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Synchronization in Interacting Networks
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Abstract—A mathematical model of a “network of networks” is developed. The model consists of a small
input network and four large subnetworks that interact with one another via inhibitory couplings. This model
is an attempt to model processes that occur in real neural networks in similar processing of input information.
It is shown the indices of synchronization of subnetworks periodically change in time. Depending on the
strength of the connection, the indices of synchronization of neurons of different subnetworks can change in
both phase and antiphase.

DOI: 10.3103/S1062873822020058

INTRODUCTION
Applying techniques from radiophysics, nonlinear

dynamics, and network analysis to neurophysiological
problems is a hallmark of modern science [1–4].

Different aspects of network theory are used in
analyzing interaction between regions of the brain
during cognitive activity [5, 6], based on experimental
data (e.g., multi-channel records of electric and mag-
netic activity) [7–14] and numerical modeling of the
interaction between individual neurons and groups of
them by building networks with nonlinear elements
[15–20]. The Hodgkin–Huxley [21], FitzHugh–
Nagumo [22, 23], and Hindmarsh–Rose [24] models
are used for neurons, depending on the strength of
connection between the subnetworks and the elements
inside them. The most complete of these is the Hod-
gkin–Huxley model, which describes the initiation
and propagation of action potentials in light of ionic
currents in the membranes of neurons. The spiking
activity generated by this model simulates the electric
activity of a real neuron.

Applying complex networks theory to neuroscience
is a promising way of analyzing the structural and
functional connections of brain neurons. Collective
neuron activity plays an important role in the func-
tioning of the brain [25]. According to functional mag-
netic resonance (fMRI) studies, the network activity
of the entire brain is generated through the interaction
between several functional subnetworks when resting
or performing a task [26]. Collective processes that
occur as a result of functional interaction between
remote populations of cortical neurons support cogni-
tive abilities when performing difficult tasks. Our cur-

rent understanding of neuronal communication
emphasizes the vital role of phase coherence in func-
tional interaction between distant neuron ensembles.

We have developed a “network of networks” model
that consists of one small input neural network and
four big neural networks. An external signal received
by the input network is transformed into a series of
spikes that are then transmitted to the four subnet-
works, which interact with one another via an inhibi-
tory coupling to process the signal. This model is an
analog of the information processing system in human
brain, where a small input network receives informa-
tion and transmits it for subsequent processing.
Depending on the complexity of the input informa-
tion, it can activate varying numbers of neural net-
works. The visual system is one example of such work
in the brain, where signals from the thalamus are
transmitted to the visual cortex. We found the indices
of synchronization in the subnetworks periodically
oscillate over time. These oscillations display either
cophased or antiphased synchronization, depending
on the strength of the inhibitory coupling between the
subnetworks.

MODEL

We used the Hodgkin–Huxley model of a neuron
described by the equations [21]
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Fig. 1. Model of our “network of networks.” The external
signal with constant amplitude A is applied to the input
network consisting of five neurons. Each neuron of the
input network is unidirectionally connected with each of
N1 = N2 = N3 = N4 = 50 neurons of the four subnetworks
via excitatory synapses with coupling strength gc = 0.05
and probability 30%. All subnetworks are bidirectionally
interconnected via inhibitory synapses with coupling

strength  and probability 30%. The neurons in each
network are connected with one another according to

small-world topology with strength of connection 
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where  is the membrane capacity per unit

of area;  is an external current; V is the membrane

potential of the neuron in mV; 

, and  indicate the maxi-

mum sodium, potassium, and leakage conductance
when all ion channels are open; 

, and  are the reverse
potentials for sodium channels, potassium channels,
and leakage, respectively; m and h are variables of the
activation and inactivation of sodium channel open-
ing; n is the variable of activation for potassium chan-
nels; and n4 and m3h are the middle parts of opened
potassium channels and sodium ions within the limits
of the patch membrane. Depending on functions
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αx(V) and βx(V), the dynamics of variables x = m, n, h
is specified as

(2)

where  is the shared synaptic current received by
the ith neuron. We consider the connection via chem-
ical synapses. The synaptic currents take the form [27]

(3)

where alpha function α(t) describes the temporal evo-
lution of synaptic conductance; gc is the maximum

conductance of synaptic channel;  is the time when
a pre-synaptic jth neuron generates a spike; and

The structure of the network is presented in Fig. 1.
In our model, an external signal of constant amplitude
A = 9 μA/cm2 corresponding to the mode of continu-
ous spike generation is applied to the input network,
which consists of five neurons interconnected with
randomly selected strengths of connection in the
range of 0–0.15 mS/cm2. Each neuron of the input
network is unidirectionally connected with each of
N1 = N2 = N3 = N4 = 50 neurons of the four large sub-
networks via excitatory synapses with coupling
strength gс = 0.05 mS/cm2 and probability 30%. All
the large subnetworks are bidirectionally intercon-
nected via inhibitory couplings with strength  and
probability 30%. Inside each subnetwork, all neurons
are interconnected via bidirectional excitatory syn-
apses with strength  Small-world topology, gener-
ated with the Watts–Strogatz model [28], was chosen
for parameter value β = 0.3 and K = 5. We chose this
network topology to model signal processing in the
brain at low and at high levels (i.e., at the levels of indi-
vidual neurons and neurons ensembles). The proper-
ties of small-world topology in real neuron ensembles
determine the connections between neurons on the
anatomical level [29, 30], allowing us to use this topol-
ogy to model individual groups of neurons. The net-
works in this work are considered to be fairly close to
one another, making it possible to interconnect all of
them when a finite probability of establishing connec-
tions is introduced. A continuous stimulus received by
the small input network is transformed into a series of
spikes (amplitude-to-frequency transform) and trans-
mitted to the large networks for the processing of the
signal. A similar process occurs in the brain when per-
ceiving visual information. The frequency of generat-
ing neuron ensembles involved in processing grows
along with the f low of information. Neurons in each
subnetwork are interconnected with strength of con-
nection 
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Fig. 2. (a) Spatiotemporal diagram of membrane potential
V of neurons in the first N1 (i = 1, …, 50), second N2 (i =
51, …, 100), third N3 (i = 101, …, 150), and fourth N4
(i = 151, …, 200) network. (b) Time series of membrane

potential, averaged over each subnetwork at 
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RESULTS AND DISCUSSION
We analyzed the dynamics of “network of net-

works.” An example of the typical temporal form of
the complete neuron ensemble is given in Fig. 2a.
Inside each subnetwork, all neurons generate spikes at
nearly the same time because of the excitatory cou-
plings between them. When averaged by all neurons of
each subnetwork, the signals thus have series of indi-
vidual concentrated spikes (Fig. 2b). One can see that
under the effect of the inhibitory couplings, the four
subnetworks split into two clusters. The first network
is synchronized with the fourth; the second, with the
third. Synchronized with each other, the networks
generate spikes in equal time intervals, while the activ-
ity of networks from different clusters demonstrate
antiphase dynamics. The two groups of subnetworks
are thus in constant antiphase to each other. Since
these subnetworks process the signal received from the
small input network, we may conclude that the two
groups of subnetworks split the input information
between each other in order to work best, and the net-
works in each group must be synchronous for effective
processing of the input signal.

To analyze the dynamics, we calculated the indices
of synchronization between all neurons of each large
subnetwork [31, 32]:

(4)

where t0 is the period of transition; T is the total time;
and  is the root-mean-square deviation, defined as

(5)

where N is the number of elements in the network.
The resulting time series were then filtered in the

0.004–0.015 Hz range of frequencies to visualize slow
changes. These indices can correlate with one another
to varying degrees, depending on the coupling
strength between the subnetworks and the elements
inside them. To analyze these correlations, we calcu-
lated Pearson linear correlation coefficient r for each
pair of subnetworks:

(6)

where S1 and S2 are the indices of synchronization of
the first and second subnetworks; t0 is the period of
transition; T is the total time; and r = 1 and r = −1
denote fully positive and fully negative correlation,
respectively.

We found that in the range of the considered cou-
pling strengths, the first network displayed almost no
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correlation with the rest of the subnetworks at low val-
ues of internetwork connection, which fall to r = −0.2
upon an increase in inhibitory couplings (Fig. 3). The
three other subnetworks act quite differently. With
weak internetwork connections, the correlation
between their indices of synchronization is close to 0,
but it rises to 1.0 as this connection grows. We should
note, that an increase in the strength of intranetwork
connections improves the correlation between all net-
works.

CONCLUSIONS

A “network of networks” model has been devel-
oped that consists of a small input network and two
large subnetworks. External signals received by the
input network are transformed into a series of spikes
that are then transmitted to two subnetworks with
small-world topology that interact with each other via
an inhibitory couplings to process the signal.

We analyzed the dynamics of the model network
and found that the indices of synchronization in the
subnetworks oscillate periodically over time, and low-
frequency modulation arises. According to the litera-
ture, the low-frequency modulation of neuron spiking
activity occurs due to rhythms of cortical activity (e.g.,
: PHYSICS  Vol. 86  No. 2  2022
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Fig. 3. (a) Two-parameter dependences of correlation r between indices of synchronization of the four subnetworks in the space

of the coupling strengths between the subnetworks and elements inside them  (b) Time dependences of indices of synchro-

nization S for the four subnetworks, corresponding to points (1)   and (2)   in
Fig. 3a.
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theta, alpha, and beta) recorded noninvasively by
EEGs. The indices of synchronization of these net-
works make cophased or antiphased oscillations when
the strength of inhibitory connections between the
BULLETIN OF THE RUSSIAN ACADE
networks is regulated. In the first case, a functional
connection between these networks can be estab-
lished; in the second, signals coming from one net-
work to another will be blocked. We may assume
MY OF SCIENCES: PHYSICS  Vol. 86  No. 2  2022
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inhibitory couplings are possible regulators of cogni-
tive resource redistribution among neuron ensembles
in the brain. Our theoretical results indicate one pos-
sible mechanism of cognitive resource redistribution
among neuron ensembles in the brain. According to
our hypothesis, the brain dynamically redistributes the
load between different neuron ensembles during pro-
longed activity, adjusting phase relations between their
signals. At the same time, the activity of individual
ensembles changes over time according to a periodic
law, with alternating intervals of activation and recov-
ery.

It was shown that maintaining a neural network in
cophased or antiphased regimes of synchronization
index oscillations requires keeping a balance between
intra- and internetwork connections. The mechanism
of joint information processing by separate groups of
elements can be observed in both the work of different
areas of the brain and the collective work of a group of
people when solving one problem.
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