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INTRODUCTION

The problems of controlling the quantum systems
with Rydberg atoms are currently of great interest,
since they are related to the problems of producing
quantum computers [1, 2]. It is known that Rydberg
atoms are hydrogen�like atoms in which the external
electron is in a highly excited state up to a level of
around 1000 [3, 4]. At present, such objects are of
great interest [5, 6] since they can be used for the
quantum control of one atom by another, due to the
Rydberg (highly excited) state. The wave functions of
atoms in the basic state are no higher than 0.1 nm,
while in the Rydberg state they can be as high as sev�
eral nanometers or more. This allows atoms that are
far enough apart to prevent their interaction while
they are in the ground state to strongly interact when
exited [7].

The problem of chaotic behavior in a quantum sys�
tem is of special interest. It is also interesting from a
practical point of view when solving problems with
quantum calculations for clusters of atoms introduced
into a solid while in the Rydberg state [8].

Such systems with Rydberg atoms are promising for
storing and transmitting information. The problem of
analyzing how to suppress chaotic behavior in such
systems is important since chaos can damage stored or
transmitted information.

In this work, we investigate systems of two coupled
Rydberg atoms and show that chaotic behavior can
emerge in such a system. We also investigate whether it
is possible to control chaotic behavior by means of
external parametrical effect for a system with two cou�
pled Rydberg atoms.

ANALYZING A SYSTEM 
WITH TWO COUPLED ATOMS

Our system with two coupled Rydberg atoms is
described by the system of equations obtained in [9]
using the mean field theory and assuming that each
atom has the ground and Rydberg states only:

(1)

where Ω is the Rabi frequency with which the popula�
tion of the exited state oscillates due to resonance laser
radiation; Δ is the laser radiation’s detuning against
the frequency of the resonance atom transition; с is the
Rydberg interaction; w1, 2 are inversions, i.e., the dif�
ference between atom level populations; and q1, 2 are
the nondiagonal elements of the atom density matrix,
which is an analog of the wave function and is used to
describe the state of the quantum�mechanical system.

In [9], it was found that there are three typical
regimes: uniform, antiferromagnetic, and oscillating.
In the uniform regime, inversions w1 = w2 and are
time�independent; in the antiferromagnetic regime,
inversions w1 ≠ w2 and are also time�independent; in
the oscillating regime, inversions w1 ≠ w2 and are not
stationary over time; i.e., they oscillate.

We investigated the area with an oscillating effect in
which we found different periodic regimes: T1, T2,
T3, …, chaotic. Using our results, we created a map of
regimes for the oscillating area shown in Fig. 1 with
areas with different periodic regimes. Areas with cha�
otic oscillations are colored in black.
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For qualitative analysis and diagnosing the oscillat�
ing regimes, we created bifurcation diagrams in the
form of the relationship between the local maxima of
w1 and controlling parameter Δ at a constant value of
second controlling parameter Ω, along with the spec�
tra of Lyapunov exponents with the same parameters.
To calculate the spectrum of Lyapunov exponents, we
introduced six disturbing vectors (since there are
6 variables in our system), each of which has six com�
ponents and we monitored their evolution along the
considered phase trajectory. In equal time periods, the
vectors are renormalized and are orthogonalized by
the Gramm�Schmidt procedure. As a result, we
removed the effects of all previous vectors from each
vector in numerical order; this allows us to calculate
not just the highest exponent, but their whole spec�
trum. After each orthogonalization and before renor�
malizing, we calculate the natural logarithm for each
vector and calculate the sums of logarithms for each
disturbing vector. Dividing these sums over time, we
obtained the Lyapunov exponent [10]. Figure 2 shows
the spectrum of all Lyapunov exponents, denoted as
Λ1–6, along with the bifurcation diagram for control�
ling parameter Ω = 1.3. The diagram and spectrum for
the Lyapunov factors are in good agreement with each
other while qualitatively and quantitatively reflecting
all changes in the system’s behavior, e.g., the transi�
tion from the stationary to the oscillating state, bifur�
cations of period doubling, and moments in time when
the system’s behavior shifts from periodic to chaotic
and vice versa; in addition, the windows of periodicity
in the chaotic areas are clearly seen. The above shows
that our instruments for investigating nonlinear
behavior in the considered system are quite valid.

We also discovered there was bi�stability in the con�
sidered system. Under different initial conditions but
at the same values of the controlling parameters, we
landed in the gravity well of different attractors. In
addition, we observed coexisting regimes of periodic
and chaotic oscillation in the area of controlling
parameters Ω and Δ.

SUPPRESSING CHAOTIC BEHAVIOR 
IN THE CONSIDERED SYSTEM

We used an external parametric effect for suppress�
ing chaotic oscillations to control the complicated
behavior in the considered system [11, 12]. We
selected the modulation of Rabi frequency Ω as our
external parametric effect since it was possible to
employ it experimentally. In the system of equations
that describes two coupled Rydberg atoms, the above
external effect is written by modifying the Rabi fre�
quency:

(2)

where Ωm is the Rabi frequency in the independent
system, M is the depth, and f is the parameter’s modu�
lation frequency.

We analyzed Eqs. (1) and parametric effect (2) with
controlling parameters corresponding to chaotic
behavior in the independent system at different values
of amplitude М and frequency f of the external effect.
For analysis, we used a bifurcation diagram and the
spectrum of Lyapunov conditional exponents [13]
while varying one parameter of the external effect.

Figure 3 shows the spectrum of Lyapunov condi�
tional exponents and the bifurcation diagram corre�
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Fig. 1. Map of regimes for the oscillating area. The num�
bers denote the areas with the respective periods of oscilla�
tions; the area of chaotic behavior is marked in black.
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Fig. 2. (a) Spectrum of Lyapunov exponents and (b) bifur�
cation diagram for an independent system consisting of
two coupled Rydberg atoms when Ω = 1.3.
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sponding to the considered system under our external
effect for the Ω and Δ at which chaotic behavior
occured in the independent system. The relations were
generated by varying amplitude M of the external
effect at constant frequency f. Since these exponents
were calculated for the system under our external
effect, they were considered conditional and con�
tained no zero exponent [14]. Upon periodic behavior,
the highest exponent was negative in the spectrum of
Lyapunov exponents.

In the figure, we can clearly see the windows of
periodicity in the area of chaotic oscillations in both
the spectrum of Lyapunov exponents and the bifurca�
tion diagram. In the bifurcation diagram, we can also
see classical transition from chaotic to periodic oscil�
lations via the reverse cascade of the bifurcation of
doubling periods. From the figure, we can also see that
there were areas of parameter М in which chaos was
suppressed in the system and periodic behavior was
observed.

We also investigated whether it was possible to sup�
press chaotic oscillations in the same manner and in
the same area of parameter M, but at another values of
frequency f. The results from these investigations were
similar to those presented in Fig. 3: there were areas of
parameters M in which chaotic behavior was sup�

pressed in the system. This means that with parame�
ters Ω and Δ, at which we see chaos in the independent
system, there are areas where we see periodic behavior
in the area of parameters (M, f); i.e., chaos is sup�
pressed.

CONCLUSIONS

We investigated the behavior of a system with two
coupled atoms. In the area of the oscillating regime,
we observed oscillating areas with different periods
and chaotic behavior. Using an external parametric
effect that depended on the frequency and amplitude
parameters of external effect, we suppressed chaos in
the system.
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Fig. 3. (a) Spectrum of Lyapunov’s exponents and
(b) bifurcation diagram for an independent system con�
sisting of two coupled Rydberg atoms upon external para�
metric effect when Ω = 1.2, Δ = 2.6, and f = f0, where f0 is
the self�resonant frequency of the independent system.


