
Chimera-like state in ensemble of bistable neurons
Andrey Andreev

Neuroscience and Cognitive Technology Laboratory,
Center for Technologies in Robotics and

Mechatronics Components
Innopolis University
Innopolis, Russia

a.andreev@innopolis.ru

Nikita Frolov
Neuroscience and Cognitive Technology Laboratory,

Center for Technologies in Robotics and
Mechatronics Components

Innopolis University
Innopolis, Russia

n.frolov@innopolis.ru

Natalija Alexandrova
Faculty of Information Technologies

Saratov State University
Saratov, Russia

aleksandrovan@bk.ru

Marija Chaban
Faculty of Information Technologies

Saratov State University
Saratov, Russia

64chabanma@gmail.com

Abstract—We investigate the nonlinear dynamics of a neural
network. As a model of a neuron, we use Hodgkin-Huxley mathe-
matical model. We choose the neuron’s parameters corresponding
to a bistable region in which both fixed point and limit cycle are
coexisting. We discover that depending on external current and
coupling strength we can achieve a chimera-like state when one
part of the neurons is in the resting state, while the other one is
in the oscillatory regime in a certain area of coupling strength
and external current amplitude.

Index Terms—Complex network, Hodgkin-Huxley neuron,
neural network, chimera-like state.

I. INTRODUCTION

The dynamics of complex networks has attracted much
attention in recent years [1]–[6]. Especially, the networks of
spiking neurons or neuron-like elements take a significant part
of this area [7]–[9]. The interest in neural networks is due it
helps to make a contribution to a better understanding of brain
functionality, that also is of a grate interest [10]–[15].

Collective dynamics in a neuronal network is usually con-
sidered by taking into account that every neuron in the network
is monostable, i.e., it has a single stable trajectory [16]. How-
ever, according to Keener and Sneyd [17], the Hodgkin-Huxley
(HH) model exhibits bistability in a narrow range of control
parameters near the excitation threshold. The bistability regime
in oscillatory systems as known to be of special interest due
to a variety of hidden unexpected phenomena.

We investigate the nonlinear dynamics of a networks of
Hodgkin-Huxley neurons for the parameters’ values corre-
sponding to a bistable region in which both fixed point and
limit cycle are coexisting. We discover a phenomenon when
one part of the neurons are in the resting state, while the other
one is in the oscillatory regime in a certain area of coupling
strength and external current amplitude.
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II. MODEL

We consider the network of N = 100 Hodgkin-Huxley
neurons. The time evolution of the transmembrane potential
of the HH neurons is given by [18]

Cm
dVi
dt

= −gmaxNa m3
ihi(Vi − VNa) − gmaxK n4i (Vi − VK)−

− gmaxL (Vi − VL) + Iexi + Isyni
(1)

where Cm = 1µF/cm3 is the capacity of cell membrane,
Iexi is an external bias current injected into a neuron in
the network, Vi is the membrane potential of i-th neuron,
i = 1,...,N , gmaxNa = 120mS/cm2, gmaxK = 36mS/cm2 and
gmaxL = 0.3mS/cm2 receptively denote the maximal sodium,
potassium and leakage conductance when all ion channels are
open. VNa = 50mV , VK = −77mV and VL = −54.4mV
are the reversal potentials for sodium, potassium and leak
channels respectively. m, n and h represent the mean ratios
of the open gates of the specific ion channels. n4 and m3h
are the mean portions of the open potassium and sodium ion
channels within a membrane patch. The dynamics of gating
variables (x = m,n, h) are given:

dxi
dt

= αxi(Vi)(1 − xi) − βxi(Vi)xi, x = m,n, h (2)

αx(V ) and βx(V ) are rate functions, described in [19].
Isyni is the total synaptic current received by neuron i. We

consider coupling via chemical synapses. The synaptic current
takes the form [20]

Isyni =
∑

j∈neigh(i)

gcα(t− tj0)(Erev − Vi) (3)

where the alpha function α(t) describes the temporal evolution
of the synaptic conductance, gc is the maximal conductance of
the synaptic channel and tj0 is the time at which presynaptic
neuron j fires. We suppose α(t) = e−t/τsynΘ(t), there Θ(t)
is the Heaviside step function and τsyn = 3ms. The initial
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conditions of all neurons correspond to the oscillatory basin
of attraction of individual neuron.

III. RESULTS

We investigate the dynamics of network with scale-free
topology and analyze how the number of active neurons
depends on both external current and coupling strength. By
active neurons we mean the ones generating spikes. Ie = 6.24
is the threshold value for a single neuron and for current
amplitudes lower that value a neuron can be only in a “silent”
regime. On the other hand for big values of external current
(Ie > 8.0) all neurons are in oscillatory regime independently
on coupling strength. Between these two threshold values of
Ie networks dynamics depends on gc.

We find a specific regime in which one part of neurons is
in the resting state while another one generates spikes. We
called it chimera-like state. The situation when in a complex
network one part of the elements is in the resting state while
another one generates spikes is of interest. And it is not so
clear why the system behaves this way, because all connections
in the network are excitatory, and at the first blush excitatory
synapses shouldn’t suppress neuron oscillations and external
current is above the threshold.

It is known that dynamics of one bistable Hodgkin-Huxley
neuron can be switched from oscillatory regime to resting
one by short pulse of external current. In that case excitatory
synapses can be represented as such pulse. So, in the network
of bistable Hodgkin-Huxley neurons they can switch the
dynamics of each other and as a result we observe the chimera-
like state when we have two parts of neurons with different
dynamics.

The excitatory synapses with the big enough amplitude can
switch the neuron dynamics from initially being oscillatory
to the resting one. So if all neurons in the network oscillate
initially, the dynamics of the neurons with a high number
of input connections can be easily switched to the resting
one, while other ones having a small number of connections
continue to generate spikes.

IV. CONCLUSION

We have investigated the nonlinear dynamics of a neural
network. As a model of a neuron, we used the Hodgkin-
Huxley mathematical model. We have chosen the neuron’s
parameters corresponding to a bistable region in which both
fixed point and limit cycle are coexisting. We have discovered
that depending on external current and coupling strength we
can achieve a chimera-like state when one part of the neurons
is in the resting state, while the other one is in the oscillatory
regime in a certain area of coupling strength and external
current amplitude.
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