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Abstract Intermittent behavior in unidirectionally
coupled Pierce diodes being a classical model of spa-
tially extended beam–plasma systems on different time
scale is studied. Depending on the value of the strength
of coupling between interacting systems and selected
time scale, the ring intermittency, the eyelet intermit-
tency or coexistence of both of them are shown to be
observed.
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Intermittency is one of the widespread phenomena in
nonlinear science [1–8]. It is observed in flow systems,
discrete maps and spatially distributed media. It is one
of the classical scenarios of the transition to chaos and
can also take place near the boundaries of different
types of chaotic synchronization [9–15]. Intermittency
manifests itself on the different time scales. In particu-
lar, in the phase synchronized flow chaotic systems the
ring intermittency is observed on the boundary time
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scales [16], whereas near the boundary of the phase
synchronization depending on the selected time scales
the ring intermittency, the eyelet intermittency or coex-
istence of both types of intermittency mentioned above
can take place [17]. Each type of the intermittency is
characterizedby its own statistical characteristics deter-
mined by the mechanisms (which are also different for
the distinct intermittencies) resulting in the intermittent
dynamics. These statistical characteristics (the distrib-
utions of the laminar and turbulent phase lengths calcu-
lated for the fixed values of the control parameters, the
dependence of the mean length of the laminar phases
on the control parameter and/or parameters of analysis)
are used frequently to classify the type of intermittent
behavior observed in the experimental or theoretical
studies.

Spatially extended nonlinear systems (including
active media, complex networks and living objects)
are also known to exhibit intermittent behavior [3,5,
6,18–21]. At the same time, the most part of known
papers is devoted to the consideration of the coupled-
map lattices, complex networks or dynamics of spa-
tially distributed activemedia,whereas transitions from
the asynchronous dynamics to different types of chaotic
synchronization in such systems have not been studied
in detail now. As an exception, one can refer to the
papers [14,15] where intermittent phase and general-
ized synchronization has been studied, with themecha-
nisms of the synchronous regime arising and statistical
characteristics of intermittency being the same as in the
case of the systems with a small number of degrees of

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-015-2338-0&domain=pdf


434 O. I. Moskalenko et al.

freedom. Obviously, one can expect that for the spa-
tially extended systems the analysis of their behavior
on different time scales in dependence on the coupling
parameter, similarly to the analogous studies of the
systems with a small number of degrees of freedom,
may reveal the interesting phenomena and generalities.
Nevertheless, the analogous investigations in spatially
extended media have not been performed so far. There-
fore, in the present paper we analyze themanifestations
of intermittency in spatially distributed systems on dif-
ferent time scales of observation.

As an object of the research, we consider two unidi-
rectionally coupled hydrodynamical models of Pierce
diodes (indices “1” and “2” correspond to the drive and
response systems, respectively) whose dynamics in the
dimensionless form is given by

∂2ϕ1,2

∂x2
= −α2

1,2(ρ1,2 − 1), (1)

∂ρ1,2

∂t
= −∂(ρ1,2v1,2)

∂x
,

∂v1,2

∂t
= −v1,2

∂v1,2

∂x
+ ∂ϕ1,2

∂x
,

where α1 = 2.858π and α2 = 2.860π are the con-
trol parameters, 0 ≤ x ≤ 1, ϕ1,2(x, t) are potentials of
the electric field, and ρ1,2(x, t) and v1,2(x, t) are the
densities and velocities of the electron beam, respec-
tively [22,23]. The boundary conditions on the left
boundary are specified by the constant ones

v1,2(0, t) = 1, ρ1,2(0, t) = 1, ϕ1,2(0, t) = 0, (2)

whereas on the right boundary of the systems they are
modified in the following way

{
ϕ1(1, t) = 0,
ϕ2(1, t) = ε(ρ2(x = 1, t) − ρ1(x = 1, t)),

(3)

defining the unidirectional coupling between interact-
ing systems [24]. Here ε denotes the strength of cou-
pling between such systems.

To analyze the behavior of interacting Pierce diodes
on different time scales of observation, we follow the
time scale synchronization concept [25–27] and use the
continuous wavelet transform [27,28]

W1,2(s, t0) = 1√
s

+∞∫
−∞

u1,2(t)ψ
∗
(
t − t0
s

)
dt, (4)

with Morlet complex mother wavelet ψ(η) = (1/ 4
√

π)

exp( j
0η)exp
(−η2/2

)
, 
0 = 2π . Here u1,2(t) are

time realization of the analyzed systems, and s is a
time scale of observation. As signals u1,2(t) for Pierce
diodes, we use the space charge densities ρ1,2(x =
0.2, t) registered in the fixed point x = 0.2 of the inter-
action space.

Theuseof complexwavelet basis allows to introduce
into consideration the phases φ1,2(s, t) = argW1,2

(s, t) for any time scale s. The efficiency of the Morlet
wavelet function for introduction of the phases of time
series of different nature (biological and electromag-
netic signals) has been confirmed in the earlier stud-
ies [16,25,26,29–31]. If for the selected time scale the
phase locking condition

|φ1(s, t) − φ2(s, t)| < 2π (5)

is satisfied, the time scale s canbe considered as the syn-
chronous one. The number of synchronous time scales
depends both on the system itself and its control para-
meters. However, for any dynamical system the range
of synchronous time scales expands with increase in
the value of the coupling strength testifying the tran-
sition from the phase to lag synchronization regime
[25,32].

In the phase synchronization regime, the system
under study contains both synchronous and asynchro-
nous time scales. They are delimited by so-called
boundary time scales in which the intermittent behav-
ior can be observed. Similar effects take place near
the phase synchronization boundary. But due to the
presence of intermittent behavior in such region on the
boundary time scales of observation, the intermittency
of intermittencies [17] should take place.

Let us define the characteristics of intermittency on
different time scales both in the regime of phase syn-
chronization and near its boundary in unidirectionally
coupled Pierce diodes (1)–(3). To define the type of
intermittency realized for the selected control para-
meter values, we use, first of all, the rotating plane
method [16,17]. Due to such approach, the dynamics
of interacting systems can be considered on the plane
(ξ ′, η′) rotating around the origin (0, 0) according to
the phase φ1 of the first system

ξ ′ = ξ2 cosφ1 + η2 sin φ1,

η′ = −ξ2 sin φ1 + η2 cosφ1,
(6)
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Fig. 1 (Color online) Phase trajectories of Pierce diodes on the
rotating plane (ξ ′, η′) for different values of the coupling strength
ε and the time scale s: a the synchronous regime (ε = 0.058,
s = 4.0), b the ring intermittency (ε = 0.058, s = 2.7225), c the
eyelet intermittency (ε = 0.00445, s = 4.0), d the intermittency
of eyelet and ring intermittencies (ε = 0.00445, s = 2.7225)

where ξ2 = ReW2(s, t), η2 = ImW2(s, t). Figure 1
illustrates the behavior of interacting Pierce diodes
on the plane (6) for different values of the coupling
strength ε and time scale of observation s. Figure 1a, b
corresponds to the realization of the regime of phase
synchronization in the system (1)–(3) (ε = 0.058).
In such case on the main time scale of observation
(s = 4.0, Fig. 1a), the trajectory on the rotating
plane looks like a smeared fixed point which does
not envelop the origin, whereas on the boundary time
scale (s = 2.7225, Fig. 1b) it is represented by a
similar point enveloping origin. In such case, the ring
intermittency[13] should be realized. Near the phase
synchronization boundary (ε = 0.00445), the trajec-
tory on the rotating plane looks like a smeared limit
cycle on the main time scale of observation (s = 4.0,
Fig. 1c) which starts enveloping origin at consideration
of the system on the boundary time scale (s = 2.7225,
Fig. 1d). It is obvious that in the first case (Fig. 1c), the
eyelet intermittency [12] should be observed in the sys-
temunder study,whereas in the second one (Fig. 1d) the
coexistence of eyelet and ring intermittencies should
take place.

To verify the results obtained by means of the rota-
tion plane approach, we analyze statistical characteris-
tics of the fields of the synchronous behavior (laminar

phases) in two unidirectionally coupled Pierce beam–
plasma diodes on different time scales of observation.
They are (1) the distribution of lengths of the laminar
behavior for the fixed values of the system parameters
and (2) the dependencies of themean length of the lam-
inar behavior on the coupling parameter (for the fixed
time scale) and on the time scale (for the fixed coupling
parameter). Ring and eyelet intermittencies are known
to be characterized by an exponential distribution of
the lengths of the phases of laminar behavior, but in
the regime of eyelet intermittency it takes place only
for relatively large values of lengths (see [33,34]). In
other words, the distribution of the lengths of the lami-
nar phases in the eyelet intermittency regime obeys an
exponential law

p1(τ ) = 1

KT1
exp

(
− τ

T1

)
(7)

where K = exp

(
− x

T1

)
, T1 is a mean length of the

laminar phases for eyelet intermittency, x is a minimal
value of the laminar phase length for which distribu-
tion obeys an exponential law [34,35], whereas in the
regime of ring intermittency it can be written in the
following form

p2(τ ) = 1

T2
exp

(
− τ

T2

)
(8)

where T2 is the mean length of the laminar phases for
ring intermittency [13]. Taking into account the pecu-
liarity of the laminar phase length distribution for eyelet
intermittency (7) which has not been taken into account
in the previous works (see, e.g., [17,34,36]), on the
basis of the common theory of coexistence of two dif-
ferent types of intermittent behavior in nonlinear sys-
tems proposed in [17], one can deduce the refined dis-
tribution of the laminar phase lengths for the regime of
intermittency of eyelet and ring intermittencies. Hav-
ing substituted the probability densities (7) and (8) for
p1,2(τ ) into relation

p(τ )

= 1

T1 + T2

⎡
⎣

∞∫
τ

ds

s

∞∫
τ

[p1(l)p2(s)T2+ p1(s)p2(l)T1] dl

+
∞∫

τ

(
1 − τ

s

)
[p1(τ )p2(s)T2 + p1(s)p2(τ )T1] ds

⎤
⎦
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reported in [17] for the intermittency of intermittencies
and made its further simplifications, one can obtain the
refined distribution of the laminar phase lengths

p(τ ) = 2exp

(
x − τ

T1
− τ

T2

) (
T 2
1 − T1e

τ/T1(τ − T2)Γ

×
(
0,

τ

T1

)
− T2(τ − T1)

× eτ/T2Γ

(
0,

τ

T2

)
+ T 2

2

) /
(
T1T2

(
2xEi

(
− x

T1

)
e
x
(

1
T1

− 1
T2

)

+ 2xEi

(
− x

T2

)
+ 2T1e

− x
T2

−2T1e
x/T1 ln

(
T1 + T2

T1

)

+ T1e
x/T1 ln

(
1

T1
+ 1

T2

)

+ 2T1e
x/T1 ln(T2) − T1e

x/T1

× ln

(
T1T2

T1 + T2

)
+ 2T2e

x/T1 ln(T1)

+ T2e
x/T1 ln

(
1

T1
+ 1

T2

)
− 2T2e

x/T1

× ln

(
T1 + T2

T2

)
− T2e

x/T1

ln

(
T1T2

T1 + T2

)
+ 2T2e

− x
T2

))
(9)

where Γ (a, z) is incomplete Γ -function and Ei(z) is
an exponential integral function.

To show the validity of obtained relation and to prove
the existence of different types of intermittency in uni-
directionally coupled Pierce diodes, we have calcu-
lated numerically the distributions of the laminar phase
lengths for the regimes shown in Fig. 1b–d (with the
same values of the criticality parameters) and compare
them with the theoretical relations (7)–(9). These dis-
tributions are shown in Fig. 2. Curve 1 corresponds
to the ring intermittency regime, curve 2 refers to the
regime of eyelet intermittency, whereas curve 3 reflects
the coexistence of eyelet and ring intermittencies. It is
clearly seen that in all considered cases the numerical
data are in a good agreement with the results of theo-
retical predictions that confirm realization of the differ-
ent types of intermittency including the coexistence of
them in unidirectionally coupled Pierce diodes on the
different time scales of observation.
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Fig. 2 (Color online) Distributions of the lengths of the lam-
inar phases in interacting Pierce diodes for different values of
the coupling strength ε and the time scale s: curve 1—the ring
intermittency (ε = 0.058, s = 2.7225), curve2—theeyelet inter-
mittency (ε = 0.00445, s = 4.0), curve 3—the intermittency of
eyelet and ring intermittencies (ε = 0.00445, s = 2.7225). The
numerical results are marked by points, whereas their theoretical
approximations are shown by lines. The approximation parame-
ters are the following: T1 = 1332.51, T2 = 1439.16, x = 400

Aswehavementioned above, an additional evidence
of the presence of the different types of intermittency
in unidirectionally coupled Pierce diodes is the behav-
ior of the mean length of the laminar phases with the
criticality parameter variation. In the regime of eyelet
intermittency, it obeys relation

T1(ε) = Aexpκ(εc − ε)−1/2, (10)

where εc is a critical value of the coupling parame-
ter corresponding to the onset of the phase synchro-
nization, A and κ are the parameters of approxima-
tion [2,36,37]. In the ring intermittency regime, such
dependence is the following

T2(s) = T0

(
1 − 1

ln(1 − �(s))

)
(11)

where T0 is a mean length of the laminar phases for the
time scale bounding the region of ring intermittency
and �(s) is the probability of detection of turbulent
motion in the fixed time of the observation [13,16].
Taking into account the obtained relation for probabil-
ity distribution (9) in the regimeof coexistence of eyelet
and ring intermittencies, one can obtain the relation for
the mean length of the laminar phases for this regime.
Having substituted Eq. (9) for p(τ ) into the definition
of the mean value
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Fig. 3 (Color online) a Dependence of the mean length of the
laminar phases on the time scale s for fixed coupling parameters
in the regimes of ring intermittency (ε = 0.058, curve 1) and
intermittency of eyelet and ring intermittencies (ε = 0.00445,
curve 3) and their theoretical approximations. bDependencies of
the mean length of the laminar phases on the coupling parame-
ter ε for fixed time scales in the regimes of eyelet intermittency
(s = 4.0, curve 2) and intermittency of eyelet and ring inter-

mittencies (s = 2.7225, curve 4) and their theoretical approx-
imations. The numerical data are marked by points, and their
theoretical approximations by laws (10)–(13) are shown by solid
lines. In the frame, the enlarged part of the curve 4 is shown.
The parameters of approximations are the following: A = 3.7,
κ = 0.5133, εc = 0.012, T0 = 13.5, and the probability p(s) is
assumed to be linear

T =
∫ ∞

x
τp(τ )dτ , (12)

one can obtain the relation for the mean length of the
laminar phases for the regime of intermittency of eyelet
and ring intermittencies in the form

T (ε, s) = 2e
− x

T2

((
T 2
1 + T1x + x2

)
ex/T2Ei

(
− x

T2

)

+ T 2
1

(
−ex

(
1

T1
+ 1

T2

))

×Ei

(
− (T1 + T2)x

T1T2

)

+ ex/T1
(
T 2
2 + T2x + x2

)
Ei

(
− x

T1

)

−T 2
2 e

x
(

1
T1

+ 1
T2

)
Ei

(
− (T1 + T2)x

T1T2

)

+ 2T1T2 + T1x + T2x

) /
(
2xEi

(
− x

T1

)
e
x
(

1
T1

− 1
T2

)

+ 2xEi

(
− x

T2

)

+ 2T1e
− x

T2 − 2T1e
x/T1 ln

(
T1 + T2

T1

)

+ T1e
x/T1 ln

(
1

T1
+ 1

T2

)
+ 2T1e

x/T1

× ln(T2) − T1e
x/T1 ln

(
T1T2

T1 + T2

)

+ 2T2e
x/T1 ln(T1) + T2e

x/T1 ln

(
1

T1
+ 1

T2

)

−2T2e
x/T1 ln

(
T1 + T2

T2

)

− T2e
x/T1 ln

(
T1T2

T1 + T2

)
+ 2T2e

− x
T2

)

(13)

where the values T1,2 and x can be obtained numeri-
cally for the regimes when the only one type of inter-
mittent behavior should exist [17] [relations (10) and
(11), respectively]. Figure 3 illustrates the numerically
obtained dependencies of the mean lengths of the lam-
inar phases on the time scale of observation (a) and the
coupling parameter (b) and their theoretical approxi-
mations by the laws (10)–(13). As in Fig. 2, the curve
1 corresponds to the ring intermittency regime, curve
2 refers to the eyelet one and curves 3, 4 satisfy for
the regime of intermittency of eyelet and ring intermit-
tencies. It is clearly seen that in all considered cases
the numerically obtained data are in a good agreement
with the theoretical fits.Moreover, it is clearly seen that
curves 1, 3 in Fig. 3a are almost coincident with each
other, with the mentioned peculiarity being valid for
both numerical and theoretical results. Such situation
is connected with the fact that the lengths of the lami-
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nar phases associated with the eyelet intermittency are
extremely large in comparison with the last one asso-
ciated with the ring intermittency regime. Therefore,
the most part of the turbulent spikes in the regime of
intermittency of intermittencies is associated with the
ring intermittency and curves 1, 3 looks like almost
identical.

So, as in the flow systems in the spatially extended
systems described by the equations of unidirection-
ally coupled hydrodynamical models of Pierce diodes
depending on the value of the coupling strength and
time scale the different types of intermittency can be
observed. In particular, in the regime of the phase syn-
chronization on the boundary time scale of observation
the ring intermittency takes place. Near the boundary of
such regimedependingon the time scale of observation,
the eyelet intermittency or coexistence of eyelet and
ring intermittencies can be realized. The found effect
possess a high degree of generality. One can expect
that such kind of behavior could be observed in variety
of real systems (including the physical, radiotechnical
and physiological ones) described in terms of both the
systems with the small number of degrees of freedom
and spatially extended media.
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