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Abstract We study both numerically and experimen-
tally the synchronization in an ensemble of nonidenti-
cal neuronlike oscillators described by the FitzHugh–
Nagumo equations. The cases of constant values of
time-delayed couplings between the oscillators and
adaptively controlled values of time-delayed couplings
are considered. For the experimental study of the
ensemble of neuronlike oscillators,we construct a radio
engineering setup, in which the ability to specify both
constant values and adaptively tuned values of cou-
plings between the oscillators is implemented. More-
over, it is possible to specify an arbitrary architecture
and type of dynamical couplings between oscillators
in the setup. By the example of a system of two bidi-
rectionally coupled nonidentical oscillators and a ring
consisting of ten unidirectionally coupled nonidenti-
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cal FitzHugh–Nagumo systems, it is shown that the
using of an adaptively controlled time-delayed cou-
pling allows one to achieve the in-phase synchroniza-
tion of all oscillators in the ensemble even in the case
of a large parameter mismatch. The results obtained in
the physical experiment are in good agreement with the
results of the numerical simulation.
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1 Introduction

The study of synchronization in ensembles of coupled
oscillators attracts the attention of many researchers in
various scientific disciplines [1–3]. The adjustment of
rhythms of self-sustained oscillators due to their inter-
action is typical in many natural and human-made non-
linear oscillators. In particular, many biological and
physiological systems exhibit the ability to synchro-
nize. In some cases, synchronization plays a positive
role; for example, it is necessary for the realization
of motor activity [4,5] and functioning of the internal
organs of the body [6–8], while in other cases synchro-
nization has a negative effect. For example, abnormal
synchronization of brain neurons can lead to epilepsy
[9–11], schizophrenia [12], and Parkinson’s disease
[13].
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736 D. D. Kulminskiy et al.

The study of synchronization is of special inter-
est in neural networks, which are used to model the
processes of interaction of brain neurons [14–16]. To
simulate the activity of individual neurons, models in
the form of nonlinear dynamical systems are widely
used. The most famous among them are the Hodgkin–
Huxleymodel [17], FitzHugh–Nagumomodel [18,19],
Morris–Lecarmodel [20], andHindmarsh–Rosemodel
[21]. Since the nerve impulses between brain neurons
propagate at a finite speed, and the time of information
exchange between neurons is comparable to the charac-
teristic period of their oscillations, it is necessary to take
into account the delay in couplings between the neu-
ral network elements [22–24]. Along with the topology
and intensity of couplings between the network oscil-
lators, the presence of delay in couplings has a great
influence on the occurrence of synchronization in the
network [25–27].

The phenomenon of synchronization was studied
in most detail for the case of identical oscillators, the
coupling between which is constant. However, in real
networks, oscillators usually differ in parameters and,
therefore, have different frequencies and amplitudes of
oscillations. The parameter mismatch impedes the syn-
chronization of oscillators [28,29]. Moreover, a more
realistic situation iswhen couplings betweenoscillators
in an ensemble do not remain constant, but change over
time [30–32]. Therefore, when studying the synchro-
nization in neural networks, it is important to simulta-
neously take into account the nonidentity of oscillators,
the presence of delay in couplings between them, and
the change of couplings in time.

Control of synchronization in networks of coupled
oscillators is an important task for many applications
[33]. Various methods have been proposed for its solu-
tion, including the methods of adaptive control of syn-
chronization, which have been greatly developed in
recent years [34–38]. Suchmethods allow changing the
control parameters depending on the state of the oscil-
lator or external disturbances acting on it. The meth-
ods of adaptive control can not only adjust the strength
of couplings between the network elements, but also
change the topology and direction of couplings [39].
Somemethods of adaptive synchronization use pinning
control, in which the control action is applied not to all
network oscillators, but only to a small fraction of all
nodes [40–42].

Most of the methods for adaptive control of syn-
chronization have been applied to model networks of

coupled identical oscillators. Only a small number of
papers are devoted to adaptive control of synchroniza-
tion in model ensembles of heterogeneous oscillators
[43–45]. At the same time, the need for adaptive control
of collective dynamics of coupled nonidentical neu-
rooscillators also arises in real networks. For example,
when developing central pattern generators in robotics,
it is important to ensure the synchronization of ensem-
ble elements in a wide range of control parameters
[46]. In this paper, for the first time, we study experi-
mentally the adaptively controlled synchronization in
a large ensemble of nonidentical oscillators.

To control synchronization in a physical experiment,
we build an original radio engineering setup consist-
ing of nonidentical neuronlike oscillators described by
the delay-coupled FitzHugh–Nagumo equations. The
type of dynamical couplings necessary for controlling
the synchronization of oscillators is specified in the
experimental setup using the LabView programming
language, whichmakes it possible to easily and quickly
vary the couplings in real time. The setup implements a
simple linear coupling between electronic oscillators,
simulating an electrical synaptic couplingbetweenneu-
rons. In analog modeling, this coupling corresponds to
the coupling of two electronic oscillators via a resistor
[47,48].

Note that, in addition to resistors, elements such as
a capacitor, an inductor, or a memristor can be used
for coupling of electronic oscillators. As was recently
shown using the circuit simulator Multisim, Chua sys-
tems [49] can be synchronized using electric field cou-
pling via a capacitor [50] or magnetic field coupling via
an induction coil [51]. It was also shown numerically
that FitzHugh–Nagumo neuroscillators can be syn-
chronized if they are coupled usingmemristors [52,53].
The neuroscillators described by the Hindmarsh–Rose
equations are also synchronized via a memristor-based
coupling [54–58].

Our original approach to the experimental study of
large ensembles of coupled oscillators allows one to
specify almost any type of couplings between the oscil-
lators. Since the signals responsible for the coupling of
electronic oscillators are generated programmatically
in the experimental setup, it is possible to couple the
network oscillators via a resistor, capacitor, inductor,
or memristor, making appropriate changes to the pro-
gram. As the base oscillator of the ensemble, one can
use various oscillators with an arbitrary architecture of
couplings between them. Thus, the proposed approach
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Synchronization in ensembles of delay-coupled nonidentical neuronlike oscillators 737

is promising for the experimental study of synchroniza-
tion in various networks of coupled oscillators.

The paper is organized as follows: Sect. 2 describes
the model system and its experimental implementation
with electronic oscillators. In Sect. 3, we investigate
both numerically and experimentally the synchroniza-
tion of two bidirectionally delay-coupled nonidentical
FitzHugh–Nagumo systems for the cases of constant
coupling and adaptively controlled coupling and con-
struct a partition of the parameter plane of the coupled
system into the regions of typical oscillation regimes.
In Sect. 4, the possibility of adaptive control of the in-
phase oscillation regimes in a ring of ten unidirection-
ally coupled nonidentical FitzHugh–Nagumo systems
is demonstrated in both numerical and physical exper-
iments. Section 5 contains a discussion of the obtained
results and a conclusion.

2 Model and experimental systems

As the base element of the ensemble, we consider
a neuronlike oscillator described by the simplified
FitzHugh–Nagumo differential equations [22,45]:

εu̇(t) = u(t) − u3(t)

3
− v(t),

v̇(t) = u(t) + a,

(1)

where u(t) and v(t) denote the activator and inhibitor
variables, respectively, ε is the time-scale parameter,
which is usually a small value, and a is the threshold
parameter. The FitzHugh–Nagumo equations are the
standard model for excitable dynamics of neurons. For
a > 1, the oscillator (1) is in a locally stable equilibrium
point and is excitable, while for a < 1 it exhibits self-
sustained periodic firing beyond the Hopf bifurcation
at a = 1. Oscillations of the variable u(t) qualitatively
reproduce the spikes generated by real neurons.

Due to its simplicity, on the one hand, and an
adequate reflection of the basic properties of a neu-
ron, on the other hand, the FitzHugh–Nagumo model
is very popular among researchers. As a model of
excitable dynamics, the FitzHugh–Nagumo model is
also used to describe the dynamics of a number of
other systems, such as a tunnel diode [59] and car-
diac tissue [60]. Furthermore, it can be quite simply
implemented in a radio physical experiment [19,61–
63]. Using the ideology of analog modeling, we pro-

posed a radio engineering circuit for the experimental
implementation of the FitzHugh–Nagumo system (1),
which differs from the experimental circuits [19,61–
63] constructed for another form of FitzHugh–Nagumo
equations. A schematic diagram of the constructed
FitzHugh–Nagumo electronic oscillator is shown in
Fig. 1.

The circuit contains two operational amplifiers U4B
and U3A that play the role of integrators. Their output
voltages are denoted as U and V , respectively. The
cubic transformation is performed by multipliers U1
and U2. A repeater is implemented using the oper-
ational amplifier U3B, and an amplifier with a gain
of −1 is implemented using the operational amplifier
U4A, so that we have −U at its output. The output sig-
nal U is fed to the output Out1, and the output signal
V is fed to the output Out2. The potentiometer R10
voltage is equal to A. The time-scale parameter takes
the value εex = R7C2. The coupling of the considered
base oscillator with other oscillators in the ensemble is
realized by applying a coupling signal to the input In
of the operational amplifier U4B.

The dynamics of the considered electronic oscilla-
tor is described by the dimensionless equations (1),
in which u = U

u′ , v = V
v′ , a = A

a′ , t = T
t ′ , and

ε = εex
t ′ , where u′ = 1 V, v′ = 1 V, a′ = 1 V,

t ′ = R13C1 = 1ms, the experimental voltages U ,
V , and A are measured in volts, and the time T in the
experiment is measured in ms.

An experimental study of a network consisting of
real radio engineering oscillators is amore difficult task
than modeling analog circuits using circuit simulators
[50,51,54]. However, such a study allows one to check
the robustness of the results in a real radio physical
experiment, in which noises are inevitably present, not
all of which can be adequately taken into account in
the simulation.Moreover, the proposed circuit contains
analog multipliers and operational amplifiers, for the
description of which approximate mathematical mod-
els are used in circuit simulators. Even simple circuit
elements, such as resistors and capacitors, have param-
eters whose values may differ from the nominal ones
and may vary during the real experiment. These factors
increase the significance of the experiment carried out
using a real radio engineering setup.

Let us consider an ensemble consisting of a ring
of unidirectionally coupled neuronlike oscillators (1),
with each oscillator described by the following equa-
tions:
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738 D. D. Kulminskiy et al.

Fig. 1 Schematic diagram of the FitzHugh–Nagumo electronic
oscillator. U1 and U2 are analog multipliers, U3A, U3B, U4A,
and U4B are operational amplifiers, and V1 and V2 are DC volt-
age sources. Other elements are capacitors C1 = 10 nF and

C2 = 1 nF, resistors R1 = R6 = R7 = R8 = R9 = R11 =
R12 = R13 = 100 k�, R2 = R4 = 1 k�, R3 = 9 k�,
R5 = 2 k�, and R14 = 5 k�, and potentiometer R10 = 1 k�

εu̇i (t) = ui (t) − u3i (t)

3
− vi (t)

+Ci (t)
(
u(i+1) mod N (t − τ) − ui (t)

)
,

v̇i (t) = ui (t) + ai , (2)

where i = 1, . . . , N , with N being the number of oscil-
lators, τ is the delay, which characterizes the time the
signal needs to propagate between the two neighbor
oscillators in the ring, and Ci (t) describes the strength
of coupling. In general case, all oscillators in the ensem-
ble are nonidentical. Note that the time τ in the dimen-
sionless equations (2) and the delay time τex in coupling
of the experimental electronic oscillators are related by
the following equation: τ = τex

t ′ . Neurooscillators (2)
are coupled by a linear coupling, which models the
electrical synaptic coupling between neurons. In ana-

logmodeling, this coupling corresponds to the coupling
of electronic oscillators via a resistor [47,48].

In the presence of coupling between the FitzHugh–
Nagumo systems, they can exhibit oscillations even in
the excitable statewithai > 1. If oscillators (2) are non-
identical, their complete synchronization in the form
(u1, v1) = · · · = (uN , vN ) is unattainable, but a situa-
tion is possible in which the oscillations of all elements
in the ensemble are close to each other. This situation
corresponds to the in-phase synchronization of oscilla-
tors, in which the phase shift between their oscillations
is close to 0, but the amplitudes of oscillations are dif-
ferent.

For the experimental study of the system (2),we con-
structed an original radio engineering setup, the block
diagram of which is depicted in Fig. 2.
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Fig. 2 Block diagram of the experimental setup. The first (FHN-
1) and N th (FHN-N ) FitzHugh–Nagumo electronic oscillators
are shown. Out-1 and Out-N are the oscillator output signals cor-
responding to the variablesU1(T ) andUN (T ), respectively. In-1
and In-N are the oscillator inputs to which the signals F1(T ) and

FN (T ), respectively, responsible for the coupling are fed. NI
PXI is the National Instruments PXI system. Its analog inputs
are denoted as ADC-1 and ADC-N , and the analog outputs are
denoted as DAC-1 and DAC-N

For coupling between the FitzHugh–Nagumo elec-
tronic oscillators, the schematic diagram of which is
shown in Fig. 1, a National Instruments PXI multi-
channel input-output system was used, which includes
a chassis, a controller, an analog input block, and
an analog output block. The signals Ui (t) from the
output of each FHN-i oscillator are fed to the ana-
log inputs of the multichannel analog-to-digital con-
verter (ADC) and are digitized at a frequency f =
100 kHz for further processing. Then, nonlinear con-
version of the signals Ui (t) is carried out using
the LabView programming language and the signals
Fi (T ) = Ci (T )

(
U(i+1) mod N (T − τex) −Ui (T )

)
are

generated that are responsible for the coupling of oscil-
lators. From the outputs of the multichannel digital-to-
analog converter (DAC), these signals Fi (T ) are fed to
the inputs of oscillators.

The constructed experimental setup allows us to
specify an arbitrary architecture of couplings between
the oscillators and ensure the adaptive adjustment of
coupling signals Fi (T ) during the experiment. Since
the signals responsible for the coupling of oscilla-
tors are generated programmatically in the setup, it is
possible to implement almost any type of couplings
between the oscillators, including the coupling via a
resistor, capacitor, inductor, or memristor. The pro-
posed approach allows one to study experimentally the
large ensembles of coupled oscillators, including the
ensembles with a complex architecture of couplings.

Other oscillators can also be used as the base oscillator
of the ensemble.

3 Synchronization of two bidirectionally coupled
FitzHugh–Nagumo systems

First, we consider the simplest case of two delay-
coupled FitzHugh–Nagumo systems, corresponding to
the case N = 2 in Eqs. (2). Figure 3 shows the par-
tition of the parameter plane (A1, A2) of the experi-
mental system (2) into the regions of typical oscilla-
tion regimes at εex = 0.1ms, τex = 1.5ms, and con-
stant coupling coefficients C1(T ) = C2(T ) = 0.3.
The experimentally determined boundaries of the tran-
sitions between the regimes aremarked by dots through
which solid lines are drawn for clarity.

In the region denoted by LL, the first and sec-
ond oscillators exhibit qualitatively similar oscillations
with close amplitudes. With the chosen parameter val-
ues, the oscillators perform anti-phase oscillations in
the region LL. In Fig. 3, the region of this anti-phase
synchronization is denoted by LLAP. Figure 3 also
shows the typical time series ofU1(T ),U2(T ), V1(T ),
and V2(T ) in the areas marked by boxes in the parame-
ter plane (A1, A2). The time series ofU1(T ) andU2(T )

in the region LLAP are shifted in phase by approxi-
matelyπ , aswell as the time series of V1(T ) and V2(T ).

When A1 �= A2, the amplitudes ofU1(T ) andU2(T )

in the region LLAP are different as well as the ampli-
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740 D. D. Kulminskiy et al.

Fig. 3 Regions of typical
oscillation regimes in the
plane (A1, A2) and time
series of U1(T ) (green),
U2(T ) (blue), V1(T )

(yellow), and V2(T ) (red) in
the system of two
delay-coupled
FitzHugh–Nagumo
electronic oscillators for the
case of constant strength of
coupling. (Color figure
online)

tudes of V1(T ) and V2(T ). As the mismatch of A1 and
A2 increases, the difference in the amplitudes of oscil-
lations of the first and second oscillators becomesmore
pronounced. Let A1 = A2 = A, where A < 1. We will
increase A2 under the constant A1 = A. In this case,
the amplitudes ofU2(T ) and V2(T ) smoothly decrease.
Finally, for a certain critical value of A2, an abrupt
decrease in the amplitude of oscillations of the second
oscillator takes places.

We introduce the parameter r = (U1max (T ) −
U1min(T ))/(U2max (T )−U2min(T )), whereUi max(T )

and Ui min(T ) are the maximum and minimum values
of Ui (T ), respectively, and denote by LS the region
in the plane (A1, A2) in which r > 3. At all points
of the region LS, the first oscillator is in the oscillatory
regime and has large amplitude, while the second oscil-
lator is in the excitable regime and has small amplitude
of oscillations. In the region LS in Fig. 3, the oscillators
perform non-phase oscillations that are similar to anti-

phase ones. This region of anti-phase synchronization
is denoted by LSAP in Fig. 3.

Similarly, if we fix the value of A2 = A, where
A < 1, and will increase A1, then at a certain critical
value of A1, a sharp decrease in the amplitude of oscil-
lations of the first oscillator takes place. We denote
by SL the region in the parameter plane (A1, A2) in
which r < 1/3. At all points of the region SL, the
first oscillator is in the excitable regime and has small
amplitude of oscillations, while the second oscillator is
in the oscillatory regime and has large amplitude. As
seen from the time series, the oscillators in this region
exhibit non-phase oscillations that are similar to anti-
phase ones. In Fig. 3, this region of anti-phase synchro-
nization is marked as SLAP. For small constant values
of coupling coefficients C1 and C2, the location of the
regions of non-phase regimes in the parameter plane
(A1, A2) remains almost unchanged in a wide range of
τex values.
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Synchronization in ensembles of delay-coupled nonidentical neuronlike oscillators 741

Fig. 4 Regions of typical oscillation regimes in the plane
(a1, a2) in the model system of two delay-coupled FitzHugh–
Nagumo systems for the case of constant strength of coupling.
(Color figure online)

In the region denoted by EP, both oscillators are
in the stable equilibrium point. As seen in Fig. 3,
the values of the variables in this region remain con-
stant in time. Note that in [64] we studied the oscilla-
tion regimes in the experimental system of two delay-
coupled FitzHugh–Nagumo electronic oscillators with
higher values of coupling coefficients, at which there
was a bistability in the region LL in the parameter plane
(A1, A2). In this region of bistability, the anti-phase
oscillations LLAP coexisted with the in-phase oscilla-
tions LLIP.

Figure 4 shows the partition of the parameter plane
(a1, a2) of the model system of two delay-coupled
FitzHugh–Nagumosystems (2) into the regions of char-
acteristic regimes at ε = 0.1, τ = 1.5, and constant
coupling coefficients C1(t) = C2(t) = 0.3. The model
parameter values are chosen the same as in the con-
sidered above case of the experimental system. In the
regions LLAP, LSAP, SLAP, and EP in Fig. 4, the oscil-
lation regimes are similar to the regimes observed in
the corresponding regions depicted in Fig. 3. For clar-
ity, the regions of different regimes are shown in Fig. 4
by different colors. The experimental parameter plane
(A1, A2) and the model parameter plane (a1, a2) pre-
sented in Figs. 3 and 4, respectively, have a qualitatively
similar structure.

In a number of problems, for example, when devel-
oping central pattern generators in robotics [46], it is
important to ensure the in-phase synchronization of
ensemble elements in a wide range of control param-
eters. To achieve this goal, we will vary the cou-
pling strength Ci (t) in the system (2) according to
the adaptive law proposed in [45] based on the speed
gradient method [65]. The idea of the speed gradi-
ent method is that for a nonlinear dynamical system
ẋ = F (x, g, t), where g are the control variables, a
control goal Q (x, t) ≤ � for t ≥ t∗ is defined,
where Q (x, t) is a smooth scalar goal function and
� is the desired level of precision. Then, the function
Q̇ = ω (x, g, t) is calculated that is the speed at which
Q (x, t) is changing along the trajectories of the dynam-
ical system:

ω (x, g, t) = ∂Q(x, t)

∂t
+ [∇xQ(x, t)]T F (x, g, t) .

(3)

Thegradient of function (3)with respect to the variables
g is evaluated as

∇gω (x, g, t) = ∇g [∇xQ(x, t)]T F (x, g, t) . (4)

As a result, the control function takes the following
form: g(t) = g0 − ψ (x, g, t), where ψ (x, g, t) =
γ ∇gω (x, g, t), γ characterizes the strength of adap-
tive coupling, and g0 = const is an initial control value
[45,65]. Several analytic conditions exist, guarantee-
ing that the control goal Q (x, t) can be achieved in the
system. The main condition is the existence of a con-
stant value of the parameter g∗, ensuring attainability
of the goal in the system dx/dt = F (x, g∗, t) [45].

The term −∇gω (x, g, t) points to the direction in
which the value of Q̇ decreases with the highest speed.
If one changes g(t) in this direction, the value of Q̇ will
decrease and finally become negative. When Q̇ < 0,
the goal function Q (x, t)will decrease, tending to zero.

As it is mentioned in Sect. 2, if oscillators (2)
are nonidentical, their complete synchronization in the
form (u1, v1) = · · · = (uN , vN ) is unattainable. How-
ever, it is possible to ensure the in-phase synchroniza-
tion of oscillators, in which the phase shift between
their oscillations is close to 0, but the amplitudes of
oscillations are different. To achieve the in-phase syn-
chronization of two bidirectionally coupled noniden-
tical FitzHugh–Nagumo oscillators (2), the following
goal function is introduced:

Q (x, t) = 1

2
(u1(t) − u2(t) + a1 − a2)

2 . (5)

123

Author's personal copy



742 D. D. Kulminskiy et al.

The choice (5) ensures that the coupled system follows
trajectories for which, for t ≥ t∗, the following condi-
tions are satisfied:

u1(t) − u2(t) ≈ −a1 + a2,

v1(t) − v2(t) ≈ c, (6)

where c is a constant. Thus, the goal function (5)
yields synchronization with a shift in the values of the
inhibitor and activator variables of the two oscillators.

Using the speed gradientmethodwith g = (C1,C2),
the following adaptive law for changing the coupling
coefficients was obtained in [45]:

C1,2(t) = C0
1,2 + γ

ε

(
u1,2(t) − u2,1(t)

+ a1,2 − a2,1
) (
u1,2(t) − u2,1(t − τ)

)
,

(7)

where C1(t) and C2(t) describe the adaptive coupling
for thefirst and secondoscillators, respectively,C0

1,2 are
the initial values of coupling coefficients, and γ char-
acterizes the strength of adaptive coupling. At γ = 0,
we have a constant strength of coupling. The possibil-
ity of achieving the in-phase synchronization of two
nonidentical FitzHugh–Nagumo oscillators has been
shown numerically in [45] using the adaptive tuning
of the coupling strength (7). We have shown that the
approach proposed in [45] can be successfully applied
to achieve the in-phase synchronization of nonidenti-
cal FitzHugh–Nagumo electronic oscillators in a radio
physical experiment.

Figure 5 shows the partition of the parameter plane
(A1, A2)of the experimental system (2) into the regions
of typical oscillation regimes at εex = 0.1ms, τex =
1.5ms, and the coupling strength varying according to
(7) with C0

1 = C0
2 = 0 and γ = 0.02. From the com-

parison of Figs. 3 and 5, it is seen that the use of adaptive
coupling has led to the disappearance of the anti-phase
oscillation regimes LLAP, LSAP, and SLAP. Instead of
them, the in-phase oscillation regimes LLIP, LSIP, and
SLIP appeared in approximately the same regions of
the parameter plane (A1, A2). The time series of these
in-phase oscillation regimes are also shown in Fig. 5.
The phase shift between U1(T ) and U2(T ) is close to
0, but the amplitudes of U1(T ) and U2(T ) are differ-
ent. The difference U1(T ) − U2(T ) is approximately
equal to A2−A1. Thus, the use of adaptively controlled
time-delayed coupling allowsus to solve the problemof
achieving the in-phase synchronization of nonidentical
oscillators. Note that for small γ values (γ < 0.01), the

in-phase synchronization of oscillators can be achieved
not for every choice of initial conditions.

Let us consider the change in the dynamics of the
experimental system (2) at the transition from the
constant time-delayed coupling to the adaptively con-
trolled time-delayed coupling. The experimental time
series of U1(T ), U2(T ), V1(T ), and V2(T ) are pre-
sented in Fig. 6 for A1 = 0.5V and A2 = 0.7V.
At T < 3ms, the oscillators are coupled by the
delayed coupling, the value of which remains constant,
C1(T ) = C2(T ) = 0.3. The oscillators exhibit anti-
phase oscillations at T < 3ms. At T = 3ms, the cou-
pling is switched from the constant value to the adap-
tive coupling (7)with the parametersC0

1 = C0
2 = 0 and

γ = 0.02. After a short transient process, the duration
of which is about 1–2 characteristic periods of oscil-
lations, the in-phase regime takes place in the coupled
system.

Figure 7 shows the partition of the parameter plane
(a1, a2) of the model system (2) into the regions of
typical oscillation regimes at ε = 0.1, τ = 1.5, and
the coupling strength varying according to the adap-
tive law (7) with C0

1 = C0
2 = 0 and γ = 0.02. The

experimental and model parameter planes in Figs. 5
and 7, respectively, have a qualitatively similar struc-
ture. Note that in this paper, for the first time, we have
constructed the partition of the parameter plane (a1, a2)
of the model system of two delay-coupled FitzHugh–
Nagumo oscillators into the regions of characteristic
regimes. In [45], the adaptive control of in-phase syn-
chronization of two nonidentical FitzHugh–Nagumo
oscillators has been shown numerically only for some
fixed values of the parameters a1 and a2.

4 Synchronization of FitzHugh–Nagumo systems
coupled in a ring

Let us consider a ring ensemble consisting of a
large number of unidirectionally coupled nonidenti-
cal FitzHugh–Nagumo systems (2). In the case of a
constant strength of coupling, non-phase oscillation
regimes prevail in the ring. Figure 8a, b shows the time
series of ui (t) and vi (t), respectively, for all oscilla-
tors of the model system consisting of ten nonidenti-
cal oscillators (2) with the constant time-delayed cou-
pling C1(t) = · · · = CN (t) = 0.3 and the parame-
ters ε = 0.1 and τ = 1.5. The model parameters ai
are specified as follows: ai = 0.1 + 0.05i . As seen
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Fig. 5 Regions of typical
oscillation regimes in the
plane (A1, A2) and time
series of U1(T ) (green),
U2(T ) (blue), V1(T )

(yellow), and V2(T ) (red) in
the system of two
delay-coupled
FitzHugh–Nagumo
electronic oscillators for the
case of adaptively
controlled coupling. (Color
figure online)

Fig. 6 Experimental time
series of U1(T ) (green) and
U2(T ) (blue) in (a) and
V1(T ) (yellow) and V2(T )

(red) in (b) with the
constant time-delayed
coupling at T < 3ms and
adaptively controlled
time-delayed coupling at
T ≥ 3ms. The moment of
switching of coupling from
the constant value to the
adaptive coupling is shown
by vertical dash lines.
(Color figure online)
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Fig. 7 Regions of typical oscillation regimes in the plane
(a1, a2) in the model system of two delay-coupled FitzHugh–
Nagumo systems for the case of adaptively controlled coupling.
(Color figure online)

in Fig. 8a, b, the oscillations of both ui (t) and vi (t)
have close amplitudes, but they are not synchronized
in phase. The in-phase synchronization of all oscillators
in the ring cannot be achieved even with large constant
values of Ci (t).

To achieve the in-phase synchronization of noniden-
tical oscillators (2) coupled in a ring, the following goal
function was introduced in [45]:

Q (x, t) = 1

2

N∑

i=1

(
ui (t) − u(i+1) mod N (t)

+ ai − a(i+1) mod N
)2

. (8)

Then, using the speed gradient method with g =
(C1, . . . ,CN ), the following adaptive law for changing
the coupling coefficients Ci (t) was obtained in [45]:

Ci (t) = C0
i + γ

ε

(
ui (t) − u(i+1) mod N (t − τ)

)

× (
2ui (t) − u(i−1) mod N (t) − u(i+1) mod N (t)

+ 2ai − a(i−1) mod N (t) − a(i+1) mod N (t)
)
.

(9)

The coupling strength of each oscillator in the ensemble
is controlled separately. The control algorithm adjusts
only the coupling strength between the oscillators and
does not change the parameters of the local dynamics

of oscillators, which makes it easy to implement this
algorithm in our experimental setup.

Figure 8c, d shows the time series of ui (t) and vi (t),
respectively, for all oscillators of the model ring sys-
tem for the case of adaptively controlled time-delayed
coupling (9) with C0

1 = · · · = C0
N = 0 and γ = 0.02.

It is clearly seen that all oscillators exhibit in-phase
oscillations. However, the amplitudes of oscillations
are slightly different. The difference in the amplitudes
of ui (t) depends on the values of ai . Qualitatively sim-
ilar results were obtained in [45].

For the first time, we studied experimentally the syn-
chronization in the ring of ten unidirectionally cou-
pled nonidentical FitzHugh–Nagumo electronic oscil-
lators for the cases of constant time-delayed coupling
and adaptively controlled time-delayed coupling. We
choose Ai = (0.1 + 0.05i)V, εex = 0.1ms, and
τex = 1.5ms. Figure 9 illustrates the change in the
experimental time series of Ui (T ) at the transition
from the constant coupling to the adaptive coupling.
At T < 3.55ms, the oscillators are coupled by the
delayed coupling, the value of which remains constant,
C1(T ) = · · · = CN (T ) = 0.3. In this case, the oscil-
lators exhibit non-phase oscillations. At T = 3.55ms,
the coupling is switched from the constant value to the
adaptive coupling (9) with the parameters C0

1 = · · · =
C0
N = 0 and γ = 0.02. After a transient process, the

duration of which is about six characteristic periods of
oscillations, the in-phase regime takes place in the ring.

In Fig. 10, the space–time plot of the ring of ten
delay-coupled FitzHugh–Nagumo electronic oscilla-
tors is presented for the case depicted in Fig. 9. The
oscillators are denoted by the numbers from 1 to 10.
The oscillators exhibit non-phase oscillations at T <

3.55ms. After the switching of the time-delayed cou-
pling from the constant value to the adaptive coupling
at T = 3.55ms, a transient process is observed in the
ensemble. After the completion of the transient pro-
cess, all oscillators in the ring show in-phase oscilla-
tions. Thus, the adaptive control ensures the in-phase
synchronization of nonidentical oscillators.

Control of synchronization of nonidentical oscilla-
tors was studied both theoretically and numerically in
various model networks [66–70]. However, the prob-
lem of adaptive control of synchronization in networks
of nonidentical oscillators is still poorly studied. To
solve this problem, a method based on the Lyapunov
stability theory was proposed in [43]. In [44], the
method of adaptive intermittent pinning control was
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Fig. 8 Time series of ui (t)
and vi (t) in the model ring
system of ten nonidentical
FitzHugh–Nagumo systems
for the cases of constant
time-delayed coupling (a)
and (b) and adaptively
controlled time-delayed
coupling (c) and (d). (Color
figure online)

Fig. 9 Experimental time series of Ui (T ) in the ring of delay-
coupled nonidentical FitzHugh–Nagumo electronic oscillators
with the constant time-delayed coupling at T < 3.55ms and
adaptively controlled time-delayed coupling at T ≥ 3.55ms.

The moment of switching of coupling from the constant value
to the adaptive coupling is shown by vertical dash line. (Color
figure online)

used for the synchronization of heterogeneous dynam-
ical networks. The speed gradient method applied for
the adaptive control of synchronization of nonidentical
oscillators in [45] and in this paper is quite promising.
It has been successfully used to synchronize delay-
coupled identical Stuart–Landau oscillators [35] and
delay-coupled identical Rössler systems [71] and can
be developed for the case of various nonidentical oscil-
lators.

5 Conclusion

We have investigated both experimentally and numer-
ically the synchronization in the ensembles of delay-
coupled nonidentical neuronlike oscillators described
by the FitzHugh–Nagumo equations. We have consid-
ered the case of constant coupling of oscillators, as well
as the case more typical for neural networks, in which

the couplings between oscillators do not remain con-
stant, but change over time.

For the experimental study of the ensemble of
FitzHugh–Nagumo systems, we have constructed the
original radio engineering setup, which allows us to
specify any architecture of couplings between the oscil-
lators and implement an arbitrary type of adaptive cou-
plings. The type of dynamical couplings required for
controlling the synchronization of oscillators is spec-
ified programmatically in the experimental setup, and
the adaptive adjustment of coupling strength is imple-
mented in real time. Using the constructed setup, we
have studied the location of the regions of typical oscil-
lation regimes in the parameter plane of two bidirec-
tionally coupled nonidentical oscillators. For the first
time, we have studied experimentally the synchroniza-
tion in the ring of ten unidirectionally coupled non-
identical FitzHugh–Nagumoelectronic oscillators. The
results obtained in the physical experiment are in good
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Fig. 10 Space–time plot of the ring of ten delay-coupled non-
identical FitzHugh–Nagumo electronic oscillators. At T =
3.55ms, the coupling is switched from the constant value to the
adaptive coupling. (Color figure online)

agreement with the results of the numerical simulation.
The proposed approach allows one to study experimen-
tally the large ensembleswith different base oscillators,
different topologies of couplings, and different types of
couplings between oscillators.

We have considered in detail the case of adaptively
controlled coupling leading to the in-phase synchro-
nization of all oscillators in the ensemble. It has been
shown that the using of the adaptively controlled time-
delayed coupling allows one to pass from non-phase
oscillations of nonidentical oscillators to their in-phase
synchronization. Adaptively controlled time-delayed
coupling allows one to achieve the in-phase synchro-
nization of all nonidentical oscillators in the ensemble
even in the case of a large parameter mismatch and in
the case when the constant coupling cannot ensure the
in-phase synchronization even at large values of cou-
pling coefficients. Thus, the adaptive coupling of oscil-
lators can be promising in robotics when developing
central pattern generators responsible for the control
of locomotion.

To implement various robot gaits and switching
between them, it is necessary to ensure different types
of synchronization in the ensemble, differing by the
value of phase lag between the oscillations of the
ensemble elements. Therefore, in addition to the con-
trol of the in-phase synchronization of oscillators con-
sidered in this paper, it is important to learn how to con-
trol other types of synchronization. In further research,
we plan to realize the possibility of generating the cou-

plings between the ensemble oscillators not program-
matically using the LabView language, but at the hard-
ware level using FPGA. This will increase the quick-
ness of the control system and make it more compact
that is important when developing a robot locomotion
control system.
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