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Abstract—The dynamics of a network of phase oscillators is analyzed using the continuous wavelet trans-
form. The adaptive network in which the synchronous dynamics leads to reinforcement of the links between
interacting elements is considered as an example. It is shown that analysis of the network integral character-
istic using the wavelet transform makes it possible to effectively detect changes in the network topology and

clusterization processes.
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The investigation of the dynamics of objects con-
sisting of a large number of interacting elements has
recently attracted attention of the academic commu-
nity. Such objects with a network structure can serve as
models of the artificially obtained systems (networks
of interacting radiophysical elements and artificial
learning neural networks), as well as mathematical
interpretations of actual biological [1], social [2],
anthropogenic [3], and other objects.

The dynamics of actual networks is usually investi-
gated by constructing mathematical models and their
numerical analysis. However, such an approach can be
employed if the laws describing the dynamics of indi-
vidual elements of the network being considered are
known, as well as the distribution and temporal evolu-
tion of the links between them. For example, mathe-
matical models in which the dynamics of an individual
node can be described by a harmonic oscillator with a
given unique frequency and the links between the
nodes are simulated according to the data of statistical
analysis and sociological studies are widely used in
analysis of social networks [4].

At the same time, it seems impossible to study a
wide range of actual systems by constructing and ana-
lyzing mathematical models. In this case, the
researchers face the lack of data on the network topol-
ogy and dynamics of individual elements. First of all,
analysis of synchronization and formation of struc-
tural patterns in the brain neural networks can serve as
a specific example of such problems [5]. Information
on the condition of the neural network and its evolu-
tion in time can be obtained from electroencephalo-
grams (EEGs) and magnetoencephalograms (MEGs),

which are the records of the total signals of electric
activity, produced by large neuron ensembles.

The problems associated with analysis of integral
characteristics of a neuron ensemble and interpreta-
tion of temporal variations of macroscopic character-
istics of the network with evolution of its topology are
now of great importance for fundamental research in
the field of nonlinear dynamics, as well as applied
aspects connected with the study of both normal and
pathological brain activity.

In this work, we consider the possibility of studying
structural changes in complex networks on the basis of
analysis of their integral characteristics using the con-
tinuous wavelet transform.

As an object for investigation, we use a network of
the Kuramoto phase oscillators proposed in 1975 [6]
as a mathematical interpretation of the collective
dynamics of chemical and biological oscillators [7].
Various modifications of this model of a phase oscilla-
tor network are now often used in analyzing clusteriza-
tion and synchronization processes, including those in
social systems [4].

The dynamic state of the ith node of the given net-
work can be determined by the relation

N
¢; = (Di+7\‘zwij(t)Sin((pj_(pi)v ()

j=1

where o; are the natural frequencies preset at random
in the range [2n Hz, 20m Hz], wy(?) is the weight of
connection between nodesj and i, and A is the connec-
tion strength. The initial phases of interacting ele-
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Fig. 1. (a) Total signal of the interacting Kuramoto phase oscillators. (b) Amplitude of the wavelet transform of the total signal.

The region of adaptive dynamics is shaded.

ments are set at random and distributed uniformly over
the [—m, 7] interval; here, connection weights w (7))
are also set at random.

A specific feature of the given model is transient

temporal dynamics of coefficients w;;, described by the
adaptive law

ij>

N
wi(1) = wy(0)| sp(1) = > wy(Opy( |, (2)
I=1
N
where s; = z w;; is the sum of the inbound links of the
j=1
ith element and quantity p; (#) defines the degree of
synchronization of elements i and j, averaged over
time interval 7= 100 s [4],

t

1 J- RO 3)

T
pij(t) = T

t-T

Adaptive law (2), (3) considered here ensures the
feedback between the dynamics of elements and the
network structure and is the basic mechanism govern-
ing the change in its topology. It follows from Eq. (2)

that the value of derivative w;(?) is determined by the
degree of synchronization between the corresponding
elements and attains the highest value in the case of
strong synchronization.

As noted above, the actual networks are often ana-
lyzed on the basis of integral characteristics. For the
model network considered here, for such a parameter
we used the total signal of interacting phase oscillators:

N
X(1) = ZAcos((pj). 4

Jj=1

In this case, N = 200 is the number of the network ele-
ments and 4 = 1 is the dimensionless amplitude of the
signal received from each node. This dependence is
shown in Fig. 1a. It can be seen from the figure that
activation of adaptive mechanism (2), (3) (instant =
500 s) leads to sharp qualitative changes in the signal,
which is obviously connected with changes in the net-
work topology. In this case, such a transient process
lasts about 400 s, after which the network attains a
steady state characterized by time-independent char-
acteristics of the macroscopic parameter.

Taking into account the relation of the adaptive

processes with the establishment of the regimes of syn-
chronous dynamics between interacting oscillators, we
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can assume with a high degree of confidence that the
change in the spectral composition of the total signal
considered here corresponds to a change in the net-
work topology under investigation. To verify this
assumption, we analyzed the network integral charac-
teristic using the wavelet transform, which is the most
suitable method for studying signals with a transient
spectral composition [8].

Let us consider wavelet transform (4) of the signal,
which serves as the network integral characteristic. In
terms of linear frequencies f = /2, the transform has
the form

t+4/f
Wt = f [ XOws(Re -0y, (5)

(—4/f
where f corresponds to frequency range [1—10 Hz], in
which the signal is expanded, y*(z — ¢') is the Morlet
parent wavelet [8], and symbol (¥*) denotes complex
conjugation.

The resulting transform is shown in Fig. 1b. It can
be seen that at the initial instant, energy |WAf, )| is uni-
formly distributed over the frequency range under
investigation (instant #,) due to the initial spread of the
oscillator frequencies and phases. Analyzing the
results of the wavelet transform for 7> 500 s (when the
adaptation is activated), we see that synchronization
between individual groups of elements begins to
increase. In this case, their connection with other ele-
ments becomes weaker under the action of adaptive
mechanisms (instants #, and #;), which leads to the
network partition into groups of tightly coupled ele-
ments being in the phase synchronization regime,
each of which corresponds to a peak of the wavelet sur-
face.

To illustrate the clusterization process described
above, Fig. 2 shows visualizations of the network struc-
ture at instants #,, ..., s marked by arrows in Fig. 1b
(the direction of time progress is indicated in Fig. 2 on
the right of the presented visualizations). The visual-
izations are plotted on the basis of the values of cou-
pling factors w; using the Cytoscape software [9].
Figure 2a corresponds to the network dynamics before
the activation of the adaptive mechanism. It can be
seen that the network is disordered in this case. Its
structure is determined by links w; between the ele-
ments, which are set at random. When adaptation is
activated, the network structure begins to evolve
(Figs. 2b—2d), which ultimately causes its clustering
(Fig. 2e). Comparing the results of the presented visu-
alization with the results of the wavelet analysis of the
network integral characteristics (see Fig. 1b), we note
that the structural changes in the network and the for-
mation of clusters can be successfully detected using the
wavelet analysis of the network integral characteristic.

Thus, we have demonstrated the possibility of
detecting emerging clusters in an adaptive network by
using the wavelet analysis of a macroscopic character-
istic (total signal of the interacting elements). The pro-
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Fig. 2. (a) Visualization of the network structure of the
Kuramoto phase oscillators considered here at instant #; =
450 s preceding the activation of the adaptive mechanism,
and at instants (b) #, = 730s, (c) 73 = 880 s, (d) 74, = 960 s,
(e) and #5 = 1360 s corresponding to the adaptive dynamics.

posed method for network analysis can be used for
detecting the clusterization processes in the brain neu-
ron nets, where the record of EEG and MEG can
serve as a macroscopic characteristic.
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