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Abstract: The synchronization of oscillatory activity in networks of neural networks is usually
implemented through coupling the state variables describing neuronal dynamics. In this study
we discuss another but complementary mechanism based on a learning process with memory.
A driver network motif, acting as a teacher, exhibits winner-less competition (WLC) dynamics,
while a driven motif, a learner, tunes its internal couplings according to the oscillations observed
in the teacher. We show that under appropriate training the learner motif can dynamically copy
the coupling pattern of the teacher and thus synchronize oscillations with the teacher. Then, we
demonstrate that the replication of the WLC dynamics occurs for intermediate memory lengths
only. In a unidirectional chain of N motifs coupled through teacher-learner paradigm the time
interval required for pattern replication grows linearly with the chain size, hence the learning
process does not blow up and at the end we observe phase synchronized oscillations along the
chain. We also show that in a learning chain closed into a ring the network motifs come to a
consensus, i.e. to a state with the same connectivity pattern corresponding to the mean initial
pattern averaged over all network motifs.
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1. INTRODUCTION

Complex large-size biological, ecological, and engineering
networks can be frequently decomposed into relatively
small network motifs, i.e. network patterns that occur
significantly more frequently than in a random graph.
Then, the study of the network structural properties can
be addressed through investigation of universal classes or
building blocks of recurrent network motifs (Milo et al.,
2002). How one network motif can dynamically replicate
the internal structure and the behavior of another one is
an open problem.

Traditionally, synchronization of oscillations in network
systems involves transmission of signals (energy) from one
network element to another. For example, in neural net-
works synaptic couplings may convey electrical or chemical
signals from one motif to another, which frequently pro-
motes synchronization (Abarbanel et al., 1996). However,
synchronization can also be achieved through a learning
process. In this case there is no direct link between two
networks. Instead, the information transfer is attained
through observation of the teacher dynamics and by con-
secutive tuning of the connectivity pattern in the learner.
Although such kind of synchronization is abundant in
real world (e.g. children can learn movements shown by
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a teacher), its study from a dynamical systems point of
view has attracted relatively little attention.

Earlier it has been shown that oscillations in network
systems can emerge from a stable heteroclinic channel
(Ashwin and Chossat, 1998; Ashwin and Field, 1999). In
a neural network consisting of more than two competing
neurons with unbalanced inhibitory connections, one may
observe a situation when each neuron sequentially becomes
a winner (i.e. strongly activated) for a limited time inter-
val and then another neuron takes over the leadership.
Dynamically such an operating mode, called winner-less
competition (WLC), occurs in a vicinity of heteroclinic
trajectories connecting saddle equilibria in a loop. Under
certain conditions, the heteroclinic loop can be stable and
then in the presence of a weak noise the trajectory will
wander from one saddle to another (Cohen and Grossberg,
1983; Rabinovich et al., 2001; Varona et al., 2002).

In this work we propose a learning rule which allows
one neural network, acting as a teacher, to impose the
same heteroclinic circuit in another “learner” network.
As a result, in the learner there appear WLC oscilla-
tions synchronized in phase with the oscillations of the
teacher. We study how the information on the connectivity
structure is replicated in a chain of network motifs. The
proposed learning rule includes memory effects, i.e. the
learner integrates over time the incoming information. We



then provide conditions necessary for replication of the
connectivity patterns in a learning chain of network motifs
and also describe a “consensus” behavior on a ring.

2. MODEL DYNAMICS: SYNCHRONIZATION BY
LEARNING

Figure 1A shows the architecture of a network motif
composed of three recurrently coupled neurons. For the
sake of simplicity we assume that the coupling strengths
β are hard coded (i.e. fixed), while α = {αk}3k=1 can be
changed. Further on we will consider a unidirectional chain
of such motifs (Fig. 1A). At the beginning the couplings
α are arbitrary distributed among network motifs, and
hence the motifs exhibit different dynamics. The purpose
of learning is to replicate the coupling pattern α from the
teacher and synchronize oscillations along the chain.
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Fig. 1. The model. A) Network motifs consist of three
recurrently coupled neurons each. Motifs are linked
in a unidirectional learning chain. No direct coupling
among the state variables exists. Instead, learner n
adjusts its connectivity pattern to that of motif n− 1
and thus synchronizes oscillations. If the last motif
is linked to the first one we get a ring chain without
leader. B) Winner-less dynamics in the phase space
of a single motif (left) and time evolution of the
neuronal activity (right). Blue, red, and yellow curves
correspond to neurons 1, 2, and 3, respectively [α =
(0.1, 0.6, 0.8)].

2.1 Heteroclinic circuit: Winner-less dynamics

The network of motifs is organized by the teacher-learner
principle. The governing equation of the teacher is given
by

ẋ = x� (1− ρx) + η(t) (1)

where x(t) ∈ R3
+ describes the activation state of three

neurons at time t (Fig. 1B); η(t) ∈ R3 is a Gaussian
uncorrelated white noise with the mean 2e-5 and the
standard deviation 1.5e-3; and the matrix ρ ∈M3×3(R+)
accounts for local couplings among the neurons:

ρ =

(
1 α2 β
β 1 α3

α1 β 1

)

Given that the following conditions are satisfied

αk < 1 < β,

3∏
k=1

(1− αk) < (β − 1)3, (2)

it has been shown (Afraimovich et al., 2004) that in the
system (1) there exists a globally stable heteroclinic circuit
(Fig. 1B, left). Further on we will assume that β > 2
(β = 2.8 in numerical simulations). Then, condition (2)
will be satisfied for any αk < 1. We will use double
notation: index k will be used for all intra-motif variables,
whereas index n will denote the motif number in the
learning chain.

2.2 Synchronization by learning

Let us now consider a learning chain of network motifs
(Fig. 1A). Since the learning is unidirectional, we can
consider a pair teacher-learner, i.e. motifs n and n − 1
will be referred to as a learner and a teacher, respectively.

Under phase synchronization by learning we understand
the situation when independently on the teacher coupling
pattern αn−1 and the initial conditions [xn−1(0), xn(0),
αn(0)] after some transient the following inequality is
satisfied

|φn−1(t)− φn(t)| < M (3)

where φn−1 and φn are the oscillatory phases in the teacher
and in the learner, respectively, and M is a constant.

Without loss of generality, we can assume that each
teacher motif has a fixed coupling structure. At the begin-
ning, the connectivity pattern in the learner αn(0) is taken
arbitrary from uniform distribution over (0, 1)3. Then the
purpose of learning is to “copy” the coupling structure
and consequently to synchronize oscillations in the learner
with the teacher.

Since the teacher network cannot change the learner state
xn(t) directly, but through the coupling strengths αn(t)
only, during the learning we expect:

lim
t→∞

‖〈αn〉T (t)− αn−1‖2 = 0 (4)

where

〈u〉T (t) =
1

T

∫ t

t−T
u(s) ds

denotes the time averaging operator over period T . Then,
fulfillment of (4) ensures (3). In numerical simulations the
learning will be deemed finished if the norm in (4) falls
below a tolerance value 0 < δ � 1 for some t∗.

2.3 Learning rule

We will employ a Hebb-like rule for learning. First, we
introduce a functional:

g(u(t)) = u(t)� 1

τ

∫ t

t−τ
u(s) ds (5)

where τ ≥ 0 is a constant describing the memory length.
The function g(xn−1) represents the cumulative activity



of the neurons in the teacher network. Then, we can
introduce the following learning rule:

α̇n = ε[g(xn−1)− g(xn)] (6)

where ε > 0 is the learning rate and the term in brackets
is the error function described as teacher forcing based on
the classical delta rule (Makarov et al., 2008). Note that in
general the learning error E = g(xn−1)− g(xn) can be an
oscillatory function of time, even at t→∞. Therefore, we
will say that the learning given by equation (6) is successful
if limt→∞〈E〉T (t) = 0

3. EFFECT OF MEMORY ON SYNCHRONIZATION

The memory time constant τ plays a significant role.
Earlier we have proven that the learning process (6)
converges to a globally stable one-parametric manifold for
τ = 0 (Calvo et al., 2016). To illustrate such behavior, we
simulated the learning process in a chain of two network
motifs: a teacher and a learner.

Figure 2A shows five examples of trajectories converging
to a stable manifold in the phase space of the learner
couplings (τ = 0). Thus, the learning leads to a mismatch
in the connectivity structure, which in turn causes syn-
chronization failure.
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Fig. 2. Convergence of the learning process. Projection of
trajectories of the system (5) to the plane (α1, α2) is
shown. A) For τ = 0 there exists a globally stable
manifold (purple curve) that attracts all trajectories
(cyan circles mark final points). Phase synchroniza-
tion corresponds to the red point. B) For τ = 18 the
manifold disappears and all trajectories converge to
the red point that warrants synchronization.

Introducing memory in the learning rule (τ > 0), we can
achieve exact replication of the coupling structure by the
learner. For intermediate values of the memory constant,
the previously mentioned manifold is destroyed and the
learning process converges to the coupling structure of the
teacher (Selskii and Makarov, 2016). Figure 2B illustrates
numerical experiments similar to those discussed above,
but now for τ = 18. We observe convergence of the
coupling strengths to α of the teacher. Consequently, phase
synchronization of oscillations in the learner with the
teacher is achieved.

4. REPLICATION OF COUPLING STRUCTURE IN A
CHAIN

In Sect. 3 we discussed synchronization in a chain of two
network motifs. Those results can be extended on a chain
with arbitrary number of motifs.
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Fig. 3. Replication of motifs in a chain. A) Short epochs
of oscillations of the first neuron along the chain of
motifs (color corresponds to the value of x1(t)): at the
beginning (top), after some time (middle) and at the
end (bottom) of learning. B) Relative time of learning
along the chain Tn/T1

.

Figure 3A shows a representative example of learning in
a chain of 13 motifs (to facilitate visual inspection in
each panel we set initial phases of all motifs to zero).
At the beginning, we set arbitrary αn(0), n > 1, from
uniform distribution, and hence we observe completely
asynchronous oscillations in the chain (Fig. 3A, top).
Then, due to learning the coupling strengths converge in
a chain to the teacher (first motif) α13 → α12 → . . . →
α2 → α1 (Fig. 3A, middle and bottom).

Thus, for intermediate values of the memory constant, τ ,
all motifs are able to replicate the connectivity structure
of the teacher. Moreover, the learning occurs gradually, i.e.
more distal motifs require longer time to synchronize their
activity with the teacher.

To estimate the synchronization time we performed a
Monte Carlo test repeating simulations 20 times with
arbitrary initial conditions αn(0), n = 2, 3, . . . , 13. Figure
3B shows the mean relative learning time, i.e. the ratio of
the learning time of the n-th motif to the learning time of
the first learner. The learning time grows linearly following
the low Tn+1 = Tn + bT1, n = 2, 3, . . ., where b = 0.67 is
the growth ratio. Note that starting from the second motif
the replication time is equal to 2/3 of the learning time
required by the first learner.

5. CONSENSUS ON A RING

We now consider a chain closed into a ring, i.e. the last
motif drives the first one (Fig. 1A). Then, there is no
dedicated teacher and each network motif acts as a local
teacher for the next motif in the ring. In this case, we
have proven that independently on the initial conditions
all motifs come to a state with the same connectivity
pattern (Calvo et al., 2016). This final connectivity pattern
corresponds to the mean initial values averaged over all
network motifs:

α̃ =
1

N

N∑
n=1

αn(0)



5

15

25

 time (a.u.)
   20                70              240             800            2700            9200          31000

couplings       , k = 2

5

15

25

5

15

25 m
ot

if 
nu

m
be

r

↵k

couplings       , k = 1↵k

couplings       , k = 3↵k

Fig. 4. Consensus behavior in a ring of 25 network motifs
(red, green, and blue colors code the couplings of the
corresponding neurons in different motifs).

Figure 4 illustrates the phenomenon of self-organization
in a learning ring of 25 network motifs. Initially the
connectivity patterns in all motifs were set random. Then,
the learning without leader led to a consensus.

6. CONCLUSIONS

In this work we have proposed a model for learning hetero-
clinic circuits in networks of neural networks. The model
is composed of a teacher and learner networks. At the
beginning all networks implement winnerless competition
dynamics through wandering around heteroclinic circuits
with arbitrary dominant periods. Then, the purpose of
learning is to synchronize oscillations in the learner with
the teacher by tuning the coupling strengths in the learn-
ers.

The information transfer between the networks is imple-
mented through a learning rule that changes local cou-
plings in the learner according to the dynamics of the
teacher. Thus, no direct influence of the teacher to the
state variables of the learner exists. Instead the learner
just “observes” the teacher and tunes itself to replicate the
teacher structure. Such a mechanism of synchronization
differs significantly from much more common models of
synchronization based on couplings among state variables
describing the system dynamics (Abarbanel et al., 1996).

The learning rule proposed in our model includes an in-
tegral operator, which implements a memory effect dur-
ing the learning. We have shown that in the absence of
memory the process of learning converges to a point in a
stable one-parametric manifold. Existence of the attractive
manifold leads to synchronization failure. Nevertheless, for
intermediate values of the memory length the manifold can
be destroyed and only a single equilibrium point survives,
which ensures synchronization.

We have also shown that under appropriate training a
chain of learner motifs can progressively “copy” the con-
nectivity pattern of the teacher network motif. In average
the time interval required for pattern replication grows
linearly with the chain size. Thus, the learning process
does not blow up and at the end we observe phase syn-

chronized oscillations along the whole chain of network
motifs. Besides, we have shown that in a learning chain
closed into a ring the network motifs always come to a
“consensus”, i.e. to a state with the same connectivity
pattern obtained by averaging the initial patterns of all
network motifs in the ring. We foresee that the reported
mechanism of learning can be useful for replication of
scenarios of cognitive navigation in dynamic environments
(Villacorta-Atienza and Makarov, 2013).
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