49],
and the Screening questionnaire for transcranial magnetic stimulation (TMS) was employed
to verify if subjects had contraindications to receivingmized sham-contr repetitive TMS
(rTMS) [50]. All participants were naive to stimulation. One subject dropped out of the
experiment due to pain symptoms during the TMS. Before each experiment, participants
were instructed on the design of the experiment.

2.2. Experimental Design

This was a randomized, sham-controlled study. Participants were randomly assigned
to receive sham (15 subjects) or real rTMS (15 subjects). These groups were not statisti-
cally different with respect to the age and gender of the volunteers: the real rTMS group
included 11 females/4 males, age: 22.4 ± 1.3 years; the sham rTMS group included
10 females/5 males, age: 19.9 ± 2.5 years. Throughout the experiment, participants were
comfortably seated in a reclining chair with their arms resting on armrests. The experi-
mental scenarios were presented on a 27-inch LCD screen positioned at a distance of 2 m.
Participants were instructed to remain relaxed with their eyes open throughout the entire
experiment, except when performing specific experimental tasks. The experimental design
is illustrated in Figure 1. Prior to and following the experiment, the background EEG
activity was recorded for a duration of 3 min. The experiment comprised four distinct tasks:
motor execution (ME), quasi-movement (muscle tension can be detected by EMG but is not
observed visually, QM), and two instances of motor imagery (MI1 and MI2) involving the
dominant (right) hand. The sequence of these tasks was organized to facilitate the accurate
execution of kinesthetic motor imagery by the participants. Each experimental task lasted
for 3 min and 2 s. A 2 min resting period was provided between tasks. Real or sham rTMS
was administered during the interval between the two motor imagery tasks. Following the
stimulation, participants were allowed a 2 min rest period before performing the second
motor imagery task.

Figure 1. Experimental design. (Upper panel) Timeline of the experimental session. (Middle panel)
The illustration of the typical sequence of the visual cues and the structure of one trial. (Lower
panel) The illustration of the time intervals of interest within a trial: “Pre” is the baseline pre-que
interval [−4.5, −0.5] s; “Post” is the post-cue interval [0, 0.5] s; “Img” is the interval [1, 3] s of motor
imagery execution; here, t = 0 corresponds to the moment of the appearance of the visual cue to start
the movement.
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Specific visual cues corresponding to each experimental task were presented on the
monitor. Each task consisted of 20 trials, with each trial lasting 10 s (see Figure 1). A trial
commenced with the appearance of a white cross on a gray background, serving as a
fixation point for 5 s. Subsequently, a right-oriented arrow alongside the cross appeared
on the monitor for 5 s, indicating the subject to execute the motor task. Participants
were instructed to clench their right hand into a fist during this period, whether in actual
execution or in imagination. It was emphasized that participants should refrain from
generating EMG activity during MI. No specific instructions were provided regarding
the number of overt or imagined movements to be performed. On average, participants
managed to execute 2–3 movements during the 5-second interval. A trial concluded with a
pause, during which the arrow disappeared from the monitor and the cross reappeared for
5 s. Participants utilized this interval to rest and concentrate on their breathing.

The experimental session lasted for approximately 1.5 to 2 h. Throughout the session,
the experimenter continuously monitored muscle activation during quasi-movement and
motor imagery tasks using real-time EMG signal monitoring. EEG data were recorded
for the entire duration of the experimental session. The participants’ heads remained still
during the EEG recording and TMS session. The subjects sat in a special chair with a neck
support pillow. This allowed them to relax their neck muscles and perform tasks without
moving. However, there were “Rest” sessions that allowed participants to move their heads
as well as their bodies.

2.3. Experimental Equipment
2.3.1. Electroencephalography Recording

To acquire the data, we employed a 48-channel NVX-52 amplifier (MKS, Zelenograd,
Russia). EEG signals were captured using 32 standard Ag/AgCl electrodes positioned
in accordance with the international “10-10” system. The earlobe electrodes served as
references, while the grounding electrode was positioned on the forehead. Electrode
impedance was maintained below 15 kΩ. The EEG signals were digitized at a sampling
rate of 1 kHz.

2.3.2. Repetitive Transcranial Magnetic Stimulation

The target region for transcranial magnetic stimulation (TMS) was the left dorso-
lateral prefrontal cortex (DLPFC) (Figure 1). The specific coordinates of the target site
within the DLPFC were set to [79, 46, 51] mm in the CTF coordinate system, referencing
the “Colin27” brain MRI averaged template [51]. These coordinates were determined by
averaging the reported left DLPFC rTMS seed locations from existing literature [52–54].
At the onset of the experimental session, the location of the DLPFC for stimulation was
automatically identified on the subject’s scalp using the Localite TMS Navigator system
(Localite, Bonn, Germany). To align an individual’s head with the averaged stereotaxic
MRI brain atlas, three landmarks (left and right lateral canthi, and nasion) and approx-
imately 20 lines drawn on the surface scalp with a Localite pointer fitted with optical
markers were utilized.

The TMS coil was equipped with optical markers, and additional markers were
attached to a headband worn on the subject’s forehead to maintain a fixed coil location
relative to the head. The position of the coil during stimulation was continuously monitored
and recorded.

To induce facilitation of excitability in the DLPFC, we utilized high-frequency rTMS.
The stimulation was administered using a focal figure-of-8 coil with an outer diameter of
7 cm for each wing, connected to a standard Neuro MS/D magnetic stimulator (Neurosoft,
Ivanovo, Russia). Following the established procedure [50,55,56], the individual resting
motor threshold (RMT) was determined as the minimum stimulator intensity required to
elicit a peak-to-peak response of at least 50µV in the flexor digitorum superficialis muscle in
a minimum of 5 out of 10 repeated trials. The rTMS parameters were as follows: a duration
of 6 min, a frequency of 5 Hz, 1800 pulses, and an intensity set at 90% of the individual RMT.
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These parameters align with previous experimental studies demonstrating that 5 Hz rTMS
over the premotor cortex induces short-lasting (up to 1 h) facilitation in the excitability
of the hand area in the primary motor cortex [57–59]. Moreover, evidence suggests that
high-frequency rTMS at 5 Hz leads to a transient increase in corticospinal excitability [60],
with comprehensive reviews available on this topic [61]. The coil was positioned tangen-
tially over the head, with the handle oriented posterolaterally at a 45◦ angle relative to the
sagittal plane. The stimulation protocol adhered to the safety recommendations published
in the literature [62–64]. Sham stimulation proceeded exactly as described for rTMS, with
the coil tilted 90 degrees so that its edge rested on the head. Nowadays, it is a popular
method for sham TMS [65,66]. The sham procedure provoked a clicking sound comparable
to the real stimulation.

2.3.3. Electromyography Recordings

EMG signals were captured using a pair of COVIDIEN (USA) Ag/AgCl hat-shaped
electrodes positioned on the Musculus flexor digitorum superficialis of the right hand.
To provide a stable reference, a ground electrode was placed on the left forearm, which
exhibited no muscle motion [67]. Electrode impedance was maintained below 15 kΩ.
The EMG signal was digitized at a sampling rate of 1 kHz using the NVX-52 amplifier and
filtered with a 50 Hz notch filter.

2.4. Data Analysis

The data analysis pipeline included the following steps: (1) EEG data preprocessing
and epoching (see Sections 2.4.1 and 2.4.2); (2) sensor-level analysis, including wavelet anal-
ysis (Section 2.4.4); (3) estimation of the motor imagery brain response time (Section 2.4.5);
(4) source-level analysis (Section 2.4.6); (5) connectivity analysis (Section 2.4.8). EEG data
preprocessing, epoching, source-level analysis of data, and the related processing, including
source-level statistics, as well as connectivity analysis, were performed in MATLAB 2018b
(Mathworks) using FieldTrip Toolbox [68]. Sensor-level analysis and the procedure for
estimating the MI brain response time were implemented with the Python MNE package.
All other statistical tests and regression analyses were performed using the Python SciPy
and NumPy packages. All results were visualized using Matlab or FieldTrip plotting
functions and Python packages such as MNE and Matplotlib.

2.4.1. EEG Preprocessing

Power line interference at 50 Hz and its harmonics were removed from the data with
a band-stop ([49.5, 50.5] Hz) Butterworth filter. Additionally, a band-pass ([1, 70] Hz)
Butterworth filter was applied to reduce the influence of various noise components and
physiological artifacts. In the present EEG dataset, low-frequency interference consisted of
stray effects and breathing artifacts, while high-frequency interference was associated with
muscle artifacts. Since some artifacts, like eye movement and cardiac activity, interfere with
the effective frequency range of EEG (1–30 Hz), we used the standard procedure based on
an independent component analysis (ICA) to remove these artifacts [69].

2.4.2. EEG Data Epoching

We epoched EEG data relative to the moment of the appearance of the visual cue to
start the movement (t = 0) and selected the following time intervals of interest (TOIs)
within a trial: “Pre”—baseline pre-cue interval [−4.5, −0.5] s corresponding to the pause
between two consecutive motor tasks; “Post”—the post-cue interval [0, 0.5] s; “Img”—the
interval [1, 3] s of motor imagery performance. We have divided the interval of a motor
task performance into two parts, as it is known that the dynamics of brain rhythms funda-
mentally differ [70]. In the beginning (“Pre” interval), there is a sensorimotor integration
process as a reaction to the stimulus, manifested in an increase (synchronization) of the
theta rhythm. Then (“Img” interval), there is a decrease (desynchronization) of mu and
beta rhythms in the motor and frontal cortex, which accompanies the process of movement
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execution. Note that “Img” corresponds to the middle part of the post-cue interval, where
the motor-related processes should be most pronounced. Also, we considered the intervals
Rest2 and Rest3 as the resting-state conditions.

2.4.3. Experimental Conditions

In the developed experimental design, there are two experimental conditions (Sham or
TMS) and four tasks (ME, QM, MI1, and MI2) with Pre, Post, Img, and resting-state intervals
in each in accordance with the recommended terminology [71]. Following the goal, further
analysis will focus primarily on analyzing the differences in motor imagery between the
TMS and Sham conditions, with the effect of real/sham TMS being evaluated based on
comparisons of conditions before (MI1) and after (MI2) real/sham TMS. All conditions,
tasks, and TOIs analyzed further in the study are presented in Figure 2 in the form of
a tree scheme. Further, we will denote a particular block of data in the following form:
TaskCondition

TOI (e.g., MI1Sham
Pre ).

Sham / TMS

MI1 MI2

Rest Pre Post Img Rest Pre Post Img

Condition

Task

TOI

Figure 2. Analyzed in the study conditions, tasks, and TOIs presented in the form of the tree scheme.

2.4.4. Sensor-Level Analysis

As a preparation step for the MI brain response time estimation procedure (see
Section 2.4.5), we calculated the spectral power distribution over channels in the alpha/mu
(10–14 Hz) frequency band in the time interval after the cue ([0, 5] s) using time-frequency
analysis implemented in MNE. Particularly, the time-frequency representation of each
EEG epoch was obtained via Morlet complex-valued wavelet in the range 10–14 Hz and
normalized with baseline (Pre) time interval using “percent” mode, i.e., subtracting the
mean of baseline values followed by dividing by the mean of baseline values. The number
of cycles in the wavelet transform, n, depended on the signal frequency, f , as n = f .

2.4.5. Estimation of the MI Brain Response Time

As an objective measure for estimating the rate of MI execution, we used the trials-
averaged time of the sensorimotor rhythm desynchronization, which was defined for each
subject as the mean moment when the first local minimum of sensorimotor rhythm energy
was reached after the cue [72]. We proposed an original algorithm for estimating this
characteristic based on alpha-band event-related spectral power analysis. For each subject,
we applied the one-sample t-test in a within-trial design with a cluster-based permutation
correction [73]. The unit of observation was a time series [0, 4] s of the alpha-band event-
related spectral power in the MI task for the given subject. We selected only 13 channels
over the motor cortex since we considered the sensorimotor rhythm. The cluster statistic
was defined as the sum of all t-values in the cluster. The alpha-threshold for the clusters to
be chosen as significant was set to 0.05. Each cluster is constructed from adjacent points
with t-values lower than the current threshold. The t-threshold itself varies from the values
corresponding to 5%, 2.5%, 1.25%, and 0.15625% alpha levels. For each subject, the test
begins with the t-value corresponding to a 5% alpha level. If there were no significant
clusters, we repeated the test with the next lower t-value. We applied this procedure because
each subject’s desynchronization event is unique and has different properties. Testing with
the t-value threshold corresponding to the high alpha level will capture more points
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since the testing is less sensitive. However, due to this sensitivity, the resulting clusters
will likely have higher cluster-alpha values derived from the permutation distribution.
Hence, lowering the threshold allows us to get more precise results. However, this also
affects the size of the cluster, which will result in more random and meaningless clusters.
Thus, the procedure described above helps to capture almost every occurrence of the
desynchronization event and reduce the number of nonrelevant clusters.

After obtaining significant clusters, we have chosen the first one as relevant to desyn-
chronization. We considered the first local minimum of the t-value series averaged over
significant channels as the mean moment of sensorimotor rhythm desynchronization. To fa-
cilitate each event, we plotted every cluster candidate and corresponding topogram and
analyzed them manually (see illustration in Figure 3). Based on the analysis of signifi-
cant desynchronization patterns, we have estimated the trials-averaged time necessary to
perform MI.

Figure 3. (Left) Time series of the normalized energy in the alpha-band averaged over the trials and
the significant channels and its dispersion (in orange); time series of the t-value in the first significant
cluster averaged over the significant channels (in blue). The red area indicates the time interval
corresponding to the first significant cluster; the numerical caption on the graph is the time of the first
significant local minimum of the t-values. (Right) Topogramm of the t-values averaged over the time
interval corresponding to the first significant cluster. The red dots indicate the significant channels.

2.4.6. Source Reconstruction

We analyzed the source power in the predefined time intervals of interest (see
Section 2.4.2) in four frequency bands: theta (4–8 Hz), low alpha (8–12 Hz), high alpha
(12–14 Hz), and beta (14–30 Hz). These components reflect different aspects of sensorimotor
processing [74,75]. We solved the inverse problem and reconstructed source activity from
EEG data at each of the predefined points (voxels) in the brain volume, using the exact
low-resolution brain electromagnetic tomography (eLORETA) method [76–78]. We used
the “Colin27” brain MRI averaged template [51] for creating a three-layer (brain, skull,
and scalp) head model based on a boundary element method (BEM) [79,80]. The source
space consisted of 11,929 voxels inside the brain. The location of the EEG electrodes
corresponded to the template head shape.

We re-referenced EEG signals to the common average, subtracted the mean, and fil-
tered with a fourth-order Butterworth [ fL, fH ]-Hz band-pass filter, where fL and fH define
the frequency band of interest. Furthermore, we performed time-lock averaging across
the epochs of the chosen TOI and computed the covariance matrix. The inverse eLORETA
solution yielded estimates of the source power in each voxel, averaged over the selected
TOI window for the chosen frequency band.

Finally, we normalized the obtained estimates of the power P of each source to the
power of the resting-state before the considered task as nP = (P − PRest)/PRest (for Pre, Post,
and Img intervals) or to the power of the background EEG activity as
nP = (P − PBGR1)/PBGR1 (for Rest1 and Rest2). We used the automated anatomical label-
ing (AAL) brain atlas [81] to map the location of sources in the anatomical brain regions.
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2.4.7. Definition of ROIs

After the group-level statistical evaluation of the source power difference between
MI1 and MI2 tasks in different TOIs for the TMS condition, regions of interest (ROIs) were
defined based on this effect. It was done to reduce the search space in later analyses (power,
correlation, and connectivity analyses). ROIs were defined as dipolar point estimates,
separately for each frequency band, that showed the maximal power difference effect
(points characterized by the maximum modulo value of the t-statistics).

2.4.8. Connectivity Analysis

Functional connectivity was computed between the previously defined, frequency-
specific ROIs for MI1 and MI2 tasks in TMS/Sham conditions, separately for Pre and resting-
state intervals. We used the phase-locking value (PLV) [82,83] as a metric of functional
connectivity strength defined by the standard formula:

PLVxy =
1
n

∣∣∣∣∣ n

∑
k=1

ei(φx,k−φy,k)

∣∣∣∣∣, (1)

where φx,k and φy,k are the instantaneous phases extracted from the ROI-specific signal
estimates x(t) and y(t) via Hilbert transform; n is the number of trials. We reconstructed
virtual channels in the positions of ROIs to estimate ROI-specific signals. To reconstruct the
single-trial virtual channel signals, we multiply the inverse filter for the ROI coordinate
that was retrieved from the source reconstruction procedure with the sensor-level EEG
signals. Furthermore, we projected the virtual channel time series along the strongest dipole
direction. This projection is equivalent to determining the largest (temporal) eigenvector,
and we computationally performed it using the singular value decomposition.

2.5. Statistical Analysis

The effect of TMS/Sham stimulation on the MI brain response time (MIBRT) and
functional connectivity strength between the ROIs was assessed with the Wilcoxon test by
comparing MI1TMS/Sham and MI2TMS/Sham conditions with Holmes correction for multiple
comparisons.

We compared TOI-averaged source power distributions across conditions in a within-
subjects design using a nonparametric permutation test combined with spatial clustering
for family-wise error control [73]. Using the Monte-Carlo randomization technique, we
performed 16,000 permutations of the condition labels of the individual subjects’ condition-
specific source power averages for all dipole locations and used the dependent sample
t-statistic. Furthermore, adjacent dipole locations with t-values corresponding to a nominal
threshold of αpairwise were grouped into clusters, and their t-values were summed. The null
hypothesis was rejected if the maximum cluster statistic in the observed data was in either
tail of the permutation distribution (with the critical alpha Bonferroni corrected for multiple
comparisons for different frequency bands and TOIs).

Furthermore, for each ROI at a specific frequency, we carried out the Wilcoxon tests in
TMS/Sham conditions for MI1 and MI2 tasks because the Shapiro-Wilk test did not confirm
the normality of the samples. These tests evaluated if there was a significant difference in
the neural activity between MI1 and MI2 in TMS or Sham conditions. The critical alpha
level was Holmes-corrected for multiple comparisons. Further, we have also used the
Shapiro-Wilk criterion to test the normality of other samples.

The significance of a linear regression between MIBRT and source power change
in the ROI between MI2 and MI1 tasks was estimated with the Pearson correlation test
implemented in the SciPy package.
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3. Results
3.1. Neural Substrates of MI

First, we analyzed neural substrates corresponding to MI execution. We contrasted
power distributions at the source level between TOIs before and after the visual cue (MI1Pre
vs. MI1Post) and during MI execution (MI1Pre vs. MI1Img) for the MI1 task in the four
frequency bands using the nonparametric permutation test. Group statistical evaluation at
the cluster level revealed the presence of significant power differences between Pre and
Post TOIs in the theta frequency band (p = 0.00012) and between Pre and Img TOIs in the
high alpha (p = 0.00062) and beta bands (p = 0.0147). The t-value maps of these contrasts
are shown in Figure 4A. The change in cluster-averaged power (see Figure 4B) shows the
direction of the effect. The theta power effect is present in the posterior brain area, where
power values were higher in the Post TOI compared to the Pre one (see the negative cluster
in Figure 4A and the theta-contrast with p = 0.00018, t = −4.2 in Figure 4B). This result
reflects the typical sensorimotor integration process during a reaction to the cue [70,84,85].
The high alpha and beta power effects exist when comparing Pre and Img TOIs in the left
frontal lobe and left motor cortex, including the supplementary motor area; power values
were higher in the Pre TOI compared to the Img one (see the positive clusters in Figure 4A
and the alpha-contrast with p = 0.00075, t = 3.7 and the beta-contrast with p = 0.00304,
t = 3.19 in Figure 4B). Such deactivation patterns are due to the process of MI execution
and reflect the typical ERD mechanism in the controlateral motor cortex in the mu and beta
bands [70,72]. The involvement of the frontal lobe reflects the fact that MI is a complex
activity that requires the engagement of high-level cognitive functions, including memory
and control [15]. Remarkably, alpha- and beta-clusters include the left DLPFC—the target
TMS zone.

3.2. Neural Substrates Induced by TMS before MI

To reveal neural substrates of TMS influence before and during MI, we contrasted
power distributions at the source level between MI tasks before and after TMS (MI1TMS

vs. MI2TMS) in the four frequency bands for Pre, Post, Img, and Rest TOIs using the
nonparametric permutation test (the results are in Table 1). Group statistical evaluation at
the cluster level revealed the presence of significant power differences between MI1TMS

Pre
and MI2TMS

Pre tasks for Pre TOI in two frequency bands: theta (p = 0.00062, pcorr = 0.01,
corrected) and low alpha (p = 0.019, pcorr = 0.304, corrected). The t-values maps of
these contrasts are shown in Figure 5A,B. The theta power effect is present throughout
the bilateral occipital cortex, which extend to the parietal areas with maximal effect in the
right precuneus (PrecuneusR) area. In the negative cluster that led to the rejection of the
null hypothesis (marked with blue color in Figure 5A), power values were higher in the
condition MI2TMS after TMS compared to the condition MI1TMS before TMS. The low
alpha power effect is significant only without Bonferroni correction; however, the power
difference in the low alpha band demonstrates the importance of discarding it right away.
Specifically, the t-values map (Figure5B) demonstrates the negative cluster in the inferior
and middle parts of the left frontal lobe, and the maximal effect was in the area of the
TMS target site (left DLPFC). The insignificance (after correction) in the low alpha band is
possibly due to the relatively small sample size and large variance in the groups.
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Figure 4. (A) The schematic illustration of the time intervals of interest within a trial and normalized
source power differences in the first motor imagery task between Pre and Post TOIs (MI1Pre vs.
MI1Post) for θ-band, Pre and Img TOIs (MI1Pre vs. MI1Img) for high α-band and β-band; the data
from the TMS and Sham groups were pooled for these statistical tests. Color values indicate t-values
at the group level in the revealed negative (for θ-band) and positive (for α-band and β-band) clusters.
Values less than 70% of the modulus of the value are masked; p is a p-value for the cluster corrected
for multiple voxel-wise comparisons via the cluster-based permutation test with the Monte-Carlo
randomization technique, pairwise α-level equals to 0.02. (B) Contrasts of normalized source power
(group mean ± standard error (SE)) calculated in the revealed clusters in θ-, α-, and β-bands in the
Pre and Post/Img TOIs in MI1 task; ‘*’—p = 0.00018, ‘**’—p = 0.00075, ‘***’—p = 0.00304.

Based on these effects, two regions of interest (ROIs) were defined for further analysis
(see Table 1): PrecuneusR—in the theta band (ROI1) and left DLPFC—in the low alpha
band (ROI2). To control for the revealed power effects induced by TMS, we compared
the power in the selected ROIs in the Pre TOI between MI1Pre and MI2Pre for TMS and
Sham conditions using the Wilcoxon test (Figure 5C). There was one significant effect in the
theta band (ROI1) for the TMS condition (W = 3, p = 0.0012, corrected), where power was
higher after TMS, and no significant effects were observed for the Sham condition. Also,
there was a trend toward higher alpha power in ROI2 after TMS. These results prove that
the TMS delivered to the left DLPFC results in an increase in theta power in the PrecuneusR
area and a tendency to increase alpha power in the DLPFC area. As a consequence, we
assume that these ROIs are functionally connected at a resting state. This effect will be
considered in detail in Section 3.4.
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Figure 5. Normalized source power differences in the Pre TOI between the first and the second
motor imagery tasks for TMS condition (MI1TMS

Pre vs. MI2TMS
Pre ) for (A) θ-band and (B) low α-band.

Color values indicate t-values at the group level in the revealed negative clusters (values greater
than 70% of the minimum value are masked); p is a p-value for the cluster corrected for multiple
voxel-wise comparisons via the cluster-based permutation test with the Monte-Carlo randomization
technique, pairwise α-level equals to 0.02. The cross at the right panel of (A) points at the position of
t-value minimum that is located in PrecuneusR brain area; this point was selected as the region of
interest for θ-band (ROI1). The cross at the right panel of (B) points at the position of TMS target site
corresponding to the center of left DLPFC area; this point was selected as the region of interest for
low α-band (ROI2). (C) Contrasts of normalized source power (group mean ± standard error (SE))
calculated in the selected ROIs in the Pre TOI in MI1 and MI2 tasks for TMS (blue line) and Sham
(orange line) conditions; ‘*’ indicates the significant difference at Holmes-corrected significance level.
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Table 1. Results of the group-level statistical comparisons of source power distributions between
MI tasks before and after TMS (MI1TMS vs. MI2TMS) in the four frequency bands for Pre, Post,
Img, and Rest TOIs. Here, p denotes the p-value estimated in the nonparametric permutation test;
pcorr denotes the p-value Bonferroni-corrected for multiple comparisons; “n.s.” is non-significant.
Column ROI includes locations of regions of interest and their names per frequency and TOI defined
in the statistical testing. For compactness, we omit the “TMS” designation in the records of all
compared conditions.

Frequency Band Condition 1 Condition 2 Significance ROI,
CTF Coordinates (mm)

theta Rest2 Rest3 n.s. –
MI1Pre MI2Pre p = 0.00062, PrecuneusR,

pcorr = 0.01 (−31, −6, 102)
MI1Post MI2Post n.s. –
MI1Img MI2Img n.s. –

low alpha Rest2 Rest3 n.s. –
MI1Pre MI2Pre p = 0.019, left DLPFC,

pcorr = 0.304 (79, 46, 51)
MI1Post MI2Post n.s. –
MI1Img MI2Img n.s. –

high alpha Rest2 Rest3 n.s. –
MI1Pre MI2Pre n.s. –
MI1Post MI2Post n.s. –
MI1Img MI2Img n.s. –

beta Rest2 Rest3 n.s. –
MI1Pre MI2Pre n.s. –
MI1Post MI2Post n.s. –
MI1Img MI2Img n.s. –

Note that we analyzed the power (nPθ,Pre) normalized to the resting-state level,
with the normalized theta power being negative in the Pre TOI (see Figure 5C). This
means that the theta activity in the Rest TOI is higher than in the Pre TOI. In this way,
TMS leads to a decrease in the theta power difference between Rest and Pre TOIs (nPθ,Pre
approaches 0 from below).

3.3. Similarity between Brain Patterns of Sensorimotor Integration and Preactivation with TMS

The TMS-induced pattern discovered in Section 3.2 in theta band with maximal effect
in the PrecuneusR area is qualitatively similar to the brain pattern that emerges during
the sensorimotor integration process as a result of a reaction to the stimulus. This pattern
is shown in Figure 4 (Theta) in the form of the significant negative cluster in the t-values
map obtained in the nonparametric permutation test MI1Pre vs. MI1Post in the theta band.
This pattern is also characterized by an increase in theta power in a large area of the brain
(mostly in the occipital and parietal regions), with a maximum in PrecuneusR zone. Thus,
TMS shifts the brain state in the Pre TOI into a state similar to the one that develops as a
consequence of reacting to the stimulus before MI execution.

3.4. Analysis of Connectivity between ROIs

Using the PLV measure, we have found functional connectivity between the selected
ROIs (PrecuneusR and left DLPFC) in the theta band that is significantly stronger in the
Pre TOI (PLV > 0.9) compared to the Rest TOI (PLV 0.5–0.6). We considered the theta
band since this rhythm is usually associated with integration processes in the brain [86,87].
Figure 6 demonstrate the estimated PLVs for the groups in the Rest and Pre TOIs in MI1
and MI2 tasks for TMS and Sham conditions. The carried out statistical comparisons with
the Wilcoxon test with Holmes correction have shown the significance of the “TOI” factor
(PLVPre > PLVRest, p < 10−4) and the absence of the significance of the factors “Task”
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(p > 0.77) and “Condition” (p > 0.27). The results indicate that the dynamics of the left
DLPFC and PrecuneusR zones show strong phase theta-synchronization in the Pre TOI and
weaker synchronization in the Rest TOI, with the level of synchronization independent of
the TMS effect.
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Figure 6. Contrasts of PLVs between PrecuneusR and left DLPFC ROIs (group mean ± SE) in the
theta band in the Rest and Pre TOIs for MI1 (blue line) and MI2 (orange line) tasks for Sham and
TMS conditions; connections with p < 10−3 (Holmes-corrected) and p < 10−4 (Holmes-corrected)
are denoted with ‘*’ and ‘**’, respectively.

3.5. Effect of TMS on MI Brain Response Time

To analyze TMS influence on the rate of MI execution, we compared the MIBRT
between the first and second MI tasks for TMS and Sham conditions using the Wilcoxon
test (see Table 2). There was no significant effect on either of the conditions. However, there
was a trend towards decreasing MIBRT and its variance after TMS. At this point, we have
formulated the suggestion that not all the subjects received sufficient exposure to TMS to
achieve a significant change in MIBRT at the group level. We tested this suggestion by
conducting a correlation analysis, the results of which are presented in the next section.

Table 2. The results of the group-level statistical comparisons with the Wilcoxon test of MIBRT
between MI tasks before and after sham or real TMS (MI1Sham/TMS vs. MI2Sham/TMS) and the values
of group mean MIBRT ± SE for different conditions. Here, pcorr denotes the p-value Holmes-corrected
for multiple comparisons.

Condition Task 1/Group Mean Task 2/Group Mean W-Value pcorrMIBRT ± SE, s MIBRT ± SE, s

Sham MI1/1.56 ± 0.28 MI2/1.69 ± 0.26 21 0.64
TMS MI1/1.36 ± 0.18 MI2/1.18 ± 0.14 37 0.91

Note that it was not possible to estimate MIBRT for all subjects using the algorithm
described in Section 2.4.5. We assume that these subjects were unable to successfully
perform MI and form a related pattern of brain activity during the entire experiment, so
they were excluded from further analysis with MIBRT. This leaves 12 subjects in the TMS
group and 11—in the Sham group.

3.6. Correlation between MIBRT and Level of Brain Preactivation with TMS

Since we found a strictly significant effect of TMS in the theta band in the PrecuneusR
area, we analyzed the correlation between the change in MIBRT and the change in theta
power in this ROI between MI2 and MI1 tasks (see Figure 7); sham stimulation was
considered as a control as well. As a result, we found a significant negative correlation for
TMS condition (R2 = −0.862, p = 3 × 10−4 ) and non-significant—for Sham (R2 = 0.374,
p = 0.256).
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Figure 7. Scatter plots showing the relationships between the change in MIBRT and normal-
ized θ-power change ∆Pθ,Pre in the Pre TOI between MI2 and MI1 tasks in the ROI1 brain area
for TMS condition (left panel) and Sham condition (right panel); ∆Pθ,Pre = nPMI2

θ,Pre − nPMI1
θ,Pre;

∆MIBRT = MIBRTMI2 − MIBRTMI1. The dots denote the individual subjects.

For the significant correlation, if the level of brain preactivation with TMS, estimated
by the ∆Pθ,Pre value, is greater than a certain threshold (∼0.1), then the MIBRT decreases
after the TMS (∆MIBRT < 0) session; otherwise, there is either an increase in the ∆MIBRT,
or no change. Thus, half of the TMS group (“successful” subgroup) shows a decrease in MI
execution time, while the remaining half (“unsuccessful” subgroup) shows an increase.

4. Discussion

In this study, we examined the functional contribution of the left dorsolateral prefrontal
cortex (DLPFC) to the motor imagery (MI) using excitatory repeated transcranial magnetic
stimulation (rTMS).

Stimulation of the left DLPFC influences neural activity in the PrecuneusR leading to s
statistically significant increase in the theta-band power on the intervals preceding the MI
performing. Based on the connectivity analysis, we highlight the vital role of the functional
interaction between these areas. The Phase Locking Value (PLV) shows that functional
connectivity between the left DLPFC and the PrecuneusR exists in the resting state and
grows on the interval preceding MI (PLV > 0.95). During these intervals, subjects focused
their attention on the visual cues and prepared for MI execution. Our findings support
the recent study that reported a positive causal influence of the left DLPFC on the bilateral
precuneus in the resting state [88].

We found a negative correlation between the MI response latency and the precuneus
theta-band power. High theta-band power corresponded to the short time between the
cue and the formation of the event-related desynchronization. Despite the strong negative
correlation between the theta-band power and latency, we did not report a decreased
latency in the rTMS group. The mean response latency and its variance declined, but their
change was statistically insignificant (Table 2). Detailed analysis indicated that the latency
decreased if the theta-band power rose by more than 10% and increased otherwise (Figure 7).
Thus, only 50% of participants showed a reduction in MI response latency. One possible
explanation is that subjects did not receive adequate exposure to the stimulation of the
target brain structure. First, we positioned the TMS coil using an average head model rather
than the individual subject’s MRI image. Therefore, some participants were likely to receive
activation below the necessary threshold or no activation at all. Second, rTMS susceptibility
might vary across subjects, so the duration of stimulation could be insufficient for some
of them.

The correlation between MI response latency and theta-band power in PrecuneusR
may indicate that preactivation of Precuneus facilitates processing of the visual cue. This hy-
pothesis is supported by the high posterior theta-band power on the post-cue interval,
which probably reflects cue processing (Figure 4). Without rTMS, the posterior theta-band
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power drops on the interval preceding the visual cue when the subjects rest from the previ-
ous MI execution and prepare for the next one. This effect may share the mechanisms of
the post-movement mu/beta rebound, reflecting an active “clearing-out” of the motor plan
and its feedback-based online control [89,90]. The rTMS reduces this drop by providing
high theta-band power on the pre-cue interval. We suppose that high pre-cue theta-band
power reduces the demands of its activation on the post-cue segment, hence, lowering the
latency of MI response.

The obtained results may shed light on the neural interactions behind MI. The litera-
ture reports that the left DLPFC is a hub of the fronto-parietal central executive network
(CEN) involved in executive functions [91]. Stimulation over the DLPFC is an efficient
modulator of both neural activity and general cognitive performance [92,93]. Precuneus
belongs to the default mode network (DMN), a task-negative network that subserves intro-
spection and social cognition [94–97]. Usually, task performance requires the deactivation
of DMN and activation of CEN, which shift attention from internal thoughts and feelings
to the external world and stimuli [88,98,99]. In line with our results, a recent meta-analysis
by Hardwick et al. revealed consistent recruitment of the left DLPFC in the MI task [15].
Glover et al. discussed the contribution of DLPFC to the frontal-executive functions in
MI [100]. Participating in the different functional networks, left DLPFC and PrecuneusR
interact underlying many cognitive functions [88]. For example, cognitive task switching
requires strengthening positive functional coupling between the left DLPFC and the bi-
lateral Precuneus [91]. Thus, we suppose that the coupling between the left DLPFC and
PrecuneusR subserves the dynamic interaction between CEN and DMN in the MI task.

These networks may interact as follows. The rTMS targets the left DLPFC and acti-
vates task-positive CEN. Strengthening connectivity between the DLPFC and PrecuneusR
during the pre-cue interval deactivates task-negative DMN. Other studies support this
hypothesis by reporting a negative correlation of the theta-band power with the DMN
activation [101,102]. In our study, increased theta-band power in PrecuneusR may also
indicate DMN deactivation. Sauseng and colleagues related high theta-band frontoparietal
coherence with the increased demands on central executive functions in working mem-
ory [103]. MI also involves working memory functions; therefore, it activates CEN and
induces theta-band power. We suggest that modulating DLPFC TMS may turn off the
DMN, providing a transition from an internally focused mental state to a mental state
focused on an external task. This latter speeds up cue processing and reduces the overall
response latency.

Recently, researchers reported the ability of rTMS to modulate functional connectiv-
ity [92,104,105]. The high-frequency rTMS over the right DLPFC provoked an alteration
of the prefrontal-hippocampal interaction during the working memory task [106]. The in-
hibitory rTMS over the left DLPFC reduced its connectivity with the brain regions across
the DMN [65,107]. Some studies also confirmed alternating resting-state DMN activity
after the inhibitory rTMS of the DLPFC [92,108].

Here, we applied excitatory rTMS and expect to facilitate functional connectivity.
The rTMS may affect brain activity through different mechanisms. First, rTMS at frequen-
cies of 5 Hz or higher enhances cortical excitability [109,110]. Second, 5 Hz rTMS may
modulate the natural brain rhythm, defining a resonance with theta activity [41,111]. Both
mechanisms may cause the growth of the theta (4–7 Hz)-band power in our study.

It is widely accepted that training in MI-based brain-computer interface (BCI) is an
effective approach in neurorehabilitation therapy for people with impaired motor func-
tions, such as patients with tetraplegia, spinal cord injury, and brain injuries like stroke or
amyotrophic lateral sclerosis [112–114]. Many studies have shown that integrating BCI con-
trol into exoskeleton-assisted physical therapy can improve the post-stroke rehabilitation
process [115,116]. Considerable efforts have been made to include feedback on different
modalities in MI-based BCI systems to improve performance and promote subject moti-
vation and engagement in training, which can increase the effectiveness of rehabilitation
procedures [7,117,118]. In this perspective, we see two main directions of application of the
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revealed TMS-induced effects in modern neurorehabilitation protocols: (1) accelerating mo-
tor imagery, learning and improving its quality by preliminary stimulation of the DLPFC;
(2) using it to implement feedback.

Several limitations exist in this study. One was the lack of behavioral measures, making
it impossible to relate the imaging findings to behavioral consequences. We overcome this
limitation to some extent by developing an algorithm for estimating motor imagery brain
response time by ERD formation latency. Another limitation is the absence of individual
MRIs of the subjects. We positioned the TMS coil over the left DLPFC using a neuro-
navigation system based on the MRI average head model brain. So, we cannot ascertain
that we stimulated the exact location of the left DLPFC for all subjects. Other limitations
include the small sample size and the across-subject design, which may contribute to large
inter-subject variations.

5. Conclusions

The motor imagery (MI) tasks incorporate processing the visual cue and performing
motor imagery recruiting different brain networks. Previous studies reported activation of
the central executive network (CEN) to utilize working memory and deactivation of the
default mode network (DMN) to focus attention on the visual cue. Using repetitive transcra-
nial magnetic stimulation (rTMS), we excited the left dorsolateral prefrontal cortex (DLPFC),
the essential node of CEN, and observed high theta-band power in the PrecuneusR, a part
of DMN. Connectivity analysis revealed strong synchronization of the neural activity in
DLPFC and PrecuneusR during the MI task compared to the rest-state. The PrecuneusR
theta-band power was negatively correlated with the time spent between the visual cue
onset and mu-band desynchronization (ERD), a biomarker of MI. We suppose that DLPFC
coordinates the interaction between CEN and DMN. It may turn off DMN to facilitate
focusing attention on the visual cue, speeding up its processing and lowering the latency of
ERD formation.
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Abbreviations
The following abbreviations are used in this manuscript:

EEG Electroencephalogram
DLPFC Dorsolateral prefrontal cortex
MI Motor imagery
rTMS repetitive Transcranial magnetic stimulation
M1 Primary motor cortex
SMA Supplementary motor area
PMd Dorsal premotor cortex
CEN Central executive network
DMN Default mode network
ERD Event-related desynchronization
SD Standard deviation
ME Motor execution
QM Quasi-movement
EMG Electromyography
TOI Time interval of interest
ROI Region of interest
RMT Resting motor threshold
MIBRT MI brain response time
ICA Independent component analysis
PLV Phase-locking value
BCI Brain-computer interface
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