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Abstract—A new method for adaptive filtration of experimental EEG signals in humans and for removal of
different physiological artifacts has been proposed. The algorithm of the method includes empirical mode
decomposition of EEG, determination of the number of empirical modes that are considered, analysis of the
empirical modes and search for modes that contains artifacts, removal of these modes, and reconstruction of
the EEG signal. The method was tested on experimental human EEG signals and demonstrated high effi-
ciency in the removal of different types of physiological EEG artifacts.
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INTRODUCTION
At present, the study of the oscillatory activity in

neural networks of the brain attracts much interest.
This problem is at the intersection of many fields of
sciences: neurophysiology, medicine, biophysics,
nonlinear dynamics, mathematics, etc. The main
sources of information on the brain functioning are
experimental methods including recording different
brain signals. The electroencephalogram (EEG),
which is the sum of electrical currents that are gener-
ated by a small group of neurons and recorded using an
electrode, is one of the most widespread brain signals
that are used in research [1]. Since the neural network
of the brain is a very complicated oscillatory system,
the EEG signal also has a very complex spectral struc-
ture with a few frequency ranges (delta, alpha, beta,
gamma, etc.), different characteristic rhythms, and
oscillatory patterns that attract interest of researchers
both during the study of different pathologies (e.g.,
epilepsy) and during analysis of different functional
tests and cognitive processes [2–5].

The problem of analysis of complex signals and
characteristic oscillatory patterns in an EEG is tradi-
tionally referred to radiophysics and nonlinear
dynamics. There are many effective methods for
studying the time-frequency structure of signals that
are developed in this field, e.g., windowed Fourier
transform or continuous wavelet transform [5]. Many
of these methods are also quite effective for analysis of
EEG signals [6, 7]. Nevertheless, in most cases the
application of these methods for investigation of EEG
signals is impeded by the presence of different para-
sitic processes (patterns), noises, and so-called arti-

facts. When the EEG is recorded, the resulted signal is
affected not only by the electrical activity of the neural
ensemble of the brain, but also by the external sources
of the electrical signal and different electrophysiolog-
ical processes in the body. Noise in the EEG signal can
be caused by different external sources of the electrical
signal, e.g., by an industrial network, accumulated
static charge, poor contact between the recording
electrodes, etc. The presence of noise components in
the EEG signal can be significantly reduced by provid-
ing a good contact between the electrodes and shield-
ing the recording equipment. The artifacts in the EEG
signal are usually of the physiological origin and most
often caused by nonstationary processes that occur in
the body during EEG recording beside brain activity.
These processes can be eye movements, cardiac
rhythms, activity of face and neck muscles, etc. [8, 9].

Most EEG artifacts have a significant amplitude
that in many cases exceeds the amplitude of the carry-
ing electrical activity of the ensemble of brain neurons.
In addition, the frequency ranges of many artifacts
coincide with the ranges of patterns that are of interest
for investigation. For example, spike-wave discharges
that are actively studied and connected with manifes-
tation of absence seizures in humans have the domi-
nant frequency of 3–4 Hz and the well pronounced
second harmonic with a frequency of 6–8 Hz; sleep
spindles that are also analyzed to study sleep disorders
and the mechanisms of the brain functioning have the
frequency of 12–14 Hz. At the same time, eye move-
ment artifacts, cardiac rhythms, and muscle activity
can be detected within the entire range of 0.5–15 Hz,
which includes the three highly informative low-fre-
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quency EEG ranges, delta, theta, and alpha [1–3].
Thus, the presence of artifacts and their high variabil-
ity significantly complicate the time-frequency analy-
sis of EEG signals, which makes the preliminary pro-
cessing and filtering of EEG signals an important
stage of any EEG analysis.

At present, different methods are used to filter the
EEG from artifacts. One of the simplest and most
widespread methods is based on the visual search for
artifacts [10, 11]. The method implies visual (or semi-
automatic) analysis of the EEG time series and search
for artifacts by an experienced neurophysiologist. The
identified artifacts are removed from the signal manu-
ally or automatically. It should be noted that this
method requires expert knowledge of the structure of
EEG signals and significant time costs, especially
when long EEG recordings are processed. Moreover,
the main method for removal of the artifacts in this
case is complete removal of an EEG interval that con-
tains the artifact or setting the signal amplitude within
this interval to zero. This procedure inevitably results
in the distortion of the EEG signal or complete loss of
the information on the time-frequency structure of the
signal within this interval [12]. The reduction of EEG
data for investigation is critical under the conditions of
limited data. For example, the artifact removal by the
described method can reduce a 10-minute EEG
recording of a healthy human to 2–3 min. The reduc-
tion of the EEG recording for investigation decreases
the effectiveness of the diagnostics and increases the
cost of the experimental work.

Other methods for removal of artifacts are based on
different signal decomposition and transformation
methods, e.g., on independent component analysis
[4, 13, 14], regression analysis [15], and the Gram–
Schmidt process [16]. These methods have sufficiently
high accuracy of the artifact selection and small distor-
tion of the structure of the EEG signal. However, the
algorithms of most of these methods are based on
combined analysis of EEG and other physiological
signals that contain information on certain types of
artifacts, e.g., the electrooculogram (EOG) contains
eye movement artifacts, the electrocardiogram (ECG)
contains cardiac rhythms, etc. To use these methods,
it is necessary to provide recording of additional sig-
nals, which is not always possible due to the absence of
necessary equipment or investigation of signals that
have been recorded beforehand. The application of
these methods is also limited by the possibility of
removal only of certain types of artifacts (e.g., eye
movement artifacts in the case of the Gram–Schmidt
process).

Thus, the development of methods for filtering
EEG signals that do not distort the structure of the
EEG signal and at the same time do not require
recording of additional physiological signals is an
important problem.
A promising method for processing EEG signals
and removal of physiological artifacts is an empirical
mode decomposition [17, 18]. Methods that employ
empirical modes have been already developed to
remove eye movement artifacts [19] and to select cor-
tical patterns of the beta activity in an EEG [20]. These
studies demonstrated the prospects of the empirical
mode decomposition; however, the results that were
obtained cover a sufficiently narrow field, the removal
of artifacts only of a certain type (eye movements), or
selection of a very specific type of EEG activity.

The present study generalized the approach to fil-
tering EEG signals using empirical modes and pro-
posed a new method for removal of a wide spectrum of
physiological artifacts. The suggested method does
not require recording of additional physiological sig-
nals (EOG, ECG, MEG), which distinguishes it
among most classical methods for artifact removal and
offers a simple and unified algorithm for EEG filter-
ing, the structure of which does not depend on the
type of artifacts that are removed and at the same time
makes it possible to remove artifacts of different types
in contrast to the approaches in [19, 20].

1. EMPIRICAL MODE DECOMPOSITION
The empirical mode decomposition is a part of the

Hilbert–Huang transform and one of the modern
methods of the time-frequency analysis of nonlinear
nonstationary signals [17–21]. This method allows
one to represent a studied signal in the form of a set of
amplitude–modulated components with a zero mean,
so-called empirical modes.

When experimental data are analyzed, one of the
stages of the preliminary processing is reduction of the
signal to the zero-mean level, which makes it possible
to avoid problems that are connected with erroneous
determination of the instantaneous frequency of the
empirical modes. However, it is not always possible to
implement for nonstationary signals (e.g., EEG), the
mean value of which can change in time and be differ-
ent from zero within local regions [22, 23]. To cor-
rectly determine the empirical modes and their instan-
taneous frequencies by this method, the following
conditions should be met:

(1) The local mean value of each empirical mode
should be zero.

(2) The number of zero-level crossing for the plot
of each empirical mode and the number of local max-
ima (or minima) of this mode should coincide or differ
no more than by 1.

The procedure of the empirical mode decomposi-
tion of the signal x(t) implies the following algorithm:

(1) Finding all the extrema (the minima and max-
ima) of the signal x(t).

(2) Interpolation of the signal between the minima
and maxima and construction of the two correspond-
ing envelopes, emin(t) and emax(t).
TECHNICAL PHYSICS  Vol. 63  No. 5  2018
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Fig. 1. Stepwise demonstration of the procedure of finding
the first empirical mode: an initial EEG signal (a), the
found extrema of the signal (denoted by dots) (b), the two
envelopes that are constructed using the maxima and min-
ima (c), the calculated signal trend (d), the calculated
empirical mode (e).
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(3) Calculation of the low-frequency component of
the signal (trend) as a mean between the two envelopes

(4) Calculation of the high-frequency component
of the signal as a difference between the initial signal
and the trend, d1(t) = x(t) – m1(t).

If the above-mentioned conditions are satisfied for
d1(t), then it can be considered the first empirical
mode c1(t) of the signal, i.e., c1(t) = d1(t).

Otherwise, if the mean value of d1(t) is not zero, the
iteration procedure should be performed

where m1k(t) is the trend that is calculated for the sig-
nal d1(k – 1)(t). The iteration procedure ends, when
d1k(t) becomes a signal with a zero mean. In this case,
d1k(t) becomes the first empirical mode, i.e., c1(t) =
d1k(t).

(5) Subtracting the first empirical mode c1(t) from
the initial signal x(t) and obtaining the residue r1(t),
r1(t) = x(t) – c1(t). 

To find the second empirical mode, the procedure
in (1)–(4) is repeated for the signal r1(t) instead of the
initial signal x(t) and the new value r2(t) is obtained,
which is then used to find the third empirical mode,
etc.

An example of the algorithm functioning and a
process of finding the first empirical mode are
demonstrated in Fig. 1, which gives an initial test EEG
signal from the occipital area of the human brain (the
O1 electrode, when the 10–20 international system of
electrode placement is used) (Fig. 1a) and the results
of the consequent steps of the algorithm (Fig. 1b, the
extrema in the considered signal; Fig. 1c, the two
envelopes with respect to the maxima and minima;
Fig. 1d, the low-frequency component (trend) of the
signal; Fig. 1e, the high-frequency component of the
signal, which is the empirical mode). Figures 1b–1e
denote the initial signal by a gray color and the results
of each of the algorithm steps by a black color.

According to the time-frequency analysis, the
empirical mode decomposition significantly differs
from most methods for analysis of signals. The basis
functions, with respect to which the decomposition is
carried out, in this case are not known beforehand (as,
e.g., in the Fourier or wavelet transform), but deter-
mined during the decomposition of the signal itself.
The total number of empirical modes and the time-
frequency characteristics of each individual mode
directly depend on the signal that is studied. This
property makes the empirical mode decomposition a
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highly adaptive tool for analysis of signals. The first
empirical mode in the decomposition has the highest
frequency and the higher the ordinal number of the
empirical mode, the lower its dominant frequency. It
is shown in [24, 25] that in many cases the frequency
structure of different empirical modes corresponds to
characteristic oscillatory patterns in EEG signals.
Thus, the time-frequency analysis and selection of
certain oscillatory patterns (including artifacts) can be
reduced to the analysis of one or several modes of the
EEG signal.

This property of the empirical mode decomposi-
tion is illustrated in Fig. 2, which gives an experimen-
tal EEG signal that is recorded from the frontal lobe
electrode Fp1 (Fig. 2a) in a human using the 10–20
system and contains several eye movement artifacts
and three empirical modes for the considered EEG
signal (Figs. 2b–2d). In addition, Fig. 2 demonstrates
wavelet spectra that are constructed using the basis
Morlet wavelet with the central frequency of 2π [5] for
the initial EEG signal and for the three first empirical
modes. In this case, the wavelet analysis is used not as
an independent tool for analysis of signals, but as clear
demonstration of the time-frequency structure of the
signal. The eye movement artifacts in Fig. 2 are
denoted by dark gray bands. These artifacts are short
(~300 ms) oscillatory patterns with a high amplitude
of 1–1.5 V. It can be seen from the wavelet spectrum in
Fig. 2a that the initial EEG signal contains different
rhythms and patterns within a wide range of 0.5–50 Hz,
while the eye movement artifacts occur within 0.5–
5 Hz. The wavelet spectrum of the first empirical
mode (Fig. 2b) demonstrates the highest frequencies
in accordance with the procedure of the empirical
mode decomposition; therefore, this mode contains
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Fig. 2. Example of the empirical mode decomposition: an EEG signal with several eye movement artifacts (a) and its first three
empirical modes (b–d); each of the signals has the wavelet spectrum given, which demonstrates its time-frequency structure; the
artifacts are denoted by dark boxes.
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high-frequency and informative components of the
EEG signal. Figures 2c and 2d contain the second and
the third empirical modes of the EEG signal together
with their wavelet spectra. These spectra mainly con-
tain low frequencies (~0.5–5 Hz), which correspond
to the background EEG activity and eye movement
artifacts. Thus, in this case eye movement artifacts can
be localized in the second and third empirical modes,
while the first empirical mode corresponds to the
EEG signal without the artifacts. This procedure of
localization of artifacts in EEG using empirical modes
was broadened to separate artifacts of other types and
used as a key element in the development of a new
method for filtering EEG signals.

2. METHOD FOR REMOVAL
OF ARTIFACTS IN EEG SIGNALS

This study proposes a new method for filtering
EEG signals from artifacts using the empirical mode
decomposition. The algorithm of the developed
method is the following:

(1) Empirical mode decomposition of an EEG sig-
nal.

(2) Finding empirical modes that contain physio-
logical artifacts.

(3) Removal of empirical modes that contain phys-
iological artifacts.

(4) Reconstruction of the EEG signal using the
remaining empirical modes.
The first stage of the algorithm is empirical mode
decomposition of an EEG signal and determination of
the total number of empirical modes that are consid-
ered.

It should be noted that during the decomposition
of the EEG signal each empirical mode is shorter than
the initial signal and the preceding mode. This occurs
when the signal trend is calculated, since the unequal
number of the minima and maxima results in one of
the envelopes, emin(t) or emax(t), being shorter than the

other and some points of the other envelope needing
to be removed for the calculation of the trend accord-

ing to the formula m(t) = . At the same

time, the higher the ordinal number of the empirical
mode, the lower its dominant frequency, which leads
to the highest empirical modes having extremely low
frequencies. The first several empirical modes lose an
insignificant amount of points, when compared to the
initial signal; however, as the ordinal number of the
mode increases, the losses become more noticeable.

This peculiarity of the empirical modes is demon-
strated in Fig. 3, where a typical EEG signal (Fig. 3a),
its first empirical mode (Fig. 3b), and its fifth empiri-
cal mode (Fig. 3c) are given. In addition, Fig. 3 gives
the logarithmic Fourier spectra for the EEG signal
and its empirical modes. It can be seen from Fig. 3b
that the first empirical mode contains different fre-
quencies with a peak near 3 and 25 Hz and the length
of the signal in this case almost does not differ from
the length of the initial EEG signal. It can be seen
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Fig. 3. Example of comparison of characteristics of the lower and higher empirical modes: an EEG signal (a), the first empirical
mode (b), and the fifth empirical mode (c); for each of the signals the logarithmic Fourier spectrum is given, which demonstrates
the frequency composition of the signal.
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from the Fourier spectrum of the fifth empirical mode
(one of the highest, Fig. 3c) that it contains low fre-
quencies ~0.5 Hz, which correspond to the slow-wave
activity and different noises in EEG that are usually
not analyzed neither in clinical practice nor in cogni-
tive research, and, thus, this mode does not contain
useful information. We also note that the fifth empiri-
cal mode is shorter than the initial EEG signal. This
difference can be up to several seconds, which is not
important for long EEG recordings, but can be of
importance, when short EEG intervals are studied or
brain activity is analyzed in real time (e.g., for creation
of brain-computer interfaces) [26, 27].

The peculiarity of the algorithm of the offered
method is that the reconstruction of the EEG signal at
the last stage of the algorithm is carried out by the
summation of all the remaining empirical modes and,
therefore, the reconstructed signal has the length of
the shortest mode from this sum. Thus, during analy-
sis it is necessary to select the optimum number of
empirical modes for consideration in order to take into
account the maximum number of modes with useful
information, on one hand, and, on the other hand, not
to take too many high modes, which would have
resulted in a significant reduction in the length of the
filtered signal due to the boundary effects. Studies
TECHNICAL PHYSICS  Vol. 63  No. 5  2018
demonstrate that in the case of EEG signals in
humans, frequencies that are lower than 0.5–1 Hz are
mainly background activity and noise (Fig. 2c). Thus,
the algorithm of the suggested method considers only
empirical modes with the dominant frequency fm >

0.5 Hz (m = 1, 2, …, M is the ordinal number of the
empirical mode) and the total number of the consid-
ered modes is M. When the sampling rate of the EEG
recording is 250 Hz, the number of empirical modes
that are analyzed usually does not exceed five.

At the second stage of the algorithm, search for
modes that contain physiological artifacts is carried
out among the considered modes. This procedure is
performed using continuous wavelet transform. For
this, the same small interval that contains one or sev-
eral desired artifacts is selected both in the initial EEG
signal and in all empirical modes. Then, for this inter-
val in the EEG signal and empirical modes, the corre-
sponding wavelet spectra are constructed and ana-
lyzed. It is known from clinical practice and EEG
studies that most physiological artifacts have specific
time-frequency characteristics, such as frequency
range, dominant frequency, duration, waveform, etc.
The combination of these properties creates a charac-
teristic pattern in the wavelet spectrum for each arti-
fact type. For example, in the case of eye movement
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Fig. 4. Example of functioning of the method for filtering EEG signals from artifacts: an EEG signal with several eye movement
artifacts (denoted by dark boxes) (a), four empirical modes of the EEG signal (b–e), and the reconstructed signal (f).
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artifacts the wavelet spectrum has a sharp increase in
the wavelet energy within 0.5–5 Hz during ~300–
500 ms (Fig. 2). In the suggested method, the artifact
patterns are first determined using the wavelet spec-
trum of the initial EEG signal and, then, the wavelet
spectra of each individual empirical mode are ana-
lyzed. It is believed that the empirical mode contains a
desired artifact, if its wavelet spectrum contains the
pattern of this artifact.

At the third stage of the algorithm, all the empirical
modes that have artifacts are removed from the con-
sideration. At the fourth stage, the EEG signal is
reconstructed. For this, the remaining empirical
modes that do not contain artifacts are summed up

(1)

where U(t) is the reconstructed EEG signal, Mi(t) is
the empirical modes, i is the number of the current
mode, N is the total number of the empirical modes,
and n1, n2, … are the numbers of empirical modes that
contain artifacts.

The result of the proposed method is the recon-
structed EEG signal with the physiological artifacts
being removed.

An example of the functioning of the method is
given in Figs. 4 and 5. Figure 4 gives a small interval of
an EEG signal from a T4 channel that contains several
eye movement artifacts (highlighted by dark boxes)
(Fig. 4a), four empirical modes of the EEG signal
(Figs. 4b–4e) that are calculated at the first stage of
the algorithm, and the result of filtration, the recon-
structed EEG signal after summing up the empirical
modes (Fig. 4f). Figure 5 contains the wavelet spectra
that correspond to the signals in Fig. 4. It can be seen
from Figs. 4b–4d and the corresponding spectra in
Figs. 5b–5d that the first three empirical modes have
predominantly high frequencies, while the fourth
empirical mode (Figs. 4e and 5e) has a frequency
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lower than 1 Hz. Thus, in this case only the first three
empirical modes are considered. Then, according to
the second step of the algorithm, artifacts are localized
in one of the modes. In the wavelet spectrum in Fig. 5a,
a dark box denotes the pattern of the considered arti-
fact; the same pattern is observed in the wavelet spec-
trum of the third empirical mode in Fig. 5d. In this
case, artifacts were found in the third empirical mode,
which was removed according to the third stage of the
algorithm. After this, only the first and the second
empirical modes that were summed up at the fourth
step of the algorithm resulting in the reconstructed
EEG signal (Fig. 4f) remained. It can be seen from
Fig. 5f that the wavelet spectrum of the reconstructed
signal corresponds to the spectrum of the initial EEG
signal (Fig. 5a), but does not contain patterns of the
considered artifacts.

Though the above-mentioned example is given for
removal of eye movement artifacts, the developed
method can also be applied to remove artifacts of other
types. In Section 3, we describe examples of removal
of cardiac rhythms and artifacts of muscle activity;
however, this list can be widened. The developed algo-
rithm can remove other types of artifacts, if these arti-
facts have a pronounced pattern in the wavelet spec-
trum and their corresponding empirical modes can be
identified.

3. RESULTS

The developed method was tested on the removal
of physiological artifacts of several types from experi-
mental human EEG signals. The EEG signals were
recorded using an Entsefalan-19/26 encephalograph
(Medikom-MTD, Taganrog, Russia) using the 10–20
international system of electrode placement [28]. The
signals were filtered by the recording devices within
the frequency range of 0.016–70 Hz with a bandpass
filter of 49.5–50.5 Hz to remove mains hum. The
design of the experiments included standard physio-
TECHNICAL PHYSICS  Vol. 63  No. 5  2018
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Fig. 5. Example of functioning of the method for filtering EEG signals from artifacts: wavelet spectra that are calculated for an
EEG signal with several eye movement artifacts (the artifact pattern in the spectrum is highlighted by a dark box) (a), four empir-
ical modes of the EEG signal (b–e), and the reconstructed EEG signal (f).
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logical tests. All the experiments were carried out for
15 healthy men and women at an age of 18–40 years.
All the experiments were approved by the ethics com-
mittee of the Gagarin State Technical University of
Saratov.

During the experiments, the EEG recordings were
found to have several types of artifacts, eye move-
ments, cardiac rhythms, and muscle artifacts, each of
which were observed within a frequency range of 0.5–
15 Hz and, thus, coincided with the range of informa-
tive patterns in the EEG signals; therefore, filtration of
these artifacts is an important problem.

The results of the proposed method are given in
Fig. 6, which show experimental human EEG signals
that contain eye movement artifacts (Fig. 6a), cardiac
rhythms (Fig. 6b), and artifacts of muscle activity
(Fig. 6c). The right part of Fig. 6 also demonstrates
the EEG signals after filtration by the suggested
method. It can be seen that in each of the cases the
artifacts were removed by filtration. In addition, it
should be noted that the low-frequency envelope of
the EEG signal that did not contain useful informa-
tion was also removed after application of the devel-
oped method. Thus, the suggested method can be
TECHNICAL PHYSICS  Vol. 63  No. 5  2018
used not only for elimination of different types of
physiological artifacts in EEG, but also for filtration of
several noise components.

The effectiveness of the developed method was
demonstrated on an example of the removal of eye
movement artifacts from an experimental human
EEG recording. A recording with a duration of 600 s
was considered with 95 artifacts that had an amplitude
from 1 to 4 V being found. The criterion of the removal
of the artifact was a reduction in its amplitude after fil-
tration to the mean amplitude of the EEG signal. The
mean amplitude of the EEG signal was calculated
according to the amplitude of the background activity
and different informative patterns, but not artifacts;
the mean amplitude in this case was 0.6 V. During fil-
tration of the EEG recording, 88 artifacts were
removed, and the accuracy of the developed method
was ~92%. Similar results were obtained for the other
subjects. Moreover, artifacts that were not removed
completely had a significant decrease in the amplitude
(a decrease was up to 70% of the initial amplitude),
which was also useful for filtration of the EEG signal.

When the effectiveness of the method was ana-
lyzed, the quantitative characteristic of the distortion
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Fig. 6. Results of the filtering of an EEG signal from three types of artifacts: eye movements (a), cardiac rhythms (b), and muscle
activity (c); EEG signals before filtration are given in the left part of the figure, the signals after filtration are given in the right
part of the figure, the artifacts are denoted by dark boxes.
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of the signal spectrum before and after filtration by the
developed method was calculated. For this, the wave-
let spectra within the frequency range Δf = 5–15 Hz
were calculated for the initial and filtered EEG signals.
Then, the quantitative characteristic of the distortion
was calculated as

(2)

where W(f, t) is the amplitude of the wavelet spectrum
of the EEG signal before filtration, WEM(f, t) is the
amplitude of the wavelet spectrum of the EEG signal
after filtration by the developed method, and τ is the
length of the EEG signal; normalization was carried
out with respect to the mean amplitude of the wavelet
spectrum of the initial signal

(3)

The calculations have resulted in M < 10–2 and, thus,
the distortion of the EEG signal that is induced by the
empirical mode decomposition and removal of the
artifacts can be considered insignificant.

CONCLUSIONS

Thus, the present study proposed a new method for
filtering EEG signals and removal of physiological
artifacts of different types. The universal algorithm of
the method that is based on signal decomposition by
empirical modes has been developed. The peculiarities
of the method that include selection of the empirical
modes for consideration and search for modes that
contain physiological artifacts by the continuous
wavelet transform have been discussed. It has been
demonstrated that the developed algorithm is univer-
sal for removal of artifacts of different types. The func-

τ

Δ

= −∫ ∫ EM

0

1
| ( , ) ( , )| ,

f

M W f t W f t dtdf
E

τ

Δ

= ∫ ∫
0

| ( , )| .

f

E W f t dtdf
tioning of this method has been discussed on an exam-
ple of the removal of the three types of artifacts, eye
movements, cardiac rhythms, and muscle activity.
The method demonstrated a high accuracy (~90%).
The calculation of the quantitative characteristics of
the distortion of the signal has been performed, which
has demonstrated that the distortions that have been
introduced into the signal due to the removal of phys-
iological artifacts are insignificant.
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