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Abstract—We train a reservoir computing-based echo state
network to predict the stochastic dynamics of two coupled
FitzHugh-Nagumo neurons excited by external Gaussian noise.
We describe the design principles of the echo state network
and the coupled oscillator network. Results show that prediction
quality of the dynamics of each neuron varies despite their high
coupling strength.

Index Terms—Reservoir computing, prediction, FitzHugh-
Nagumo model, noise, coherence resonance, coupled oscillators

I. INTRODUCTION

Study of coupled oscillator networks is challenging due to
inherent complexity of their structure and dynamics. Physical
systems with such behavior are omnipresent: from electronic
circuits to fish schooling and human brain neural oscillations
[1], [2]. Different aspects of coupled oscillator networks are
being explored, such as exhibition of self-organized bistability
in a globally coupled Kuramoto network [3], synchronization
of FitzHugh-Nagumo (FHN) [4], Rulkov and Hodgkin-Huxley
(HH) networks [5]. Systems of coupled HH neurons with
different topologies also demonstrated transition to a chimera
state [6], [7].

Under external noise driving a single FHN neuron exhibits
coherence resonance, a state of maximal coherence of induced
oscillations for intermediate noise amplitude [8]. This phe-
nomenon was studied in populations of FHN neurons with
different topologies [9], [10] and multiplex FHN networks
[11], [12]. Coherence resonance was also found in Rulkov
network [13] and even in experiments with visual perception
[14].

Due to complexity of coupled oscillator networks, predic-
tion of their dynamics is a particularly difficult task. Reservoir
computing (RC) network [15] is a recurrent neural network
type that was used to forecast a macroscopic signal of adaptive
network of Kuramoto phase oscillators [16] and to reconstruct
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the dynamics of a coupled Lorenz network [17]. RC was
also successfully trained to predict dynamics of a single FHN
neuron with various noise intensities while being trained on
noise level that causes coherence resonance [18]. However,
the usage of RC for prediction of dynamics of a coupled FHN
network, driven by external noise, was not yet explored.

Here, we train a RC network on signals from two coupled
FHN neurons to predict dynamics of both neurons and com-
pare the correspondence of statistical characteristics, namely
interspike interval (ISI) probability density, of predicted sig-
nals with target ones.

II. METHODS

A. System of coupled FitzHugh-Nagumo neurons

We use a coupled pair of FHN neurons as a model system.
Each of two neurons is in excitable steady state, driven by
external Gaussian noise. The coupled system is defined as
follows [19]:

dxi
dt

= xi −
x3i
3
− yi + I +

σ

N − 1

N∑
j=1

(xj − xi),

dyi
dt

=
xi + a− byi

τ
+Dξ[t],

(1)

where xi and yi represent a membrane potential variable and
a recovery variable, respectively. I = 0.3 denotes injected
electric current, σ = 0.4 is the system’s coupling strength
between N = 2 neurons. τ = 12.5 serves to separate the
time scales of fast variable xi and slow variable yi. White
Gaussian noise with zero-mean and unit variance ξi[t] drives
two excitable coupled neurons, resulting in spike generation,
parameter D sets amplitude of ξi[t]. a = 0.7, b = 0.8 are
system parameters ensuring excitability of the coupled FHN
system.

We employed the forward Euler method with time step
∆t = 0.1 to numerically solve the system.
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B. Echo state network architecture

We constructed a type of RC network called an echo state
network (ESN). It consists of an input layer, recurrent neurons
layer (the reservoir), and an output layer.

Connection strengths between the input layer and the reser-
voir are stored in Win adjacency matrix with size [n,m],
where n = 500 is the number of recurrent neurons in the
reservoir and m = 6 is the number of dimensions of input
time series data including x1, x2, y1, y2, Dξ1 and Dξ2.

[n, n] sparse adjacency matrix Wr contains connection
strengths between recurrent neurons of the reservoir. Tunable
hyperparameter ρ sets the spectral radius of this matrix, with
higher ρ values corresponding to stronger connections between
neurons. Expected reservoir neuron degree is set through
another hyperparameter d.

Output weights matrix Wout defines connections between
recurrent neurons of the reservoir and the output layer. Con-
nections in Wout are the only trainable parameters in our RC
network, ridge regression is used to determine the connection
strengths while preventing overfitting.

The RC network is trained to predicted the values of x1, x2,
y1 and y2. Therefore, during prediction stage, the RC network
uses known testing Dξ1 and Dξ2 values as input. x1, x2, y1
and y2, on the contrary, are predicted by the RC network, and
these predicted values are used for further prediction.

III. RESULTS

The RC network was trained on FHN network time series
with noise amplitude D = 0.2. We have optimized the
network to minimize the root mean squared error (RMSE)
during prediction of signals with three different D values:
D = 0.2, which was used for RC network training, and
signals with noise amplitudes D = 0.05 and D = 1.0. This
approach was used to enable the reservoir computer network
to model the FHN network dynamics at different noise levels.
Hyperparameters ρ and d were tuned during the optimization
process.

After the optimization process, the trained model was used
to predict the FHN system dynamics at different noise levels
in range D ∈ [0.05, 1.0] with step ∆D = 0.05. Probability
density functions of target and predicted signal ISIs were
evaluated. The results for D = 0.2, D = 0.8 and D = 1.0 are
shown on Figures 1, 2 and 3, respectively.
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Fig. 1. Probability density functions of interspike intervals of first (left) and
second (right) model FitzHugh-Nagumo neuron signal with D = 0.2 and
echo state network predicted signal.
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Fig. 2. Probability density functions of interspike intervals of first (left) and
second (right) model FitzHugh-Nagumo neuron signal with D = 0.8 and
echo state network predicted signal.
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Fig. 3. Probability density functions of interspike intervals of first (left) and
second (right) model FitzHugh-Nagumo neuron signal with D = 1.0 and
echo state network predicted signal.

In case D = 0.2, the ISI statistical characteristics of
both coupled FHN neurons dynamics predictions match cor-
responding characteristics of the original system. Such high
prediction accuracy is expected since the RC network was
trained on a signal with the same noise amplitude.

However, probability density of ISIs of prediction time
series with D = 0.8 is deviating from the the target curve.
Moreover, the prediction accuracy of the first FHN neuron
is significantly less accurate than prediction accuracy of the
second one. The PDF curve of the second prediction, unlike
the first one, is notably closer to the target PDF curve.

Dynamics prediction of the FHN network with D = 1.0
shows significant deviation from the target probability density
function curve for both neurons, which can be explained by a
high noise level, making precise modeling of the FHN network
dynamics a challenging task.

IV. CONCLUSIONS

We have trained the RC network to model the behavior
of two coupled FHN neurons, driven by external Gaussian
noise, and evaluated RC network’s prediction performance
based on predicted time series ISI distribution. RC network has
successfully modeled the FHN system’s behavior at D = 0.2,
noise level that was used for training the RC network, for
both neurons, but in case of D = 0.8 the statistical dynamics
prediction quality was different for two coupled neurons: while
the second neuron’s dynamics prediction was rather successful,
although not as precise as at D = 0.2, the ISI probability
density function has significantly deviated from the target
curve, showing partial statistical dynamics prediction of the
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FHN system as the whole. But with further increase of D up
to 1.0, statistical prediction of both neurons was not precise.

These results show of existence of three different predic-
tion modes of systems of two coupled excitable oscillators:
successful prediction of dynamics of both neurons, successful
prediction of only one of neural dynamics, and absence
of successful prediction of both dynamics. These prediction
modes can depend on the amplitude of the driving noise.
Further research is necessary to determine the dependence of
these prediction modes on noise level, coupling strength and
other system parameters.
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