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Intermittency in predicting the behavior of stochastic systems using reservoir computing
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A new behavior type of reservoir computing model for predicting dynamics of stochastic systems has been
observed. It has been shown that when the control parameters of the predicted stochastic system and the reservoir
computing model are turned, we observe intermittent behavior, i.e., close to the threshold parameter value the
reservoir computing model demonstrates the accurate prediction most of the time, but there are time intervals
during which the accurate prediction is interrupted by intervals characterized by the lack of prediction. The
characteristics of the intermittency in predicting the behavior of the stochastic system correspond to the well-
known on–off intermittency. The concept of the effective noise to describe the quality of prediction is proposed,
and the technique of its amplitude value estimation is developed.
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I. INTRODUCTION

Intermittency in dynamical and stochastic systems is one
of the most fundamental universal nonlinear phenomena in
the qualitative theory of dynamical systems [1]. The phe-
nomenon of intermittency was first described in the context of
the transition to chaotic regimes in dynamical systems, where
the concept of intermittency of types I–III was introduced
depending on the conditions and characteristics of such a tran-
sition [2]. Noise effects in stochastic systems can also lead to
the phenomenon of intermittency. Despite the randomness of
such noise effects, the corresponding patterns of intermittent
behavior obey general regularities. A typical example is the
on–off intermittency [3,4], which is observed near a supercrit-
ical bifurcation under noise influence and is characterized by
the same patterns in a wide variety of systems. The regime
of on–off intermittency occurs at self-organized bistability
in networks of oscillators with hierarchical organization of
links (scale-free networks) [5], in human motion [6], and in
biological systems associated with neuronal ensembles of the
epileptic brain [7], etc.

Later it was found that the phenomenon of intermittency
takes place at the boundaries of transitions to synchro-
nization in coupled chaotic oscillators, where it shows a
significant variability of the features of the transition through
intermittency [8,9]. All this allowed us to introduce into
consideration a whole set of intermittencies, each of which
describes the behavior of coupled chaotic oscillators near the
onset of the corresponding chaotic synchronization regime.
Thus, at the boundary of phase synchronization, different
types of intermittency are observed, depending on param-
eters and the topology of attractors of coupled chaotic
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systems, i.e., type-I intermittency, eyelet intermittency [10]
(which may be considered as type-I intermittency with
noise [11]), and ring intermittency [12]; whereas at the
boundary of lag-synchronization and generalized synchro-
nization, the on–off [13,14] or jump [15] intermittencies are
realized, etc.

Recently, the application of machine learning techniques
based on recurrent neural networks and such a variety of
them as reservoir computing (RC) has attracted special in-
terest [16,17]. RC has emerged as a powerful tool for both
predicting and classifying the behavior of dynamical systems
[18,19] and multivariate time series [20,21]. Its advantages
include low training costs, simple architecture, and the use of
fixed reservoirs. This makes reservoir computing particularly
valuable for forecasting a wide array of dynamic character-
istics of complex systems. Such predictive models based on
RCs have proven themselves both for predicting complex
dynamics of chaotic oscillators [22,23], networks [24], and
spatiotemporal chaos in models described by partial deriva-
tives [25,26]. RC offers a promising approach for predicting
and analyzing the dynamic characteristics of nonlinear sys-
tems. For instance, RC can be used to calculate Lyapunov
exponents [27], estimate basins of attraction [28], and predict
cluster synchronization [29].

In Ref. [30] interesting assumptions were made that the
RC is effective for predicting the temporal dynamics when
it is in a regime of generalized synchronization with the orig-
inal system. Therefore, we can expect that near the regime
of accurate prediction of the behavior of the system under
study it is possible to expect an intermittency effect to be ob-
served. Moreover, taking into account the information about
the behavior of systems near the boundary of generalized syn-
chronization (or noise-induced synchronization as a special
case of generalized synchronization [31]), we can assume that
such behavior should obey the law of on–off intermittency.
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The purpose of the presented work was to verify this as-
sumption. We consider one of the RC-based models proposed
in Ref. [32] to predict the behavior of a stochastic FitzHugh-
Nagumo neuron over a wide range of driven noise parameters.
We show that an intermittency effect, which has some sim-
ilarities with on–off intermittency, is observed in predicting
the behavior of a stochastic neuron when exposed to the same
noise signal that affects the original FitzHugh-Nagumo model
described by stochastic differential equations (SDEs). We pro-
pose also the concept of the effective noise to describe the
quality of prediction based on the technique of the effective
noise amplitude value estimation.

II. METHODS

A. Stochastic FitzHugh-Nagumo neuron

To investigate the intermittency effect in the RC-based pre-
dictive model, we consider the stochastic FitzHugh-Nagumo
neuron [33], which is often used in various studies of neural
ensembles, as the basic system under study. This model also
demonstrates the effect of stochastic resonance in neural en-
sembles [34], which has also been confirmed experimentally,
for example, in human visual perception [35]. The model is
described by the following system of SDEs:

η̇1 = η1 − η3
1/3 − η2 + β,

η̇2 = 0.08(η1 − 0.8η2 + 0.7) + Dnξ (t ), (1)

where η1 and η2 are the excitatory and recovery variables,
respectively.

The model (1) contains a stochastic term, denoted
as Dnξ (t ), representing zero-mean white Gaussian noise.
This noise exhibits an autocorrelation function defined by
〈ξ (t )ξ (t + τ )〉 = δ(τ ), where Dn signifies the noise ampli-
tude. The parameter β plays a crucial role in determining
the equilibrium points of the system, directly impacting the
neuron’s threshold for excitation. For our study, we investigate
the excitable regime, specifically focusing on the precritical
state. This state undergoes a Hopf bifurcation at approxi-
mately βc = 0.322, and below βc the model neuron does not
display self-sustained oscillations. To ensure operation of the
neuron within the excitable regime, we set the parameter β

to 0.3, which corresponds to a value well within the range
0 < β < βc.

In the absence of noise influence (i.e., Dn = 0), the system
(1) reaches a stable stationary state. However, as the noise
intensity (Dn) increases, the system begins to generate the
irregular sequence of spikes. The characteristics of this se-
quence of spikes are dependent on the noise intensity.

For numerical solution of the SDEs (1), we used the Euler-
Maruyama method [36] with a time step of integration set at
�t = 0.1.

B. RC-based model for predicting the dynamics
of a stochastic neuron

In our previous work [32] we considered an RC-based
model that is capable of predicting the behavior of a system
described by SDEs but also allows us to predict the behavior
of such a system over a wide range of control parameters. For
example, when varying the noise intensity D relative to the

value D0 at which the model was trained, the RC predicts
a resonant change in the degree of regularity of the spike
sequence generated by the stochastic neuron. In other words,
it predicts the effect of stochastic resonance, despite the fact
that this information was not provided to it when the reservoir
computer was trained. These points are discussed in more
detail in Ref. [32].

As it is well known, RC is a kind of recurrent neural net-
work, which has three layers in its structure, i.e., input, hidden
(reservoir), and output layers, in which only the weights of the
links from the hidden layer to the output one are trained. Due
to this fact the RC is a simple and easily trainable machine
learning model.

In our case, following Ref. [32], the input layer has three
inputs, corresponding to an input vector

I(t ) = (η1(t ), η2(t ), Drξ (t ))T , (2)

which includes two independent variables of the SDEs under
study and a noise signal ξt at time t that drives the stochastic
neuron with the amplitude Dr . Each of the input signals acts
on n1 unique neurons in the reservoir layer with pregenerated
random weights given by the input matrix V with dimension
3 × N , where N = 3n1 is the total number of artificial neurons
in the reservoir layer. So, each jth reservoir’s neuron receives
only one input signal from only one of three input neurons
with random input weight Vi, j , where i is the index of the input
neuron. For example, if the jth neuron is connected to the first
input one, than V1, j = v1, j , V2, j = V3, j = 0, where each vi, j is
randomly generated from the uniform distribution [−1, 1].

The state of the reservoir layer at each moment of time t is
defined by the following mapping,

R(t ) = tan h(QR(t − �t ) + VI(t )), (3)

where Q is the reservoir layer’s adjacency matrix, which sets
the weights of connections between N artificial neurons. The
matrix Q defines a random network characterized by the aver-
age node degree 〈k〉 and the spectral radius λ.

The output vector

G(t + �t ) = [g1(t + �t ), g2(t + �t )]T (4)

includes only two predicted values corresponding to SDEs
variables (η1, η2) at the next moment of time (t + �t ). The
task of predicting the noise is not set, and it is impossible in
principle, so the third noise variable is absent in the output
layer. The values of the output vector G at time t + �t are
formed from the values taken by the artificial neurons in the
reservoir layer as G(t + �t ) = WR̂(t ), where the matrix W
defines the weights of the output layer and the matrix R̂(t ) is
the augmented reservoir layer state R(t ), represented as vector
with N components r̂i(t ) = r2

i (t ) for even i and r̂i(t ) = ri(t )
for odd i (i = 1, N) [28]. This augmentation increases the
model’s complexity by squaring the hidden state in half of the
nodes, leading to improved performance on complex tasks.
The output matrix W is calculated during the training process.

In the training mode, the RC operates in a nonautonomous
mode. We feed a sequence I(t ) consisting of true values of
the stochastic neuron state η1(t ), η2(t ) and a noise signal
Drξ (t ) to the input of the RC and determine the weights of
the output layer (W) by minimizing the L2 error between the
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FIG. 1. Basic scheme for observing intermittent behavior in pre-
dicting stochastic dynamics using a trained RC. We drive both the
stochastic system (1) and the RC (3) with the same noise signal
ξ (t ) (Dr = Dn). In the case of accurate prediction, we will observe a
diagonal in coordinates (η1,2, g1,2); in the case of lack of prediction
we will observe a point cloud. In the case of noise amplitude tuning,
�D �= 0, intermittent behavior will be characterized by switching
between these modes (prediction / no prediction) in time.

true value I(t ) and the predicted state G(t ) using Tikhonov
regularization:

L2 =
Ttrain∑
t=1

||G(t ) − I1,2(t )||2 + γ ||W||2, (5)

where γ = 10−4 is the regularization hyperparameter, and
Ttrain is the duration of the training process.

In the prediction mode, the RC (determined in the training
mode output layer matrix W ) operates autonomously by feed-
ing at each discrete time step t + �t the RC output values to
the RC input, i.e., η1,2(t + �t ) := g1,2(t + �t ). At the same
time, a noise signal Drξ (t ) should also be applied to the RC
input as the third reservoir input.

C. Analysis of intermittency in RC-based prediction

Note, to predict the dynamics of a stochastic neuron, it is
not enough just to train a RC. It is also necessary to provide
information to the trained RC about the noise source that
drives the original system of SDEs. The question of prediction
accuracy is most simply addressed using the scheme shown
in Fig. 1. We have an initial model described by stochastic
differential equations (SDEs in Fig. 1) and trained RC (RC
in Fig. 1). To predict the SDEs signal using RC, we need
to know the actual noise influence on the SDEs system, so
we generate the single noise signal Dξ (t ) and feed it to both
models, i.e., the predicted SDEs system and the RC-based
model for prediction. The prediction quality can be evaluated
using the root-mean-square deviation between the true and
predicted values:

δ(t ) =
√

(η1(t ) − g1(t )2) + (η2(t ) − g2(t ))2. (6)

An accurate prediction will be characterized by the value
δ̄T ≈ 0, which is δ(t ) averaged over a long time interval
T : δ̄T = (1/T )

∫ t+T
t δ(t ) dt . From the mathematical point of

view, the condition of proximity to zero means the introduc-
tion of some small threshold δ0 > 0; if the value δ̄ does not
exceed it, we can talk about an accurate prediction of the SDEs

behavior in time:

δ̄T < δ0. (7)

Lack of prediction means in this case the opposite condition

δ̄T > δ0. (8)

However, let us hypothetically assume that we can observe
a borderline situation between accurate prediction and lack
of prediction: at some time intervals Li we have an accurate
prediction δ̄Li < δ0, which is then followed by time intervals
Si where the regime of lack of prediction δ̄Si > δ0 is observed.
The sum of all intervals makes up the total observation time∑

i Si + ∑
i Li = T , during which we follow the prediction.

By analogy with intermittent generalized synchronization,
this intermittent behavior can be expected with additional
small parameter upset, e.g., we can feed the original stochastic
neuron (1) and the RC by noise with slightly detuned values
of amplitudes Dn and Dr , respectively, where the parameter
mismatch is �D = Dr − Dn, (Dn �= Dr).

Obviously, such a regime carries the features of inter-
mittency, where the Li intervals of the accurate prediction
correspond to the laminar phases, while the Si intervals are
the outputs from the accurate prediction regime calling the
turbulent phases. Let us consider in more detail the possibility
of intermittent prediction of the stochastic system behavior in
the next section of the paper.

III. RESULTS

The construction of an RC model for predicting dynam-
ics always starts with the selection of the hyperparameters
of the reservoir layer network given by the matrix Q. We
have chosen the size of the reservoir layer equal to N = 501
artificial neurons. For training, we used the noise signal with
amplitude D0 = 0.2 and the signals of the stochastic neuron,
which were obtained at the same value of the noise ampli-
tude fed to the neuron, i.e., Dn = D0 = 0.2. We considered
the two-dimensional hyperparameter space (〈k〉, λ), where the
following parameter ranges were considered: average node
degree 10 � 〈k〉 � 20 and spectral radius 0.1 � λ � 1.9. It
should be noted that the chosen value of the noise amplitude
D0 corresponds to the coherent resonance mode, when the
signal of the neuron in the form of a sequence of generated
spikes is characterized by a pronounced regularity in noise-
induced oscillations [34,37].

Optimization of the hyperparameters was performed by a
grid search and accordingly trained 209 RCs, among which
we selected the best one in terms of the accuracy of prediction.
Figure 2 illustrates the distribution of prediction quality δ̄T

(6) of all trained RCs with different pairs (〈k〉, λ) of hyper-
parameters. It is clearly seen that there is the best RC which
exhibits the highest prediction quality (indicated by the arrow
in Fig. 2). The reservoir layer hyperparameters for this RC
are the average node degree 〈k〉 = 20 and the spectral radius
λ = 1.9. It is this RC that we will further use to analyze the
intermittency effect in predicting the behavior of a stochastic
neuron.

Let us now consider the characteristics of the predicted
stochastic process when the parameters of the external noise
influence are disordered between the original system and the
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FIG. 2. The distribution of prediction quality δ̄T (6) of all RCs
using for hyperparameters selection. The RC which exhibits the
highest prediction quality is indicated by the red arrow.

trained RC. Let us choose the value of the noise amplitude
fed to the neuron Dn = 0.2. Recall that the RC was trained at
the same value of the noise intensity D0 = 0.2. We will adjust
the intensity of the noise Dr fed to the RC from a fixed value
Dn and investigate the quality of the prediction. Figure 3(a)
shows the dependencies of the predicted signal g1(t ) and
the original signal η1(t ), as well as the difference of these
signals g1(t ) − η1(t ) over time for noise amplitude Dr = 0.32.
The analysis of characteristics shows that there is a behavior
similar to intermittency, when we observe laminar phases Li,
during which we have an accurate prediction, and phases Si,
when the time series diverges and an accurate prediction on
these time intervals is not observed (e.g., for Si phases the
generation of “useless” spikes takes place). It is interesting to
note that the amplitude of irregular bursts on the difference
g1(t ) − η1(t ) is large enough and exceeds the amplitude of
spikes generated by the stochastic neuron.

To quantify the statistical properties of intermittent behav-
ior, we compute the distribution N (L) of the laminar phase
durations L. We suppose that the current time interval L is
the laminar phase if the condition δ(t ) < δ0 is satisfied ∀t ∈ L

(where δ0 = 0.1); otherwise the current state is assumed to
be an turbulent phase. Note, the criterion for laminar and
turbulent phase detection used in the numerical simulation
is somewhat more stringent in comparison with (7) and (8),
which allows us to guarantee the high quality of prediction at
limited time intervals L. Figure 3(b) shows the distribution of
the laminar phase durations plotted on a log–log scale. One
can see that this distribution is close to the power law with
exponent α = −1.5. It should be noticed that this result does
not sensitively depend on the value of threshold δ0. This form
of the distribution of laminar phase durations indicates the
presence of on–off intermittency.

The other criterion of the on–off intermittency is the depen-
dence of the mean laminar phase duration 〈L〉 on the deviation
of the control parameter from the critical value. In our case,
the value of the noise amplitude at which the reservoir was
trained, D0 = 0.2, was chosen as the critical value of the
control parameter. At the same time, one must realize that
even for the best RC we do not get a perfect prediction
where δ(t ) = 0. Therefore, even for the best RC we have a
situation that sometimes small failures in prediction can occur,
which we will further take into account when analyzing the
dependencies of the mean laminar phase duration on the noise
parameters. It should be also noted that this is a fundamental
limitation, since it is impossible to create a finite-size reservoir
that would perfectly [δ(t ) = 0] describe the behavior of the
original SDEs.

Let us first consider the situation when we tune the noise
parameter of a stochastic neuron, Dn, whereas the reservoir
predicts the neuron’s behavior at the value Dr = D0 = 0.2
at which it was trained, and hence the prediction is the
most accurate. In this case, the deviation is represented as
�D = (Dn − D0). We vary the noise amplitude Dn in the
range from 0.2 to 0.4. Figure 4(a) shows the determined mean
laminar phase length 〈L〉 versus deviation �D on a log–log
scale. From this figure one can see the universal power law
〈L〉∼ [�D]ρ with critical exponent ρ being very close to
−1. This is further evidence that the observed intermittency
in predicting the behavior of a stochastic system is on–off
intermittency.
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FIG. 3. (a) The dependencies of the predicted signal g1(t ), the original signal η1(t ), and the difference of these signals g1(t ) − η1(t ) over
time. (b) The statistical distribution of laminar phases L and its approximation N (L) ∼ Lα , where α = −1.53, in log–log scale. This form
of the distribution of laminar phase durations indicates the presence of on–off intermittency. The noise amplitudes are D0 = 0.2, Dn = 0.2,
Dr = 0.32, the value of the threshold δ0 = 0.1.
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FIG. 4. The log–log plots of the mean laminar phase duration 〈L〉 vs the deviation �D (points) and their approximations by power law
〈L〉 ∼ [�D]ρ (solid red line) for following specific situations. (a) The RC noise parameter is fixed Dr = D0 = 0.2, the neuron noise parameter
Dn is varied. The critical exponent is ρ = −1.01. (b) The RC is replaced by an auxiliary neuron. The critical exponent is ρ = −1.01. (c) The
RC noise parameter Dr is varied, the neuron noise parameter is fixed Dn = D0. The critical exponent is ρ = −1.21. (d) The original neuron is
replaced by an auxiliary RC. The critical exponent is ρ = −1.26. For all situations, we observe linear dependencies in log–log scale, but only
(a) and (b) conform to the on–off intermittency law when we change the noise parameter of the neuron.

We can check our result on a modeling situation. In fact,
the RC is a digital twin [38] of the stochastic neuron, so
we can consider a situation similar to the previous one by
replacing the RC with an auxiliary neuron [being identical
to (1)] to which we will apply the same noise signal ξ (t )
with the amplitude Dr . In fact, in this case we consider the
effect of intermittency between two neurons (1) that have
the same noise source ξ (t ) but different noise amplitudes:
Dr = D0 = 0.2 and Dn ∈ [0.2, 0.4], respectively. Figure 4(b)
illustrates the mean laminar phase length 〈L〉 versus deviation
�D for this case. The universal power law 〈L〉 ∼ [�D]−1

is again observed. We see that the obtained results are in
full agreement with previous results, i.e., the RC accurately
models the behavior of a neuron when the noise parameter is
tuned and predicts on–off intermittency between two neurons.

It should be noted that we can also vary the control pa-
rameter, not only of the neuron but also of the RC. In this
case we will vary the noise amplitude Dr , which is fed to the
RC, and the deviation parameter has the form �D = Dr − D0,
whereas the intensity of noise being fed to the neuron (1)
remains fixed as Dn = D0 = 0.2. The obtained dependence of
the laminar phase duration on the supercriticality parameter
�D for this case is shown in Fig. 4(c). It is well seen that
we also observe a power law, however, with the exponent
ρ = −1.21. Interestingly, if we replace the original stochastic
neuron with an auxiliary RC (being the better RC among all
RCs), to which we apply a noise signal with amplitude D0 at

which the RC was trained, then as can be seen from Fig. 4(d),
we again have a power law but with exponent ρ = −1.26. The
slight difference between the results shown in Figs. 4(c) and
4(d) is probably due to the fact that replacing a neuron with an
RC leads to additional rare prediction inaccuracies, which we
mentioned above when discussing the nonideal prediction of
even the best RC among all trained ones at noise amplitude
D0. Thus, changing the RC parameters relative to those at
which the RC was trained leads to a deviation from the “ideal”
power law for on–off intermittency with −1 exponent when
modeling two neurons directly [see Fig. 4(b)].

We assume that this deviation of exponent ρ from the
“classical” value of “minus one” is caused by an error in pre-
dicting the neuron dynamics by the RC-based model. Indeed,
as we discussed above, an RC trained at noise intensity D0

cannot perfectly predict the neuron dynamics for Dr �= D0.
In other words, if noise signals with identical amplitudes
Dn = Dr > D0 are applied to the SDEs and the RC, respec-
tively, the predicted dynamics contain more errors compared
to the case of Dn = Dr = D0. Obviously, one can expect that
the more the noise intensity Dr (and, correspondingly, Dn too)
differs from the base amplitude D0, the worse RC predicts
the dynamics of the neuron. To illustrate this aspect, Fig. 5
shows how the averaged laminar phase duration 〈L〉 depends
on the RC noise intensity Dr for the case when Dr = Dn.
From Fig. 5, which is plotted in the semilogarithmic scale,
we see that the curve 〈L〉(Dr ) has an decreasing exponential
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FIG. 5. The semilog plot of the mean laminar phase duration 〈L〉
vs the RC noise intensity Dr (points) and their approximations by
exponential law 〈L〉 ∼ e−kDr (solid red line), k = 13.68. Here 〈L〉 is
estimated for each Dr = Dn. Thus, the more the noise intensity Dr

(and thus Dn, too) differs from the baseline amplitude D0, the worse
RC predicts the dynamics of the stochastic neuron.

character with an exponent k = 13.68. As can be seen, the
larger (Dr − D0) is, the smaller the average laminar phase
duration 〈L〉 is, with the average laminar phase duration de-
creasing exponentially.

So, we suppose that in Figs. 4(c) and 4(d), changing Dr

leads to decreasing 〈L〉 because of two reasons: (i) increas-
ing the difference between RCs, Dr , and neurons, Dn, noise
amplitudes, and (ii) increasing self-errors of the RC. Then
the difference between an “ideal” exponent of “minus one”
and a real exponent of power laws in Figs. 4(c) and 4(d) may
be caused by the second mechanism, and, therefore, we have
to estimate it quantitatively and consider this point in more
detail.

IV. ANALYTICAL ESTIMATIONS OF RC SELF-ERRORS

To estimate RC self-errors, both analytically and numeri-
cally, let us start with several assumptions and refinements:

(1) We assume that the inaccuracies in prediction of RC
may be characterized both qualitatively and quantitatively
with the help of the additional effective noise η(t ) with the
same characteristics as in stochastic FitzHugh-Nagumo neu-
ron model (1) (i.e., zero-mean white Gaussian noise with
an autocorrelation function defined by 〈η(t )η(t + τ )〉 = δ(τ ))
and amplitude D∗.

(2) To distinguish the cases considered in Sec. III and
shown in Figs. 4(a) and 4(b), and Figs. 4(c) and 4(d), we
refine the notations for the noise amplitude differences as
�Dn = Dn − D0 and �Dr = Dr − D0, respectively.

(3) We assume that the amplitude of the effective noise D∗
depends only on the difference between the external stochastic
signal amplitude Dr fed to the RC and the noise intensity D0

used to train the RC. Additionally, we also assume that D∗
does not depend on the base amplitude D0. This is a rather
rough assumption, but the results of our numerical simulations
indicate that for the purposes of current consideration such an
approximation can be used. In other words, we operate in the
paradigm that D∗ = D∗(�Dr ).

(4) D∗
0 = D∗(0) is assumed to be very small (i.e.,

D∗
0 
 D0), and with the growth of �Dr the value of D∗ is

supposed to increase.
(5) We also refine the difference �D between the ampli-

tudes of signals fed to SDEs and the RC as

�D∗ = |Dn − Dr | + D∗ (9)

to take into account the introduced effective noise describ-
ing prediction self-errors of RC caused by differences of the
stochastic signal amplitudes used in the current calculation
(Dr) and training (D0).

(6) All stochastic signals [i.e., Dnξ (t ), Drξ (t ), D∗η(t )]
are considered as equal in terms of their influence on the
prediction quality and duration of laminar phases.

Taking into account the assumptions and refinements made
above, one can write the power law for the laminar phase
distribution given in Fig. 4(a) as

〈L〉 = A(Dn + D∗
0 − D0)ρ = A(�Dn + D∗

0 )ρ. (10)

Since D∗
0 
 D0 < Dn, the insufficient fluctuations of parame-

ters A and ρ (as well mean laminar lengths 〈L〉) in comparison
with case shown Fig. 4(a) may be neglected, and their val-
ues may be obtained from the numerical data presented in
Fig. 4(a).

The exponential law given in Fig. 5, in turn, takes the form

〈L〉 = B exp(−k�Dr ). (11)

Note, Fig. 4(a) is obtained for �Dn > 0 and �Dr = 0, which
is why D∗

0 is substituted in Eq. (10), whereas for Fig. 5
�Dr > 0 is used. Accordingly, relations (10) and (11) turn
out to be simultaneously valid only for �Dn = �Dr = 0. In
this case (e.g., for �Dn = �Dr = 0), from Eqs. (10) and (11)
one can obtain

D∗
0 = exp

(
log B − log A

ρ

)
. (12)

The approximations of numerical data in Figs. 4(a) and 5 give
log A ≈ 1.37, log B ≈ 8.87, and ρ ≈ −1.01. Therefore, the
amplitude of the effective noise may be estimated as D∗

0 ≈
6 × 10−3. The found value of D∗

0 corresponds to the case when
noise with the amplitude D0 (i.e., with the amplitude at which
the model was trained) fed both the neuron and the RC.

Let us make a few more assumptions:
(7) Due to the observed regularities inherent in intermit-

tency of the on–off type and the closeness of the parameter ρ

obtained by approximation (see Fig. 4(a) to the value of –1,
we will further use ρ = −1.

(8) Equation (10) may be generalized in the form

〈L〉 = A(�D∗)−1 (13)

and, due to Assumption 6, Eq. (13) is believed to be correct in
all considered cases.

Based on Assumption 8, we can apply Eq. (13) to Fig. 5.
As a consequence, Eqs. (9), (11), and (13) give

D∗(�Dr ) = D∗
0 exp(+k�Dr ). (14)

The obtained results may be verified numerically with the
help of data sets used in Figs. 4(a) and 5. Indeed, if law (13)
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0.025 0.075 0.125 0.175 ΔD

-4.5

-4.0

-4.5

-3.0

-2.5

log(D*)
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FIG. 6. The semilog plot of the effective noise intensity D∗ vs the
deviation �Dr (points) and their approximations by exponential law
(14) (solid red line), k = 13.69. Increasing the deviation �Dr leads
to an exponential increase of the effective noise intensity D∗.

is universal, the dependencies in Figs. 4(a) and 5 must be the
same but are plotted in different coordinates of the abscissa
axis (log �D, which in the considered case is practically
equivalent to log �D∗ for Fig. 4(a), see also explanations to
Eqs. (10) and (11) given above, and Dr , which may be easily
transformed to �Dr in Fig. 5).

Then one can use values of the mean laminar phase du-
ration 〈L〉 from Fig. 5 and obtain the values of the effective
noise amplitude D∗ corresponding to each Dr . The obtained
dependence is illustrated in Fig. 6. As one can see, such
dependence has an exponential form (linear in the semilog
scale) that agrees well with Eq. (14). Increasing the devia-
tion �Dr leads to exponential increase of the effective noise
intensity D∗.

Then, we rescale the deviation by taking into account the
calculated effective noise intensity as Eq. (9). So, we can
replot the dependencies from Figs. 4(c) and 4(d) using the
corrected deviation �D∗. The corresponding dependencies
are shown in Fig. 7: part “a” is the rescaled Fig. 4(c) when
the neuron noise intensity is fixed and we vary the RC noise
amplitude; part “b” is the rescaled Fig. 4(d) when 〈L〉 is
calculated for two RCs with different noise intensities. As
one can see from these figures, there are linear dependencies
in log–log scale with critical exponent close to “−1” instead
of “−1.21” and “−1.26” observed for common unrescaled
deviation [compare with Figs. 4(c) and 4(d)]. So, it proves
our suggestion about the influence of RC’s self-errors on the
mean laminar phase duration and confirms that in a wide range
of control parameters of noise we observe the on–off inter-
mittency effect when predicting the dynamics of the model
described by the stochastic differential equations.

It should be also noted that Figs. 4(a) and 4(b), and 7(a) and
7(b) are practically identical, which confirms the universality
of power law (13).

V. CONCLUSIONS

We have observed the new behavior type of an RC-based
model for predicting the dynamics of stochastic systems.
This mode consists in predicting the behavior of the excited

−3.5 −3.0 −2.5 −2.0 −1.5

2.5

3.0

3.5

4.0

4.5

5.0

−3.5 −3.0 −2.5 −2.0 −1.5

2.5

3.0

3.5

4.0

4.5

5.0

log(ΔD*)

log(ΔD*)

log(<L>)

log(<L>)

(b)

(a)

FIG. 7. The log–log plots of the mean laminar phase duration 〈L〉
vs the corrected deviation �D∗ (points) and their approximations by
power law 〈L〉 ∼ [�D∗]ρ (solid red line) for the following specific
situations: (a) Rescaled Fig. 4(c), the RC noise parameter Dr is
varied, the neuron noise parameter is fixed Dn = D0. The critical
exponent is ρ = −1.01. (b) Rescaled Fig. 4(d), the original neuron
is replaced by an auxiliary RC. The critical exponent is ρ = −1.04.
Using the corrected deviation �D∗ allows us to refine the magnitude
of the supercriticality parameter and observe the effect of on–off
intermittency for all considered situations.

stochastic system, not for the whole prediction time but only
for some time intervals, which are randomly switched to the
mode of no prediction and vice versa. A certain connection
of this type of intermittent prediction with the regimes of
intermittent generalized synchronization in unidirectionally
coupled chaotic oscillators is revealed [14]. This is confirmed
by the fact that the characteristics of the intermittent behavior
correspond to the on–off type of intermittency, which is also
observed at the boundary of generalized synchronization and
noise-induced synchronization.

The findings of this study possess significant practical im-
plications for the design of stochastic system models using
reservoir computing, as suggested in Ref. [32]. We believe
that intermittent prediction, as observed here, may be a uni-
versal phenomenon applicable to a broad range of stochastic
systems analyzed with recurrent neural network technologies.
Furthermore, we propose that this approach is not limited to
the Gaussian noise investigated in this work but extends to
other noise types, including colored, Lévy, and multiplicative
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noise, given the established observation of on–off intermit-
tency across diverse noise characteristics [39,40].

The phenomenon of on–off intermittency observed in
coupled systems offers valuable insight into the underlying
mechanisms of extreme event formation. Specifically, the pa-
per of Pyragas and Pyragas [41] demonstrated the efficacy of
RC in predicting extreme events within both globally cou-
pled FitzHugh-Nagumo neurons and a system of two nearly
identical, unidirectionally coupled chaotic oscillators. These
findings suggest that RC-based models possess the capability
to predict extreme events induced by external noise signals.

The concept of the effective noise to describe the quality of
prediction is proposed and the technique of its amplitude value
D∗ estimation is developed. Probably, this quantity may be
used to characterize the quality of prediction. Perhaps it may
be correlated with the averaged root-mean-square deviation
between the true and predicted values δ̄T .

It should be also noted that the results obtained in our
paper allow us to draw the following firm conclusions. First
of all, the successful prediction over a long time interval for
the dynamics of a nonlinear system being under an external
random (or chaotic) signal is possible if and only if the system
under study is in the regime of noise-induced (or generalized,
respectively) synchronization. In this case, the inaccuracy of
the model, characterized by effective (internal) noise, leads to
the above-described intermittency where time intervals with
good prediction are replaced by areas with no prediction
and vice versa. Conversely, when the system under study is
in the asynchronous regime (i.e., not in the noise-induced
or generalized synchronization regime), the prediction of its

dynamics is impossible on a long time interval due to Lya-
punov instability. An intermediate variant is also possible,
when the system under study itself demonstrates the regime
of on–off intermittency (see, e.g., [42,43]). In this case the
prediction of the dynamics of the system under study may be
obtained only for laminar phases (areas of the synchronous
behavior). One should also take into account the presence of
the effective (internal) noise described above in our paper and
the phenomenon of multistability observed recently [44,45]
for the intermittent noise-induced (or generalized, respec-
tively) synchronization near the boundary of the synchronous
regime onset. Assuming the existence of a good model (in the
considered case, the RC-based model), both of these factors
may lead to the occurrence of alternating time intervals with
the presence and absence of prediction during laminar (syn-
chronous) phases of the behavior of the system under study.

Another important issue here is the question of intermittent
behavior at the boundary of synchronous states when the
control parameters of influence on each of the systems are
upset. This problem is beyond the scope of our study but,
nevertheless, requires its solution in the future.
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