
ISSN 1063�7850, Technical Physics Letters, 2015, Vol. 41, No. 1, pp. 18–20. © Pleiades Publishing, Ltd., 2015.
Original Russian Text © O.I. Moskalenko, A.A. Koronovskii, M.O. Zhuravlev, A.E. Hramov, 2015, published in Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2015, Vol. 41, No. 1,
pp. 36–42.

18

Study of intermittent behavior has always been an
intriguing challenge for researchers. Primarily, this is
due to the fact that this phenomenon is typical for a
wide class of systems, having a fundamental nature [1].
However, all works known to date (see, for example [2,
4]) have aimed at considering cases in which the sys�
tem with fixed control parameters has two types of
alternating behavior, i.e., in which one particular type
of intermittency is realized. However, recently it was
found that a situation may occur in a nonlinear system
where, for fixed values of the control parameters, there
are simultaneously two types of intermittency, i.e.,
where the so�called “intermittent” intermittency
mode is implemented [5]. This situation is observed,
in particular, in dynamic systems near the boundaries
of emergence of synchronous modes on boundary
time scales of observation (see, for instance, [5, 6]).
However, in systems with discrete time, this phenom�
enon has yet to be found. This work aims at finding a
discrete�time system that can simultaneously demon�
strate two alternating types of behavior for fixed values
of parameters. This problem is of great interest from
the fundamental point of view, since these studies will
make it possible to better understand and comprehend
the mechanisms and the nature of the phenomena of
intermittency and chaotic synchronization.

Searching for a model system with discrete time
exhibiting the phenomenon of intermittent intermit�
tency will be performed by constructing this system
from the reference models of discrete mapping. For
this purpose, we consider two mappings of the circle
related to one another,

(1)

where ε, γ, Ω, α, κ are the control parameters of the
system. It must be noted that the connection between

xn 1+ xn 2Ω 1 xncos–( ) ε, mod2π,–+=

yn 1+ yn 2Ω 1 yncos–( ) γ– κ α/xn
3( ),cos+ +=

mod2π,

the mappings of the circle is realized by means of

addend κcos(α/ ) being added in the second equa�
tion of system (1). Thus, a unidirectional bond is real�
ized in system (1). In order to observe simultaneously
two alternating types of behavior in this system, it is
necessary to introduce new variable zn,

(2)

Variable zn allows one to consider system (1) as a
two�dimensional dynamic system with discrete time
exhibiting simultaneously two types of alternating
behavior. This is due to the fact that, if variable xn is
considered separately, it may exhibit one known type
of intermittency (type 1), depending on the value of ε.
When considering variable yn separately and changing
parameter γ, we can find that this variable can exhibit
another type of intermittency, since it undergoes the

action of additional signal κcos(α/ ). Therefore,
variable zn, being determined by (2), depends on vari�
ables xn and yn and exhibits simultaneously two types of
alternating behavior. From the above, it can be argued
that system (1) with discrete time is capable to demon�
strate the existence of two types of intermittent behavior.

We set the values of control parameters Ω = 0.1,
α = 0.1, κ = 0.025, ε = –0.0001, and γ = 0.0005 in
studying the dynamics of system (1). Figures 1a and 1b
show temporal realizations of xn and yn, respectively.
One can see that, for both variables, one can allocate
two characteristic types of behavior: type 1, when the
variable is close to zero, and type 2, when the variable
rises sharply. Therefore, one can say that variables xn
and yn demonstrate complex alternating behavior,
where laminar regions correspond to nearly zero val�
ues of variables, while turbulent areas correspond to a
sharp increase of these variables. From qualitative
comparison of Figs. 1a and 1b, one can see that the
types of intermittent behavior that exhibit variables xn
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Fig. 1. Temporal dependences of (a) xn, (b) yn, and (c) zn of system (1)–(2) in the (a, b) mode of intermittency and (c) coexistence
mode of two different types of intermittency.
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Fig. 2. Duration distribution of laminar phases at fixed values of the controlling parameters (a) and dependence of the average
duration of laminar phase on parameter γ (b) for system (1)–(2). The numerical simulation data are shown by points; theoretical
approximations corresponding to Eqs. (5) and (6) are shown by solid lines. The fitting parameters in Fig. 2 are T1 = 534, T2 =
965, and x = 65.

and yn are different. Statistical analysis of the char�
acteristics of these types of intermittent behavior
shows that variables xn and yn exhibit type 1 of inter�
mittency [2] and eyelet intermittency, respectively
[4, 7] (the latter can be considered as type 1 noised
intermittency [7]).

Using variable zn determined by (2), let us consider
the whole dynamics of system (1) with the aforemen�
tioned two types of intermittency (intermittency of
type 1 and eyelet intermittency). Figure 1c shows the
behavior of variable zn with the same values of control
parameters. It is evident that, as for variables xn and yn,
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a laminar phase is observed at close to zero values of
variable zn, while the moment of its sharp increase cor�
responds to the onset of the turbulent dynamic phase.

Based on the general theory of coexistence of two
various types of intermittency [5], we obtain the theo�
retical dependence of the duration distribution of lam�
inar phases for type 1 and eyelet intermittency. We take
into account the fact that, in the mode of eyelet inter�
mittency, the distribution of laminar phase duration is
described by the exponential law [7]

(3)

while, in the case of type 1 intermittency, it can
approximately be described by the δ function [2]

, (4)

where K =  is the normalization coefficient, x is
the minimum value of laminar phase duration
described by (3), and T1, 2 denotes the average dura�
tions of laminar phases for the two types of intermit�
tency. The distributions of laminar phase duration
when both type 1 and eyelet intermittency exist simul�
taneously then take the form

(5)

where Ei(z) = – e–t/t)dt is the exponential integral function and Γ(a, z) is the incomplete γ function.

Substituting (5) into the expression for the average duration of the laminar phase T = p(τ)dτ, we obtain the

following expression for the average laminar phase duration in alternating cases of type 1 and eyelet intermittency:

(6)

Let us analyze numerically the obtained statistical
characteristics of variable zn—namely, the duration
distribution of laminar phases at fixed values of the
control parameters and the average dependence of
laminar phase duration on the supercriticality param�
eter. Figure 2a shows the duration distribution of lam�
inar phases at the aforementioned values of the control
parameters, while Fig. 2b shows the dependence of the
average laminar phase duration on parameter γ. One
can see that theoretical dependences agree well with
the results of numerical modeling. This signifies the
correctness of the proposed theory [5] in describing
coexistence of alternating type 1 and eyelet intermit�
tency in systems with discrete time. We developed a
theory for these types of intermittent intermittency
and obtained the distribution law of laminar phase
duration and dependence of the average durations of
laminar phases on the supercriticality parameter. The
theoretical regularities have been compared to the
results of numerical simulations, and good agreement
between them is demonstrated.
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Translated by G. Dedkov
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