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a b s t r a c t 

We study the scaling features in the evolutionary dynamics of two coupled chaotic systems based on the 

sequences of return times into a Poincaré section, contaminated with additive (measuring) noise. Using 

three models of chaotic systems: the Rössler oscillator, the Lorenz system, and the nephron model, and 

the detrended fluctuation analysis (DFA) as an approach for data processing, we demonstrate that the 

anti-correlated sequences of return times of synchronous motions show a higher sensitivity to measuring 

noise than the positively correlated series of return times of asynchronous oscillations. This conclusion is 

confirmed by the results for various oscillatory regimes in all models considered. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

A measured time series always contains noise of various origins

[1] . Even if the dynamics of the system under study is determin-

istic, the conversion of the analog signal to digital format is ac-

companied by rounding errors, which can be treated as measuring

noise. This type of noise does not influence the underlying dynam-

ics of the system; however, it affects the accuracy of the evalua-

tion of signal characteristics and the reliability of the diagnosis of

the system’s state from experimental data. A generally used ap-

proach to the processing of noisy data is its pre-filtering that can

significantly reduce noise impact, especially when the frequency

ranges of the signal reflecting the system’s dynamics and additive

fluctuations do not overlap. In practice, such approach is typically

used to remove high-frequency variations of a signal providing its

smoothing, or to eliminate slow changes in the mean value treated

as a trend for nonstationary time series. Over the past decades, fil-

tering capabilities have been improved by means of wavelet-based

techniques being able to extract localized fluctuations that are not

removed with Fourier-based approaches [2–5] . 

Filtering does not always improve the characterization of noisy

data sets. This is the case, e.g., when considering point processes,

where information about the system’s dynamics is encoded by the

times of stereotype events, and the data set represents a sequence
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f time intervals between successive events [6] . Such a sequence

s often a noise-like process, where external fluctuations are dif-

cult to detect and eliminate. In this regard, the effect of addi-

ive noise on the characterization of the system’s dynamics from

easured data should be known for various types of complex pro-

esses. From general assumptions, it could be expected that a small

oise would provide insignificant changes in signal characteristics

n comparison with fluctuations of higher intensity. Nevertheless,

he effect of relatively weak fluctuations can differ between signals

f distinct complexity and various dynamical regimes. 

In this study, we consider how measuring noise affects the scal-

ng features of complex processes in the dynamics of two coupled

haotic oscillators characterized by the sequences of return times

nto a Poincaré section. Such systems demonstrate various entrain-

ent forms, which depend on the coupling strength and the in-

ividual dynamics of the oscillators. Unlike the frameworks of the

lassical theory of synchronization for periodic oscillations that is

ccompanied by a locking of their frequencies or phases, chaotic

ynchronization includes a wider range of entrainment phenom-

na represented by full synchronization [7,8] , phase synchroniza-

ion [9,10] , lag synchronization [11] , and generalized synchroniza-

ion [12–14] . The related entrainment influences the dynamics of

ndividual oscillators and changes the scaling features of the return

ime sequences. In particular, chaotic synchronization typically re-

uces the degree of multifractality in these sequences [15] , which

an be treated as a kind of ordering appeared due to the coupling

etween interacting units. Besides changes in the multifractality,

ynchronous and asynchronous oscillations are often quantified by

https://doi.org/10.1016/j.chaos.2018.09.029
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Fig. 1. A simplified bifurcation diagram of the model of two coupled Rössler oscil- 

lators. 

Fig. 2. Oscillation frequencies for two coupled Lorenz systems depending on the 

coupling strength. 
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ifferent types of correlations, namely, by the anti-correlated se-

uences of return times related to synchronous dynamics and by

ositive correlations of return times for asynchronous regimes [15] .

istinctions in the structure of the return time sequences can ex-

rt different noise effect on the authentic characterization of the

nderlying dynamics from measured point processes. 

Based on the detrended fluctuation analysis (DFA) [16–18] ,

hich is a widely used approach for studying the correlation prop-

rties of complex time series [19–24] , we compare how measur-

ng noise affects the error in characterizing the scaling features of

arious types of complex motions in the dynamics of interacting

haotic systems. We consider several models of chaotic oscillators

ncluding the Rössler system, the Lorenz oscillator and the nephron

odel, which exhibit oscillations with several different time scales,

nd show that the anti-correlated sequences of return times of

ynchronous motions demonstrate a higher sensitivity to measur-

ng noise than the positively correlated series of return times of

synchronous oscillations. Such distinction in sensitivity to addi-

ive noise is confirmed for all models of coupled chaotic oscillators

onsidered in this study. 

. Methods and models 

.1. Detrended fluctuation analysis 

DFA is a variant of the correlation analysis of a data set, which

s based on the transition to a random walk with its further root
ean square analysis [16,17] . The algorithm includes the following

our steps: 

1) The construction of a random walk y ( k ) being a profile of the

original data set x ( i ), i = 1 , . . . , N: 

y (k ) = 

k ∑ 

i =1 

[ x (i ) − 〈 x 〉 ] , (1)

where 〈 x 〉 is the mean value. 

2) Segmentation of y ( k ) into non-overlapping parts of fixed size n

and linear fitting inside each part to obtain a piecewise linear

function y n ( k ) that describes a local trend. 

3) Computing the root mean-square fluctuation F ( n ) 

F (n ) = 

√ 

1 

N 

N ∑ 

k =1 

[ y (k ) − y n (k )] 2 . (2) 

4) Repeating the estimates for different n and computing the scal-

ing exponent α, which describes the power-law behavior 

F (n ) ∼ n 

α. (3) 

The value of α can be found as the slope of the dependence

 ( n ) in the log-log plot. This quantity relates to scaling exponents

escribing the behavior of the correlation function or the spectral

ower. For complex processes with a multiscale structure of data

ets, F ( n ) cannot be described by a simple power-law dependence

ith a single scaling exponent, and the local slopes of lg F vs. lg n

vary depending on the size of the segment n . In this case, con-

ideration of local scaling exponents seems preferable to a single

uantity (global scaling exponent). 

The values of α < 0.5 quantify the anti-correlated statistics of

he data samples x ( i ), i.e. the alternation of large and small values

f x ( i ), when large values appear after small values and vice versa.

ower-law correlations when large values mainly follow after large

alues and small values appear more often after small values are

haracterized by α > 0.5. The uncorrelated dynamics of the data

et is described by α = 0.5. 

.2. Models of two coupled oscillators 

.2.1. Coupled Rössler systems 

Two diffusively coupled Rössler oscillators represent a bench-

ark model of interacting nonlinear systems that produces a va-

iety of complex dynamical regimes including regular, chaotic and

yperchaotic oscillations with different phase shifts between the

ignals of individual units. This model is described by six ordinary

ifferential equations 

dx 1 , 2 
dt 

= −ω 1 , 2 y 1 , 2 − z 1 , 2 + γ (x 2 , 1 − x 1 , 2 ) , 

dy 1 , 2 
dt 

= ω 1 , 2 x 1 , 2 + ay 1 , 2 , 

dz 1 , 2 
dt 

= b + z 1 , 2 (x 1 , 2 − c) (4) 

he control parameters a, b and c define the dynamics of each sys-

em, and γ quantifies the coupling strength. The mismatch of the

asic frequencies ω 1 = ω 0 + � and ω 2 = ω 0 - � provides non-

dentical oscillations of the interacting units. Here, we used the

ollowing parameter set: a = 0.15, b = 0.2, γ = 0.02, ω 0 = 1 and varied

he parameters c and � to analyze the transitions to and between

ifferent types of chaotic attractors or to a hyperchaotic regime.

he phenomenon of phase multistability in the model (4) was dis-

ussed, e.g., in [25] , where the bifurcation mechanisms leading to

he appearance of various attractors are described. A simplified bi-

urcation diagram showing the main dynamical regimes discussed
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Fig. 3. The dependencies F ( n ) in the lg-lg plot for different noise intensities (a), and the estimated scaling exponent α related to distinct ranges of the power-law correlations 

(b). 

Fig. 4. Errors of estimation the α-value depending on the parameter � for c = 6.8 (a) and c = 7.2 (b) (the case of white noise). 
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in our study is given in Fig. 1 . For more details, see the work by

Postnov et al. [25] . 

Transition along the c -axis (for � near 0.009) realizes the

period-doubling route to chaos with the appearance of the chaotic

attractor CA 0 . This synchronous regime is characterized by “in-

phase” dynamics, i.e., by vanishing the phase difference of vari-

ables x 1 ( t ) and x 2 ( t ) for � = 0 . The chaotic attractor CA 1 also

arises after the period-doubling cascade, however, it is character-

ized by a phase difference of 2 π for the subharmonic components

and relates to “out-of-phase” synchronous dynamics. Despite these

regimes are quantified by distinct phase differences, their scal-

ing features are nearly similar in comparison with asynchronous

oscillations. With a further increase in c , the attractors CA 0 and

CA 1 are merged leading to the hyperchaotic attractor HA . For �

around 0.010, the range of c in Fig. 1 is related to asynchronous

oscillations, namely, the quasiperiodic regime QA and the asyn-

chronous chaotic attractor CA t . An analysis of these regimes will

be performed in Section 3 based on the sequences of return times

into a Poincaré section that reflects the fractal structure of chaotic

regimes. By analogy with the study [26] , the secant plane x 2 + y 1 =
0 was selected. 

2.2.2. Coupled Lorenz systems 

Unlike the previous example (4), the coupled Lorenz systems

demonstrate complex motions with clearly different time scales.

This model is also described by six ordinary differential equa-

tions 

dx 1 , 2 
dt 

= σ (y 1 , 2 − x 1 , 2 ) + γ (x 2 , 1 − x 1 , 2 ) , 

dy 1 , 2 
dt 

= r 1 , 2 x 1 , 2 − x 1 , 2 z 1 , 2 − y 1 , 2 , 
dz 1 , 2 
dt 

= x 1 , 2 y 1 , 2 − z 1 , 2 b (5)

ith the parameters σ= 10, r 1 = 28.8, r 2 = 28, and b = 8/3 defining the

scillations of each unit and the coupling strength γ . Two types of

otions are easily detected in the dynamics of individual oscilla-

ors. The first type is switching between the states “+1” ( x 1, 2 > 0)

nd “−1” ( x 1, 2 < 0), if each unit is treated as a bistable system

27] . The mean switching frequency depends on both, a parame-

er set characterizing the dynamical regime which occurs without

oupling, and the strength of interaction. A relatively faster time

cale characterizes the rotation (oscillation) of the phase space tra-

ectory around unstable focus points. The peculiarity of the model

5) is a rather atypical behavior with increasing coupling strength

28] . Although the large values of the parameter γ provide the ad-

ustment of the frequencies of both units ( Fig. 2 ), the choice of the

oupling strength in the range of γ ∈ [0.0, 2.0] produces the op-

osite effect of the initial desynchronization. The analysis of the

odel (5) will be performed using the sequences of return times

nto the secant plane introduced as z 1 = 30. 

.2.3. Interacting nephrons 

Two nephrons are another example of complex interacting os-

illators possessing several different time scales. It describes the

ynamics of the coupled functional units of the kidney which

emonstrate the oscillations of tubular hydrostatic pressure and re-

al plasma flow. The autoregulation of blood flow at the level of

ingle nephron can be simulated by six ordinary differential equa-

ions [29] : 

dP t 

dt 
= G (P t , r) , 
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Fig. 5. Errors of estimation the α-value depending on the parameter � for c = 6.8 (a) and c = 7.2 (b) (the case of 1/ f -noise). 

Fig. 6. Errors of estimation the α-value depending on the parameter c for �= 0.009 (a) and �= 0.010 (b). 
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dr 

dt 
= v r , 

dv r 
dt 

= V β,T (P t , r, β, X 3 ) , 

dX 1 

dt 
= 

3 

T 
(F H (P t ) − X 1 ) , 

dX 2 

dt 
= 

3 

T 
(X 1 − X 2 ) , 

dX 3 

dt 
= 

3 

T 
(X 2 − X 3 ) . (6) 

ere, P t is the proximal tubular pressure, G is a nonlinear function

haracterizing the filtration in glomerulus, r is the radius of the ves-

el, and v r quantifies the rate of its variations. Equations for X 1 , X 2 

nd X 3 introduce a delay T in the tubulo-glomerular feedback. The

onlinear function V β , T depends on X 3 , which describes the pos-

tive feedback mechanism leading to the appearance of slow os-

illations of P t with the frequency of 0.02–0.04 Hz. The equations

or r and v r describe the myogenic mechanism that regulates renal

lood flow and the glomerular filtration rate with the frequency of

.1–0.2 Hz. Experiments [30,31] have established that the develop-

ent of hypertension in rats is accompanied by a transition from

early periodic oscillations of P t to chaotic dynamics. An impor-

ant parameter is the strength of the feedback regulation β , which

ncreases in hypertensive rats. Because of the complex structure of

onlinear functions, we do not reproduce here the complete details

f the nephron model (6) and its parameters that can be found in

ef. [29] . 
There are two mechanisms of interaction between neighbor-

ng nephrons, namely, the vascularly propagated interaction based

n electrochemical signals (the main mechanism) and the hemo-

ynamics interaction which has a weaker effect on the cooper-

tive dynamics of coupled units of the kidney. We consider the

rst mechanism quantified by the coupling strength γ and intro-

uce the secant planes P t = 1.6 kPa (to study the slow dynamics

f the coupled nephrons) and v r = 0 (to consider the fast oscilla-

ions). A comparative analysis of noise effect will be performed for

hase-locked chaotic dynamics ( T 1 = T 2 = 13.5 s, γ = 0.005, β= 27.3,

here T 1 and T 2 denote the feedback delay for each of the coupled

ephrons) and asynchronous chaos ( T 1 = 13.5 s, T 2 = 13.4 s, γ = 0.005,

= 27.3). A detailed description of the interaction effects in cou-

ling nephrons, including phase portraits and bifurcation diagrams,

s given in Ref. [32] . 

. Results and discussion 

For all the models considered, we extracted the sequences of

eturn times related to different values of control parameters and

dded a normally distributed random process (white noise) with

he intensity D . Thus, we analyze the case of “measuring” noise

hat does not influence the dynamics of coupled oscillators (i.e.,

oes not change the dynamical regime produced by the model in

ontrast to the case of fluctuations in model equations that can

ary the control parameters) and only affects the quality of detec-

ion of distinct dynamical regimes. 
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Fig. 7. The dependencies F ( n ) in the lg-lg plot for different noise intensities (a), and the estimated scaling exponent α related to distinct ranges of the power-law correlations 

for D = 0 (b). 

Fig. 8. Errors of estimation the α-value depending on the parameter γ for different 

noise intensities. 
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3.1. Coupled Rössler systems 

Complex oscillations in the dynamics of two coupled Rössler

systems are characterized by a multiscale structure, and the de-

gree of multiscality varies between synchronous and asynchronous

regimes [15] . Due to this, the scaling exponent α depends on the

time scale. Fig. 3 a illustrates the dependencies of lg F vs. lg n 

for the hyperchaotic attractor HA which was selected as the most

complicated regime of the model (4). Unlike earlier study, here

we discuss noise effect on the scaling features of complex oscil-

lation and consider the cases of short-range correlations ( n ∼ 10),

middle-range correlations ( n ∼ 100), and long-range correlations

( n ∼ 10 0 0). According to Fig. 3 a, the local slopes of the depen-

dence lg F vs. lg n are different, although α-values are quite sim-

ilar in the first two ranges for noiseless dynamics. The presence

of noise in return times increases the scaling exponents, however,

the related changes may differ between the ranges of scales. To

illustrate this circumstance, variations of α-values with control pa-

rameters are considered. Fig. 3 b shows the results for c = 7.2 in the

range � ∈ [0.009; 0.010] that includes the transition from the

synchronous hyperchaotic attractor HA to the asynchronous chaotic

regime CA t around �= 0.0095. Although this transition can be de-

tected based on α-values when analyzing short-range correlations,

a consideration of middle-range correlations provides a more infor-

mative characterization of the structural changes in the sequences

of return times. 

Let us now compare the effect of a measuring noise on charac-

terization of these regimes from the return time sequences with

added fluctuations of different intensity by estimating α as the

local slope of the dependence (3) in the region around n ∼ 100.
ig. 4 a illustrates the results for noise intensities in the range [0.01;

.05]. Since α-values of noiseless dynamics differ between the at-

ractors HA and CA t , a comparative analysis is performed for the

bsolute error 

 = αnoi − α0 , (7)

here α0 is the value estimated for the noiseless dynamics of the

oupled oscillators, and αnoi is the value obtained in the presence

f additive fluctuations. According to Fig. 4 a, measuring noise ex-

rts about 5-fold stronger influence on the synchronous dynamics

ssociated with the attractor HA than for the asynchronous chaotic

ynamics CA t . Therefore, the characterization of synchronous hy-

erchaotic oscillations from point processes contaminated with

oise is a more complicated procedure. 

In the example considered, we compared two oscillatory

egimes of different complexity. Fig. 4 b shows that a similar con-

lusion follows from an analysis of other types of interactive dy-

amics, namely, the synchronous chaotic oscillations CA 0 and CA 1 

ompared to the asynchronous chaos CA t . Again, asynchronous os-

illations are easier characterized from noisy return times since the

resence of fluctuations provides significantly reduced variations in

he scaling characteristics. 

In an effort to study the effects of different types of noise, we

onsidered colored noise instead of Gaussian noise. As a rule, the

ffects are very similar. Fig. 5 shows an example of the analy-

is performed for the case of 1/ f noise with an intensity I . Here,

he difference between synchronous and asynchronous dynamics

s even better expressed compared to Fig. 4 . Analogous results are

btained for other models where colored noise provides similar

onclusions. 

According to Fig. 6 , noise effect is comparable when consid-

ring different types of synchronous or asynchronous dynamics.

hus, Fig. 6 a illustrates nearly similar absolute errors of computing

he scaling exponent α in a wide range of c -values (for �= 0.009),

hich includes a period-doubling cascade and the merging of

haotic attractors leading to hyperchaos. Therefore, similar noise

ffect appears independently on the complexity of the dynam-

cs. By analogy, the transition from the quasiperiodic oscillations

 QA ) to the chaotic regime ( CA t ) is also characterized by similar

-variations ( Fig. 6 b). The differentiation between the scaling ex-

onents of noiseless and noisy sequences of return times is much

tronger between synchronous and asynchronous regimes, regard-

ess of the type of underlying dynamics. We explain this circum-

tance by different correlation properties of point processes. Asyn-

hronous dynamics is mainly associated with positive correlations

f the return time sequences with α > 0.5, whereas synchronous

egimes are usually related to the anti-correlated structure of re-

urn times with α < 0.5. Recent studies [33,34] discussed the effect



A.N. Pavlov et al. / Chaos, Solitons and Fractals 116 (2018) 106–113 111 

Fig. 9. The dependence of α from the ratio r 1 / r 2 (a) and the estimated errors for different values of noise intensity (b). 

Fig. 10. The dependencies F ( n ) in the lg-lg plot for slow (a) and fast (b) oscillations in the dynamics of coupled nephrons for distinct values of noise intensity. 

Fig. 11. Errors of estimation the scaling exponent α for synchronous and asynchronous motions in the dynamics of coupled nephrons related to slow (a) and fast (b) 

oscillatory modes depending on noise intensity. 
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f missing data on their scaling properties based on several exam-

les of noise and showed that the absence of some data segments

ue to artifacts leads to stronger variations in scaling characteris-

ics for anti-correlated dynamics. Although here we do not exclude

ome data fragments that provide a change in the correlation prop-

rties of the remaining data, the consideration of measuring noise

an be interpreted as a partial loss of information about the de-

erministic dynamics of interacting oscillatory units. Therefore, the

onclusions of [33,34] on the different sensitivity of anti-correlated

nd positively correlated data to missing information can be ex-

ended for the case of synchronous and asynchronous dynamics
ontaminated with noise. t  
.2. Coupled Lorenz systems 

The dynamics of the coupled Lorenz systems with the cho-

en set of parameters demonstrates smaller differences of α-values

ith varying time scale ( Fig. 7 a). Thus, the scaling properties of

hort- and middle-range correlations are nearly similar. The in-

rease in α for long-range correlations is also much less pro-

ounced compared to the previous model ( Fig. 3 a). Fig. 7 b shows

 typical dependence of α vs. the coupling strength γ . The initial

esynchronization of oscillations with a maximum difference of

requencies around γ = 1.5 is accompanied by a correlated struc-

ure of return times with α � 0.6. With an increase in γ in the



112 A.N. Pavlov et al. / Chaos, Solitons and Fractals 116 (2018) 106–113 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

v  

t  

d  

t  

q  

z  

t  

a  

u

 

R  

d  

t  

i  

T  

c  

o  

D  

c  

b  

o  

c  

s  

n  

c  

c  

c  

o

A

 

(

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

range [1.5; 5.0], the scaling exponent reduces to α = 0.5 (in this

interval of γ , stochastic time scales are tuned, namely the switch-

ing frequencies). Further, for γ > 5, synchronization of oscillations

occurs, and α reduces to 0.35 ( γ = 10), which indicates a transition

to anti-correlated statistics of return times. 

To illustrate the different sensitivity of return time sequences

associated with synchronous and asynchronous dynamics of cou-

pled units to measuring noise, we estimated the absolute error of

computing α-values in the presence of additive fluctuations (7) –

Fig. 8 . According to this Figure, asynchronous dynamics ( γ ∈ [1.5;

5]) is characterized by insignificant changes in α-values in com-

parison with the case of synchronization ( γ > 5). This effect can

be illustrated by changing the ratio of r -parameters of interact-

ing systems with a fixed coupling strength. Fig. 9 a shows a typi-

cal example of how the scaling exponent is varied with the ratio

r 1 / r 2 . This Figure clearly illustrates the transition from correlated

statistics of return times of asynchronous regimes ( α > 0.5) to anti-

correlated statistics inside the synchronization “tongue” ( α < 0.5).

Based on previous estimates, we expect that return time sequences

inside the synchronization region are more sensitive to measuring

noise. Fig. 9 b confirms this assumption, showing that the strongest

changes in α-values appear for identical systems ( r 1 = r 2 ), and

the added fluctuations do not significantly affect estimations of

scaling exponents outside the synchronization region (e.g., the er-

ror E is close to zero for r 1 /r 2 = 1.1). Thus, the results for in-

teracting Lorenz systems confirm the conclusions for two cou-

pled Rössler systems demonstrating the different sensitivity of syn-

chronous oscillations (with anti-correlated statistics of return time

sequences) and asynchronous oscillation (characterized by positive

correlations of return times) to measuring noise in point processes

analyzed in this study. 

3.3. Interacting nephrons 

In the dynamics of coupled Lorenz systems, two different time

scales can be introduced: a stochastic time scale related to the

switching frequency, and a deterministic time scale associated with

the frequency of oscillations. The nephron model enables us to

consider two deterministic time scales, namely, fast and slow dy-

namics. The interaction between neighboring nephrons leads to the

interaction of these time scales, providing various regimes of full

synchronization (when all time scales are adjusted), partial syn-

chronization (adjustment of only one time scale in both units) and

non-synchronous dynamics [35] . 

Analysis of the mathematical model (6) enables us to make a

separation between fast and slow motions by introducing two se-

cant planes and consideration the return times for slow and fast

variables. Both these types of motions are characterized by non-

linear dependences lg F vs lg n that are illustrated in Fig. 10 for

slow ( Fig. 10 a) and fast ( Fig. 10 b) oscillations. Estimating the scal-

ing exponent α related to middle-range correlations, we performed

a more detailed analysis of noise effect in detecting the scaling fea-

tures of both types of motions. Fig. 11 shows how the absolute er-

ror depends on the intensity of fluctuations added to return times.

For both slow and fast dynamics, measuring noise increases errors

in detection scaling features of synchronous oscillations. This ef-

fect is observed for all noise intensities considered in our analysis

( Fig. 11 ). Thus, the error ratio for synchronous and asynchronous

oscillations is about 3.5 ( D = 0.1, slow motion) and about 2.7 ( D = 0.1,

fast motion). Although the given distinctions are smaller in com-

parison, e.g., with the dynamics of the coupled Rössler systems, the

general conclusion about stronger sensitivity of anti-correlated se-

quences of return times of synchronous motions to additive noise

in comparison with positive correlated series of return times of

asynchronous oscillations are confirmed for all examples of com-

plex dynamics considered in this study. 
. Conclusion 

Cooperative dynamics of interacting chaotic systems produce a

ariety of oscillatory regimes of different complexity. Characteriza-

ion of these regimes from experimental data is influenced by ad-

itive fluctuations (measuring noise) that can lead to large compu-

ational errors in comparison with noiseless dynamics. Aiming to

uantify the effect of noise on the ability of authentic characteri-

ation of complex oscillations from the measured data sets such as

he sequences of return times into the Poincaré section, here we

nalyze different types of synchronous and asynchronous motions

sing the detrended fluctuation analysis. 

Considering three models of oscillatory units, namely, the

össler oscillator, the Lorenz system and the nephron model, and

istinct types of regular and chaotic attractors, we showed essen-

ially different effect of measuring noise on estimating the scal-

ng features of synchronous and asynchronous dynamical regimes.

hese regimes are often quantified by different correlations in suc-

essive return times: the transition to the state of synchronous

scillations is accompanied by a reduced scaling exponent of the

FA-approach and a transition from positive correlations to anti-

orrelations in the return time series. The related distinctions can

e a reason of a different effect of additive noise on the estimation

f scaling exponents. Our analysis led to the conclusion that syn-

hronous oscillations in the dynamics of coupled chaotic systems

how a much stronger differentiation between the scaling expo-

ents of noiseless and noisy sequences of return times than asyn-

hronous oscillations. Therefore, the measured data sets of syn-

hronous oscillatory regimes produce significantly higher errors of

orrelation analysis. This conclusion is confirmed for both, white

r colored noise presented in the sequences of return times. 
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