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Abstract: Artificial intelligence (AI) has revolutionized numerous industries, including medicine.
In recent years, the integration of AI into medical practices has shown great promise in enhancing
the accuracy and efficiency of diagnosing diseases, predicting patient outcomes, and personalizing
treatment plans. This paper aims at the exploration of the AI-based medicine research using network
approach and analysis of existing trends based on PubMed. Our findings are based on the results
of PubMed search queries and analysis of the number of papers obtained by the different search
queries. Our goal is to explore how are the AI-based methods used in healthcare research, which
approaches and techniques are the most popular, and to discuss the potential reasoning behind the
obtained results. Using analysis of the co-occurrence network constructed using VOSviewer software,
we detected the main clusters of interest in AI-based healthcare research. Then, we proceeded with
the thorough analysis of publication activity in various categories of medical AI research, including
research on different AI-based methods applied to different types of medical data. We analyzed the
results of query processing in the PubMed database over the past 5 years obtained via a specifically
designed strategy for generating search queries based on the thorough selection of keywords from
different categories of interest. We provide a comprehensive analysis of existing applications of
AI-based methods to medical data of different modalities, including the context of various medical
fields and specific diseases that carry the greatest danger to the human population.

Keywords: artificial intelligence; medical data; medical area; unsupervised learning; supervised
learning; deep learning; artificial neural network; machine learning

1. Introduction

The expression ’medical technology’ is widely used to refer to a range of tools that can
enable health professionals to provide patients and society with a better quality of life by
providing early diagnosis, reducing treatment complications, optimising treatment and/or
providing less invasive options, including reduced hospital admissions. Whereas before
the Information Age, medical technology was mainly known for classical medical devices
(e.g., implants, prostheses, stents, functional diagnostic systems, etc.), the development
of information technology (IT) has led to a revolution in the development of specifically
digital medical products and services, among which the greatest hope is the widespread
adoption of artificial intelligence (AI) technologies.

Currently, the application of various IT solutions based on AI technologies is one
of the most promising areas of digital healthcare transformation. The growing interest
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in AI is driven by several trends, including increasing hardware computing power, the
development of cloud computing, the rapid accumulation of large digital biomedical
datasets, and the development of machine learning (ML) algorithms. AI-based techniques,
such as fuzzy expert systems, Bayesian networks, various classifiers, and artificial neural
networks have long been used in various clinical situations in healthcare. According to
analytics [1], the global healthcare AI market size was USD 8.19 billion in 2021, will grow
to USD 10.11 billion in 2022 at a compound annual growth rate (CAGR) of 23.46%, and will
increase to USD 49.10 billion at a CAGR of 48.44% by 2026.

We see AI as part of IT, capable of solving complex problems in areas where large
structured marked-up datasets are accumulated, but without well-developed theory [2].
AI technology is effective where no clear rules, formulas, and algorithms can be specified
to solve a problem, e.g., ‘Is there pathology on the lung X-ray image?’ ML technologies
imply that instead of implementing some pre-formulated logical formula based on clear
instructions, such as ‘if. . . — then. . . ’, the algorithm is trained using a large amount of
pre-prepared marked-up data and various mathematical methods that enable the computer
program to identify that formula from empirical data and thereby learn to perform the task
in the future, even in slightly different circumstances [3]. The Big Data approach uses the
ML principles, including various classifiers, deep learning (DL), or pattern recognition,
which in the case of medical applications involves training an intelligent system with
repetitive algorithms to recognise what certain groups of symptoms or certain clinical
(e.g., radiology, CT or MRI) images look like, i.e., to actually classify biomarkers of certain
diseases [4].

Currently, the main areas of research and development in the field of medical AI
technologies are diagnostics and prognosis of diseases and their complications [5], selec-
tion of personalised therapy [6,7], operation of personal medical assistants for real-time
monitoring and assessment of patients [8], and the development of new drugs and support
for their clinical trials [9–11]. A separate but still underdeveloped area is the development
of robotic, truly autonomous devices for the healthcare sector [12,13].

Over the last decade, many AI-based algorithms have been approved in various
countries and can, therefore, be introduced into clinical practice. Investment in AI for
healthcare has been growing steadily since 2017 (Figure 1A). According to CB Insights,
in 2021, total investment in companies offering various products based on AI technology
was USD 12.2 billion (505 deals). By comparison, in 2020 this figure was USD 6.627 billion
(397 deals), in 2019 it was USD 4.129 billion (367 deals), and in 2018 it was only USD 2.7
billion (264 deals). In addition, the temporal dynamics of the number of articles on artificial
intelligence in medicine indexed in the PubMed database demonstrate a fast growing trend
and has doubled in 2022 compared to 2015 (Figure 1B).

Figure 1. (A) dynamics of venture capital investment in artificial intelligence systems for medicine and
healthcare, according to CB Insights, USD billion. Based on data from ‘State of AI 2021 Report’ [Internet].
Source: https://www.cbinsights.com/research/report/ai-trends-2021/ (accessed on 21 September 2022).
(B) dynamics of number of AI in medicine papers by year indexed in the PubMed database.

https://www.cbinsights.com/research/report/ai-trends-2021/
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AI-based products can potentially improve the efficiency of medical doctors, nurses,
and healthcare organisations by reducing the time needed to document the care process,
ensuring patient routing and the necessary communication of all parties involved in the
process [1,14]. The COVID-19 pandemic has significantly increased interest in the use of
AI products, although, as noted in two recent meta-reviews [15,16], the effectiveness of AI-
based models for predicting the severity of the COVID-19 disease has not been sufficiently
high. Recent publications have shown that additional research and development, including
the provision of independent clinical validation and cost-effectiveness assessments, are
needed if AI systems are to be widely adopted in healthcare practice [17–19]. At the same
time, the use of AI can create social and ethical problems related to security, privacy, and
human rights [20].

One of the first developments of expert software in medicine is the MYCIN system [21],
which was based on the fuzzy sets mathematical methods. It was created by Stanford
University in the early 1970s to identify the causative agents of severe infectious diseases
and calculate the required doses of antibiotics. We would now call it the clinical decision
support system (CDSS) [22]. MYCIN CDSS was estimated to be 69% effective, in as many
cases as the correct treatment was administered [21]. A CADIAG-2 expert system similar in
mathematical principles based on fuzzy sets and fuzzy logic was created in the 1980s [23]
at the University of Vienna and contained symptoms and diagnostic rules for 295 diseases,
among them 185 rheumatic diseases (69 joint diseases, 12 spinal diseases, 38 soft tissue and
connective tissue diseases, 45 cartilage and bone diseases, 21 regional pain syndrome) and
110 gastroenterological diseases (35 gall bladder and bile duct diseases, 10 diseases of the
liver) [24,25].

Another AI-based software in medicine is IBM Watson [26]. Initially, this solution was
aimed at an application in oncology to diagnose and recommend an effective treatment
for each patient. To train IBM Watson, 30 billion medical images were analyzed, for which
IBM had to buy Merge Healthcare. This demonstrates the importance to the development
of AI in medicine of precisely access to marked and reliable medical data. It took the
addition of 50 million anonymous electronic medical records, which IBM got its hands on
when it bought the start-up Explorys. In 2014, IBM announced a partnership with Johnson
& Johnson and pharmaceutical company Sanofi to train Watson to understand research
and clinical trial results. This, the company claimed, would result in significantly shorter
clinical trial times for new drugs and help doctors select therapies best suited to individual
patients. Additionally, in 2014, IBM announced the development of Avicenna software,
which can interpret both text and images. Different algorithms are used for each type of
data. Avicenna will be able to understand medical images and records and will act as a
radiological assistant. Another IBM project, Medical Sieve, has been working on a similar
task. In this case, it is the development of an artificial intelligence ‘medical assistant’ that
will be able to quickly analyze hundreds of images for abnormalities [27].

However, the use of CDSS is currently limited [28]. Despite all the benefits of CDSS that
were widely reported in previous studies [29], certain factors that prevent their widespread
use in healthcare. Some of them are social and psychological, such as negative perception
of CDSS by clinicians [30] and lack of trust in the decisions made by CDSS [31], and the
others are related to technical issues [32,33]. In addition, a significant research gap affecting
the development of medical AI-based methods is a lack of appropriately labeled medical
data [34]. This led to the development of various techniques of data labeling for AI-based
methods [35,36].

So, there is an active adoption of AI technology in medicine at the moment. Medical
AI systems exist in many forms, from the purely virtual (e.g., deep learning medical
information management systems to assist doctors in making treatment decisions) to the
cyberphysical (e.g., robots used to assist the treating surgeon) [37]. The ability of AI
technologies to recognise complex associations and hidden structures using big data has
enabled many healthcare diagnostic systems based on medical data of different modalities
to perform as well as, and in some cases better than, physicians.
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In this paper, we aim to explore the tendencies of using AI in medicine from an
engineering and data science perspective. We identify and compare AI technologies
for different data modalities used by researchers in different branches of medicine. We
analyzed the results obtained from PubMed database using thoroughly constructed search
queries based on keywords to obtain the most conclusive results with each query. We
also used VOSviewer software to analyze the co-occurrence network and select five main
clusters of keywords, each representing the research area that emerged in the scientific
community over the last five years. We believe that the results of this research will increase
understanding current directions of AI-based methods development in medical research,
and will potentially help the specialists to determine the directions of their own studies.

2. Methods
2.1. Search Strategy

To search for articles, we utilized the database PubMed (https://pubmed.ncbi.nlm.nih.
gov, accessed on 5 February 2023) using the queries of keywords. The methodology of the
present review is to analyze the main research trends of artificial intelligence and machine
learning applications in medicine. This task required the analysis of a large amount of
paper, which excluded the possibility of the detailed investigation of each considered study.
Therefore, to obtain the most objective sample with the minimized proportion of unsuitable
articles, we developed a search query strategy that provided as complete and accurate result
as possible.

At the first stage, we have highlighted the issues that we would like to address:

• Which types of machine learning are the most used in medicine? Are there different
preferences for them in the different areas of medicine? If there are, then why?

• Which data types are the most used in medicine for artificial intelligence algorithms?
How are the different data types treated?

• How the artificial intelligence methods used to diagnose the illnesses that are the most
common causes of death?

Based on these questions, we selected four categories of data:

1. Medical area (MA), or the field of medicine, in which the AI-based methods are
used (we used pulmonology, gastroenterology, orthopedics, reproductive medicine,
neurology, and cardiology);

2. Cases (C)—the specific diseases that are considered as the leading causes of death
(we used COVID-19, cancer, cardiac ischemia, stroke, and diabetes);

3. Learning methods (SupL, UnsupL, DL)—types of machine learning (supervised,
unsupervised, and deep learning, respectively);

4. Data types (DT), that are commonly used in medicine as input for artificial intelligence
algorithm (time series, images, health parameters).

To each of these categories, we assigned a set of keywords, the union of which describes
each of the categories in the most complete way. For instance, the category supervised learn-
ing contains the names of the specific algorithms belonging to this type of machine learning,
such as support vector machines, decision trees, linear regression, etc. The full transcripts
of all used categories are shown in the Table in Appendix A. Figure 2 shows the scheme of
the query construction.

We can highlight two types of queries. The first one is shown in Figure 2A. By this
approach we have selected the articles that meet following the requirement: to use the
particular data type to feed an artificial intelligence method and related to the particular
medical area or the case—the specific disease (scheme 1 and 2 on the Figure 2A, respec-
tively). Here, the entity Artificial intelligence is a unification of all considered sets of methods,
i.e., unsupervised, supervised and deep learning. All keywords corresponding to the each
category were united by the logical OR.

https://pubmed.ncbi.nlm.nih.gov
https://pubmed.ncbi.nlm.nih.gov
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Figure 2. Query construction scheme. (A)–the construction scheme of queries of the first type. (B)–the
construction scheme of queries of the second type.

The queries of the second type were constructed according to the scheme on Figure 2B.
Here, each set of the entity Artificial intelligence was used separately to narrow the search
results down to the particular learning methods. Here, each query gave as a result the
intersection of one of the learning methods of interest AND one of the other three sets.
Here, each operand of the logical AND was a unification of the keywords using the
logical OR.

The papers with paper types “Review”, “Systematic Review”, and “Meta-analysis”
were excluded from the final sample using PubMed search filters. After collecting the
number of articles found with each query, we selected the most prominent results and
features, and performed the more particular review to establish the causes for these features
on the example of specific cases.

All of the queries processed in this paper are valid for 5 February 2023.

2.2. The Co-Occurrence Network Analysis

The co-occurrence network (see Figure 3) was created based on keywords from
10,000 papers found in PubMed by search query consisting of all keywords from SupL,
UnsupL, and DL sets of data using VOSviewer version 1.6.18 (Centre for Science and
Technology Studies, Leiden University, The Netherlands). VOS stands for visualization
of similarities and provides a mapping technique used for reconstruction of bibliometric
maps [38]. In our research, we used network visualization that colors the items according
to the cluster to which they belong. Clusters, or communities, are detected in VOSviewer
using algorithm based on the modularity function [39]. For more particular analyses, we
selected the largest items in each cluster and analyzed its within-cluster connections, as
well as the most strong connections with items from other clusters, in order to provide the
interpretation of obtained co-occurrence pattern of each chosen item in the context of its
closest surrounding.
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Figure 3. The co-occurrence network constructed using VOSviewer. The size of the nodes are
determined by the weight of the corresponding item that indicate the importance of the item, and
the color is determined by the cluster to which the item belongs. The methodology of VOSviewer
visualization technique is provided in details in [40].

3. Results and Discussion
3.1. Network Analysis

The VOSviewer identified five clusters, which can be easily interpreted based on
the keywords they contain (Figure 3). First, a signal processing cluster (purple lines)
includes such areas of application as electroencephalography and electrocardiography. Second,
we highlight a deep learning cluster (blue lines) which includes deep learning approaches,
e.g., neural networks, computer, deep learning, and artificial intelligence. Third, a machine
learning cluster (red lines) includes classical machine learning techniques, e.g., support vector
machine, principal component analysis, etc. Fourth, an image processing cluster (yellow
lines) includes convolutional neural networks as a main tool and a magnetic resonance imaging
as a main area of application. Fifth, a retrospective studies cluster (green lines) mainly
considers the reproducibility of results, prognosis, and methods for the evaluation of algorithms
performance, e.g., ROC curve, etc. In the rest part of this section, we give an interpretation
of the most evident within and between cluster structures.

The deep learning being the largest item of the deep learning cluster has strong within-
cluster connections with the famous deep learning methods (neural networks and con-
volutional neural networks) (Figure 4A). Furthermore, presence of an artificial intelligence
in this cluster suggests that medical studies usually associate an artificial intelligence
with deep learning algorithms. Second, the deep learning cluster includes COVID-19 and
SARS-CoV-2, indicating that deep learning applications in medicine were influenced by
COVID-19 pandemic that might have spark the development of medical image analysis
using artificial intelligence methods. This assumption can be supported by the presence of
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tomography, X-ray computed, and lung neoplasms in the same cluster. The deep learning item
has various connections with other clusters. The strongest connections are observed with
the machine learning cluster, image processing cluster, and the retrospective studies cluster.
Connections with image processing cluster indicate a wide application of the deep learning
methods for analysis of neurological images. Connections with the retrospective studies
cluster can also be interpreted as COVID-related because a lot of retrospective studies
of COVID-19 aftermaths were published since 2020, particularly with applications of the
artificial intelligence methods. Moreover, the connections with the retrospective studies
mean the wide application of deep learning methods for disease prediction and prognosis
(e.g., lung neoplasms, breast neoplasms, etc.).

Figure 4. Selected subnetworks of interest with the largest nodes corresponding to deep learning (A),
retrospective studies (B), machine learning (C), electrcardiography (D) and electroencephalography (E).

The retrospective studies cluster contains such nodes as ROC curve, prognosis, reproducibil-
ity of results, diagnosis, predictive value of tests, image interpretation, and sensitivity and specificity
(Figure 4B). Most likely, these studies include development of the decision support systems
and automated systems for medical monitoring, diagnosis, and prognosis. These fields
of application require interpretability of algorithms and reproducibility of results which
explains the presence of the reproducibility of results and evaluation metrics, e.g., ROC curve,
area under curve, sensitivity, and specificity. Considering between-cluster links, we observe
strong connections with machine learning and deep learning clusters, indicating using both
traditional machine learning and deep learning algorithms. Finally, there is a link to mag-
netic resonance imaging which, together with connections with tomography, X-ray computed,
and breast neoplasms, may indicate retrospective studies preformed the context of diseases’
effects on human health, including the long-term effects of disease and epidemiological
impact. Machine learning methods were used to make predictions of risks in patients with
COVID-19 [41–43], as well as other diseases and conditions [44,45].

The machine learning node has within-cluster connections with the most traditional
machine learning algorithms, such as support vector machine, decision trees, principal
component analysis, logistic models, etc. (Figure 4C). Considering between-cluster links,
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we highlight the strongest connection with the deep learning algorithms confirming an
obvious association between machine learning and deep learning algorithms. In addition,
machine learning clusters have other important between-cluster links, including image
processing, retrospective studies, and electroencephalography. In the retrospective studies,
machine learning reaches such nodes as prognosis and diagnosis, suggesting the use of
ML algorithms in these areas, and ROC curve, area under curve (AUC), reproducibility,
sensitivity, and specificity. Again, using ML in diagnostics and prognosis raises questions of
algorithms’ performance, their evaluation, and the reproducibility of results. The remaining
between-cluster links illustrate areas of ML application for the different types of data. Thus,
there are links to image processing and magnetic resonances imaging belonging to the image
processing cluster, and a link to electroencephalography representing a signal processing
cluster. Note, that another important type of data, electronic health records, is connected to
the machine-learning node via a within-cluster link. Therefore, we conclude that machine
learning finds its application in the three major types of medical data.

Electroencephalography and electrocardiography are the nodes of the signal processing
cluster, they represent very important signals describing human state (Figure 4D,E). Consid-
ering the structure of the links outgoing from these nodes, we found that both data types
have connections with the nodes of the deep learning cluster, including neural networks
and artificial intelligence. This is probably due to the recurrent neural networks, a deep
learning algorithm for signal processing. Second, they both link with the different nodes
of the machine learning cluster, including principal component analysis, support vector
machine, and clusterization. The main difference between electroencephalography and
electrocardiography is that the first has a link to the brain, which is obvious, and that
electroencephalography links to convolutional neural network. This difference arises from
the nature of the signals. Unlike electrocardiography, electroencephalography includes
multichannel recordings from the electrodes having certain spatial locations. Therefore,
its analysis usually implies considering spatial distributions of the signal features, e.g.,
spectral amplitude across the spatial 2-D dimension [46]. The second aspect is that elec-
troencephalography analysis often relies on the time-frequency decomposition that results
in the 2-D distribution of the spectral power across frequency bands and time samples.
Finally, there are 1-D convolution neural networks that are used for the analysis of such
signals [47].

Taken together, we report the following insights from the data. First, medical appli-
cations consider deep learning as a part of machine learning that includes deep neural
networks and artificial intelligence. Second, deep learning finds its application in image
processing mostly, while traditional machine learning algorithms usually work with signals
and health records. Third, using deep learning and machine learning methods raises the
question of reproducibility. Fourth, prognosis and diagnosis mostly rely on traditional
machine learning algorithms rather than deep learning methods because they pay much
attention to the interpretability and stability of the algorithms.

3.2. Queries Results

In this subsection, we describe the search query results. Figure 5 shows the results of
the queries complied following Figure 2B, with Figure 5; a build using queries 5, 8, and
11, Figure 5B—query 1, and Figure 5C—queries 3, 6, and 9. Generally, Figure 5 highlights
the dominance of the time series as the data type used to feed artificial intelligence method.
The supervised learning appears to be the most common choice in medical research. This
figure further shows that most articles satisfying queries 5, 8, and 11 from Figure 2B
investigate the combination of medical time series and supervised learning (Figure 5A).
Imaging is the second most used data type in AI-based medical studies, predominantly
used in neurology and in combination with supervised learning methods. The health
parameters are also widely used as a data type, mostly required in reproductive medicine
and neurological studies (Figure 5B). In the next sections, we consider the different cases of
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using supervised/unsupervised/deep learning methods for the different types of medical
data more thoroughly.

Figure 5. Results of query research of the PubMed database with the number of papers acquired
via the corresponding search queries. (A) the use of machine learning types in combination with
different medical data types; (B) medical data in artificial intelligence research in different medical
areas; and (C) the use of machine learning methods in different medical area.

The main idea of unsupervised learning is the categorization of the data without the
labels provided for the training algorithm. A classic task for the classification of unlabeled
data is clustering or segmentation of a dataset into groups based upon patterns extracted
in the process of self-supervised learning.

Figure 5A demonstrates that the considerable attention of medical researchers is given
to unsupervised machine learning with time series. The brief review of literature revealed
the great importance of clusterization task in various areas of medicine. In reproductive
medicine, this combination is used to divide the fetal biological signals (ECG, MEG, EEG)
from mothers’ [48–52], as well as for extraction of anomalies and significant features.
In particular, PCA was applied for fetal heart activity removal from MEG [53], to estimate
the iron status of term newborns [54], and detection of fetal brain activity of different
modalities [55,56]. Such studies lie on the interception of reproductive medicine and
neurology, which shows dominance in both use of time series for AI-based methods
(Figure 5B), and unsupervised methods application (Figure 5C).

In obstetrics, unsupervised learning solves the crucial task of prediction of the labor
outcomes. Clustering techniques proved their effectiveness for identifying condition
clusters associated with preterm birth [57], birth weight prediction [58], and detection of
opening and closing of the fetal cardiac valves [59].

Our results demonstrated a notable amount of neurology studies with clusterization
methods for detection of different brain patterns on imagery data (Figure 5C). Bayesian
non-parametric regression was applied to detect brain regions based on stimulus response-
related activity [60]. In addition, segmentation of brain tissues is a vital for detection of
neurological diseases and regions of atrophies [61–63].

Considering the particular cases, the application of unsupervised machine learning is
rather moderate (Figure 5C). However, we can notice the considerable amount of literature
dedicated to the unsupervised learning in diabetes and COVID-19 studies (Figure 6A,
based on queries 4, 7, and 10 from Figure 2B).

Our results demonstrated that the supervised learning is the most popular choice for
the medical purposes. In particular, a bunch of literature is dedicated to the combination of
supervised learning and time series (Figure 5A).

In reproductive medicine, supervised machine learning is applied for prediction of
anomalies and evaluation of risks (Figure 5C). Such methods as logistic regression, decision
tree model, naive Bayes classification, support vector machine, random forest algorithm,
and stochastic gradient boosting method are used for preeclampsia detection [64–66].
The Decision Forest demonstrated the most promising results for fetal anomaly status
prediction [67]. Other literature are dedicated to the prediction of Caesarean section
risk factors [68–72]. Supervised learning in combination with electronic health records
demonstrated a high effectiveness in prediction of postpartum depression [73–76], and in
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combination with resting state fMRI-based functional connectivity demonstrated a high
performance in the classification of major depressive disorder [77,78].

Figure 6. The results of the queries with the number of the acquired papers on particular diseases
research in combination with different data (A) and machine learning types (B).

In addition, our results reveal a dominance of supervised machine learning applica-
tions in the stroke and diabetes studies (Figure 6A). A brief review shows that prediction
and prognosis become a goal of research in the both cases. In stroke studies, predictions of
outcomes, course of the disease and evaluation of risks are crucial for intervention strategy
planning [79,80]. Similarly, supervised learning methods were used for assessment of
diabetes risks based on identified key variables [81,82], as well as for prediction of risks in
patients with diabetes [83,84].

Our search results demonstrate that, in general, the deep learning is rather rare in
medical studies. The main reason is that the artificial neural networks, representing most of
this category, leave almost no room for interpretation of the results [85], and this particular
outcome of artificial intelligence in medicine is crucial. At the same time, deep learning-
based methods are a popular choice in heart disease studies, and particular ways of their
application vary from one research to another (Figure 6A). In Ref. [86], authors describe
a method for coronary artery disease (CAD) detection using a deep convolutional neural
network based on facial photos. Another group of studies uses ECG signals as input data
for deep learning algorithms to detect abnormalities associated with CAD [87]. However,
in the context of CAD diagnosis, prediction, and risk evaluation, the most popular choice
of input dataset is various techniques of cardiac imaging, such as cardiac CT and MRS [88].

Figure 6B (based on query 2 from Figure 2A) shows that the specific data types
prevail in studies associated with particular cases. For instance, AI-based studies of cardiac
ischemia mostly use time series, whereas COVID-19 studies rely on imaging techniques, and
AI-based methods use health parameters as data in stroke studies. This result may provide
insight into the particular goals of research on each disease. In particular, cardiac-related
AI applications often focus on fast and accurate identification of pathological activity on
ECG [89–91]. In the case of COVID-19, not only identification but also localization of lesions
on CT scan becomes a goal for AI-based research [92,93]. In stroke studies, algorithms use
health parameters for risk evaluations and outcome predictions [94–96].

4. Conclusions

In this paper, we analyzed area-specific and data-specific domains of AI methods
applications in modern medicine using a data mining approach. We found in PubMed
a large collection of papers that met the specially chosen keywords and applied the two
types of analysis to them: the co-occurrence network analysis and statistical analysis of
query results. These data analysis approaches complemented each other. We obtained the
following key results:
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• Deep learning finds its application in image processing mostly (especially in cardiology
for heart disease studies based on analysis of cardiac imaging data), while traditional
machine learning algorithms usually work with signals and health records. In general,
deep learning methods are rather rare in medical studies because they leave almost
no room for interpretation of the results.

• Using deep learning and machine learning methods raises the question of reproducibility.
• Prognosis and diagnosis mostly rely on traditional machine learning algorithms rather

than deep learning methods because they pay much attention to the interpretability
and stability of the algorithms.

• The considerable attention of medical researchers is given to unsupervised machine
learning with time series (ECG, EEG, MEG, etc.), especially to clusterization and
segmentation techniques, regression, and PCA methods in various areas of medicine
(reproductive medicine, neurology, cardiology, COVID-19, diabetes studies, etc.).

• Supervised machine learning is the most popular choice for medical purposes:
a bunch of literature is dedicated to the combination of supervised machine learning
methods and time series. Methods such as logistic regression, decision tree model,
naive Bayes classification, support vector machine, random forest algorithm, and
stochastic gradient boosting method are used for the prediction of anomalies and evalu-
ation of risks in reproductive medicine, neurology, stroke, diabetes
studies, etc.

• The specific data types prevail in studies associated with particular cases. For instance,
AI-based studies of cardiac ischemia mostly use time series, whereas COVID-19 studies
rely on imaging techniques, and AI-based methods use health parameters as data in
stroke studies.

However, this research has certain limitations. First of all, we acknowledge the lack
of thorough analysis of compliance of each paper with the corresponding topic of interest.
In this research, we considered the samples of a large amount of papers obtained from
PubMed database, which was impossible to manually analyze. However, we consider our
search query strategy specifically designed to provide the most accurate and conclusive
results as a “rejection criteria” based on the inclusion of certain keywords into the title
or text of the article. Of course, this method cannot guarantee the absence of unsuitable
articles in the final samples, but we can ensure that their number is relatively small and did
not affect the presented results.

We believe that the data systematized in this work will support the specialist in
choosing the most appropriate method for the task he/she faces related to the analysis of
medical data of a certain type in a given medical area. In this way, the paper presented may
serve as a kind of handbook.
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Appendix A. Query Keywords

Search Set Subset Keywords

Learning method

K0: Deep learning

K1: convolutional neural network
K2: recurrent neural network
K3: artificial neural network
K4: multilayer perceptron
K5: self-organizing map
K6: Boltzmann machine
K7: autoencoder

K0: Unsupervised learning

K1: clustering
K2: principal component analysis
K3: singular value decomposition
K4: hidden markov model
K5: k-means

K0: Supervised learning

K1: support vector machine
K2: decision tree
K3: logistic regression
K4: KNN
K5: Bayes

Data type

K0: Time series

K1: signal
K2: eeg
K3: emg
K4: meg
K5: ecg
K6: nirs
K7: emg
K8: blood flow
K9: phonocardiogram
K10: eog
K11: ieeg

K0: Image

K1: imaging
K2: fmri
K3: mri
K4: pet
K5: gastroscopy
K6: X-ray
K7: computed tomography scan
K8: CAT scan
K9: ultrasound
K10: fluoroscopy
K11: endoscopy

K0: Health parameters
K1: clinical parameters
K2: prognostic data
K3: health indicators
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Set Subset Keywords

Medical area

K0: Pulmonology K1: lungs
K2: respiratory

K0: Gastroenterology K1: digestion

K0: Orthopedics

K0: Gynecology
K1: urology
K2: obstetrics
K3: reproductive

K0: Neurology K1: brain

K0: Cardiology K1: heart

Case

K0: COVID-19 K1: SARS-CoV-2

K0: Cancer

K0: Cardiac ischemia

K0: Stroke

K0: Diabetes
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