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Abstract. Extreme events are observed on electroencephalographic
(EEG) recordings of rodents with induced ischemic stroke. These events
represent themselves as post-stroke epileptic seizures in the form of
spontaneous high-amplitude oscillations, which appear during the first
2–3 h after induced focal cerebral ischemia. The analysis of the EEG
time-frequency structure reveals these extreme events as a sharp sud-
den growth of the wavelet energy in a particular frequency band, while
the energy in the resting part of the power spectrum remains normal.
The distinguished features of the extreme events are used for detection
and quantification of the pathological brain activity.

1 Introduction

In recent years, a great attention of interdisciplinary scientific community has been
devoted to the understanding of sudden abnormal deviations of a nonlinear dynam-
ical system from its normal behavior, so-called extreme events [1,2]. Such interest is
mainly caused by a high importance and economical benefits of the prediction of this
kind of events in natural systems, such as rogue waves in the ocean [3], financial crush
in stock market [4], and, as we will show in this paper, pathological brain states.

In dynamical systems, a typical time scale reflecting the system behavior outside
an equilibrium state is defined by periods when a relevant variable undergoes small
variations around some level determined by its long-time average [5,6]. In such sys-
tems, a sudden transition to a state where a dynamical variable significantly exceeds
its long-time average is called extreme event [6]. Extreme events, initially associated
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with sudden changes in climate systems [7–9], financial systems [10,11], and social
systems [12–14], nowadays are actively studied in physical systems, in particular, in
quantum optics [15] and lasers [16–18], as well as in complex networks [19].

In model systems, the study of extreme events is mainly aimed at understand-
ing the nature of this phenomenon and revealing its underlying mechanisms, which
vary from one system to another. For instance, in the complex Ginzburg–Landau
equation, the finite dissipation results in generation of incoherent background of inter-
acting waves, which occasionally initiate large amplitude oscillations considered as
extreme events [20]. Recently, extreme events were studied in the system of cou-
pled FitzHugh–Nagumo oscillators [21–23], where, as was shown, they were induced
by delayed coupling. Another type of extreme events was observed in a multistable
Liénard system, where the underlying mechanisms were associated with interior crisis
and intermittency [24].

The experimental evidence of extreme events was demonstrated in many systems.
For example, in a spatially extended microcavity laser [6,18], a correlation between
extreme events and the emergence of spatiotemporal chaos was detected. The mech-
anism of the observed behavior was shown to be related to quasiperiodic extended
spatiotemporal intermittency. Other mechanisms of extreme events, associated with
discontinuous boundaries and multistability were found in optically injected semicon-
ductor [17], loss-modulated CO2 [25], and pump-modulated fiber [16] lasers. Different
approaches to the analysis of extreme events in big data were applied in ecosystems
[26], climatic systems [27], population dynamics [28], etc. In the mentioned systems,
the time series analysis allowed estimating main features of the observed extreme
events and revealing mechanisms for their emergence.

In the complex network theory, a study of extreme events is inspired by the
presence of such type of real-world networks behavior as traffic jams and other
transportation networks, floods in the network of rivers, power blackouts due to the
tripping of power grids, and spontaneous bursting activity in neuronal populations
[29]. In addition, extreme events were studied in the network of FitzHugh–Nagumo
oscillators [19,30], where the influence of the system size and the network topology
on the extreme events generation was analyzed.

The huge diversity of extreme events and their underlying mechanisms allow us
to expect the occurrence of such events in living systems, e.g., in neurophysiologi-
cal brain activity. Actually, the fast development of migraine attacks and epileptic
seizures caused by a sudden synchronization of billions of neurons exhibits dynam-
ics similar to extreme events, demonstrating some properties of on-off intermittency
[31–33]. The observed analogy makes it possible to describe the mechanisms that rule
the generation of the extreme events in the brain neuronal network by considering
neuron-based mathematical models. In this context, Ansmann et al. [34] described
fundamental principles of extreme event generation in a “small-world” network, which
can also be extended to other systems, e.g., excitation patterns in the heart or in the
brain.

While in many fields of study, extreme event features were effectively revealed
via time series analysis and described in many papers, extreme events in neurophys-
iological data, naturally generated by brain neurons, have not been yet considered.
We expect that the application of the extreme event theory, along with traditional
methods of electroencephalographic (EEG) analysis, may improve early diagnostics
and control the development of brain pathologies, in particular, epileptic seizures
[35]. This is a relevant task in the context of widely developed techniques aimed at
prediction and analysis of brain seizure occurrence [36,37].

According to the above speculation, in this work, we observe and analyze a specific
type of extreme events occurring in the mouse’s brain after induced ischemic stroke,
i.e., post-stroke seizures. We consider the time-frequency structure of EEG signals
associated with extreme events. We show that this extreme behavior manifests itself
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Fig. 1. Scheme of the experimental procedure divided in corresponding stages. The proce-
dure started with the electrode implantation and post-surgery recovery period (marked in
black). Afterwards, a recording of the baseline EEG was performed during the 48 h preced-
ing the stroke (marked in blue). The post-stroke EEG was recorded during the next 48 h
after the induced ischemic stroke (marked in red).

as a sharp sudden increase in the oscillation energy of a particular frequency band,
while the dynamics in other bands remains almost unchanged. Based on the revealed
features, we propose a novel method for the quantification of extreme events. We also
validate our approach with EEG recordings related to normal and pathological brain
activity, based on the time-frequency (wavelet) representation of the EEG signal.

2 Experimental procedure

2.1 Experimental design

In the present work, we analyzed EEG signals obtained from CD-1 mice after induced
stroke. The experimental procedure was as follows. CD-1 mice were implanted with
epidural electrodes (stereotaxic surgery) at frontal and parietal cortex of the left
hemisphere. After one week, EEG recordings were performed during 48 consecutive
hours to obtain baseline scores. After that, the mice were submitted to ischemic
stroke by permanent occlusion of the middle cerebral artery (MCA), causing an uni-
lateral infarction in the right hemisphere. Post-stroke EEG recordings from the left
non-infarcted hemisphere were obtained during 48 h after the MCA occlusion. The
experimental procedure showing all stages is illustrated in Figure 1. This experimental
procedure was applied to all mice, but stroke was not induced in healthy mice.

To minimize 50-Hz electrical line interference, the EEG signal was filtered on-
line through notch filter stop band, available on the EEG amplifier (Grass model
78D), which was able to reduce only a narrow band close to 50 Hz. In addition, the
EEG signal was also acquired using electrical shielded cables to reduce noise effect.
Although the notch filter can attenuate other frequencies nearby 50 Hz, this filter has
almost no effect in the frequency ranges analyzed in this study.

2.2 Animals

Adult male CD-1 mice (25–35 g body weight; 3–8 weeks old) were bred and housed in
the animal facility of the Center for Biomedical Technology. Six healthy and six post-
stroke mice were used in our experimental stroke model. The animals were housed in
individual cages with free access to food and water in an animal room with a con-
trolled temperature and a natural light cycle. Daily routines were performed between
7 a.m. and 4 p.m. by authorized personnel. All procedures were approved by the
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Ethical Committee for Animal Research of the Technical University of Madrid under
Spanish Regulations for animal experimentation (Law 53/2013) and the Community
of Madrid authorization (PROEX 393/15).

2.3 Electrophysiology

Electroencephalogram (EEG) recordings were performed as described in reference [38]
with minor modifications. The mice were anesthetized with ketamine (100 mg/kg) and
xylazine (10 mg/kg). During anesthesia the skull was exposed and three small holes
were drilled over the cortex. EEG recordings were made using stainless-steel screw-
electrodes (Plastics One, Virginia, USA). Two electrodes were fixed permanently
into the skull in the frontal (from bregma: anterior +2.0 mm; laterally +1.7 mm)
and parietal (from bregma: posterior −2.0 mm; laterally +1.7 mm) bones of the
left hemisphere. The caudal electrode was placed in the parietal cortex, overlaying
the dorsal hippocampus to capture EEG theta oscillations. The frontal electrode
was placed over the frontal cortex to preferably capture EEG slow waves. A third
electrode placed over the occipital cortex of the right hemisphere served as a ground
electrode. The EEG signals were amplified by a Grass Model 78D polygraph, band-
pass filtered (0.3–100 Hz) using a programmable signal conditioner (CyberAmp 380,
Axon Instruments), and continuously sampled at 500 Hz using Labview software. It
is worth mentioning that the recorded EEG voltage fluctuations resulted from the
summarized ionic current within the brain, and therefore reflected collective dynamics
of large groups of neurons [39], which makes it a suitable tool to measure brain seizure
activity due to hypersynchrony.

2.4 Stroke model

Focal cerebral ischemia was induced in the right hemisphere by direct occlusion of
the distal part of the right MCA as previously described in reference [40]. Mice were
anesthetized with 2% isoflurane in air. A vertical skin incision (0.5 cm) was made
between the right eye and the right ear under a dissection microscope and the tem-
poral muscle was separated. The MCA was identified through the semitranslucent
skull and a burr hole of a 0.8-mm diameter was made using a microdrill. After iden-
tification, the artery was ligated with a nylon ophthalmic suture (9–0) distally to the
circle of Willis.

3 Signal analysis

We analyzed post-stroke mice EEG signals using the continuous wavelet transform
[41,42]. The wavelet power spectrum M(f, t) = |E(f, t)|2 was calculated for the whole
EEG signal X(t) in the range f ∈ [1, 30] Hz. Here, the complex-value wavelet coeffi-
cients E(f, t) are calculated as the convolution of analyzed signal X(t) and a set of
basic functions ψ(f, t):

E(f, t) =
√
f

t+4/f∫
t−4/f

X(t)ψ∗(f, t)dt, (1)
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where “*” marks complex conjugation. Each basic function from this set can be
obtained from a function called mother wavelet as follows:

ψ(f, t) =
√
fψ0(f(t− t0)), (2)

where f = 1/s (s being the time scale) defines the extension/compression of the
mother wavelet and (t− t0) is the time shift of the mother wavelet.

In the present paper, we apply a complex Morlet wavelet often used for the analysis
of neurophysiological data [41] as

ψ(f, t) = π1/4ejω0f(t−t0)e(f(t−t0))2/2, (3)

where ω0 = 2π is the central frequency of the Morlet mother wavelet function [43].
For single spectral component f = f∗, we used a normalized value of wavelet

energy W (f∗, t) = M(f∗, t)/Mmax, so that W (f∗, t) ∈ [0, 1]. Here, Mmax is the max-
imum wavelet energy across all frequencies in the range f ∈ [1, 30] Hz. Normalized
wavelet energy distribution W (f∗, t) was analyzed separately for each animal and for
each frequency in the range f ∈ [1, 30] Hz. The analysis allowed us to find all max-
ima in wavelet energy distribution W (f∗, t) and construct amplitude distributions of
these maxima. We plotted the probability density function (PDF) of a given wavelet
energy amplitude F , as histograms with a linear-scaled X axis (W (f∗, t) ∈ [0, 1])
and a log-scaled Y axis (F ). We found that during normal activity without epileptic
discharges, empirical distribution F (W ) perfectly fits the Weibull distribution (see
details in Sect. 4):

FW (W |a, b) =
b

a

(
W

a

)b−1

exp

(
−
(
W

a

)b)
, (4)

where a and b are the parameters of Weibull distribution optimized to fit empiri-
cal PDF F (W ). At the same time, according to the extreme value theory, namely,
the Pickands–Balkema–de Haan theorem [44,45], the exceeding tails of the empir-
ical probability distribution function F (W ) (W surpasses threshold value Wδ) are
modeled by the generalized Pareto distribution (GPD) [46,47]:

FGPD(W |k, σ, θ) =
1
σ

(
1 + k

W − θ
σ

)−1− 1
k

, (5)

where k, σ, θ are the GPD parameters optimized to fit the exceeding tail of empirical
probability distribution function F (W ). It should be noted, that Wδ is determined
as an intersection point of the Weibull and GPD distribution curves.

In order to detect and quantify the degree of extreme behavior in the mouse’s
brain, we introduce the extreme event measure (EEM) defined as follows:

EEM =

1∫
Wδ

|F (W )− FW (W )|WdW. (6)

EEM is a non-negative measure, close to zero for non-extremal (ordinary) dynamics,
that increases in the presence of extreme events. Calculating EEM over the whole
frequency range f ∈ [1, 30] Hz and comparing EEMs for different frequencies allowed
us to find extreme events localized in certain frequency ranges.
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Fig. 2. Illustration of typical post-stroke seizures in mouse’s EEG. (a) EEG signal recorded
from mouse’s brain during the first 2 h after induced stroke and amplified by factor 100. One
can clearly observe the sequence of seizures in post-stroke mouse’s brain activity (marked by
shadow). (b) EEG fragment showing a single seizure and (c) corresponding wavelet energy
surface demonstrating the time-frequency structure of a single seizure. It is seen that a
single post-stroke seizure is characterized by increasing EEG signal amplitude along with
increasing wavelet energy in certain frequency ranges.

4 Results

An ischemic stroke is known to initiate spontaneous neural activation resulting in the
formation of synchronous EEG patterns. In EEG, this type of brain activity is asso-
ciated with a sequence of high-amplitude spikes forming synchronous neural bursts.
Such patterns are common in neuroscience and mainly related to the development of
another pathological brain activity (epileptic seizure). The relation of such a behavior
to stroke, known as post-stroke epilepsy, along with animal models, was also reported
in humans [48].

The mice stroke is restricted to the brain cortex, specifically the somatosensorial
and motor areas, causing permanent damage in the right hemisphere, which has pro-
found consequences not only for the functionality of the infarcted hemisphere, but
also for the non-infarcted left hemisphere [40]. In our case, the epileptiform episodes
only appeared during the first 2–3 h after stroke surgery and no evidence of epilepti-
form activity was observed in the rest of the time period analyzed (48 h), while the
EEG signal in the non-epileptic period remained very regular. Because the definition
of an extreme event relates with sudden abnormal deviations from a normal (regular)
behavior, we consider that this term is appropriate in the context of abrupt epileptic
episodes.

Typical post-stroke seizures observed in mice are shown in Figure 2, where we
present the EEG recording obtained from the mouse’s brain during the first hour
after induced stroke. Several well-pronounced seizures can be clearly distinguished in
Figure 2a. The EEG fragment with a single post-stroke seizure and the wavelet spec-
trum for this seizure are shown in Figures 2b and 2c, respectively. In Figure 2a one
can see that epileptic seizures are characterized by a sharp increase in the EEG ampli-
tude that significantly exceeds the long-time average. Such epochs of approximately
30-second duration appear spontaneously and in the same unpredictable manner.
The sharp onset and offset are clearly seen in Figure 2b, where the individual seizure
event is shown in detail. Unlike typical extreme events considered in model and real
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systems, the observed seizure epochs are characterized by a relatively long dura-
tion when a dynamical variable describing the system state (action potential) varies
within a large amplitude range. This is a common behavior of neurophysiological
systems, where the neural ensemble involved in the generation of different rhythms,
produces a macroscopic signal with complex spectral compound [39]. This means that
the considered extreme events are complex patterns distributed in a time-frequency
domain.

The time-frequency (wavelet) structure of a single seizure is shown in Figure 2c.
One can see that despite the complex behavior within the pattern, it is strictly deter-
mined by certain spectral properties. In particular, spectral energy has sharp peaks
in a certain frequency band, while in other bands the energy value behaves mostly
homogeneously. It can be supposed that the extreme behavior in this system results
from a sudden appearance (or disappearance) of a particular oscillatory mode. There-
fore, in order to analyze extreme events of neural activity, one should specify spectral
properties of this type of event. According to previous neurophysiological studies, an
effective approach is based on the analysis of spectral energy components in different
spectral regions. In particular, the analysis made for EEG signals of epileptic rats
demonstrated the presence of various oscillatory patterns, such as absence seizures
[49], their delta and theta precursors [50], non-epileptic sleep spindles, and 5−9 Hz
oscillations [51]. According to these results, the energy band can be searched taking
into account predefined properties of the analyzed oscillatory pattern or the well-
known characteristic frequency bands: 1−4.5 Hz (delta), 5−8.5 Hz (theta), 9−13.5 Hz
(alpha), 14−31.5 Hz (beta), 32−59.5 Hz (gamma 1), and 60−100 Hz (gamma 2)
ranges.

In our study, the spectral band was chosen in the middle frequency range
(15−30 Hz) according to the spectral properties of the considered extreme events
(see Fig. 2c). It was supposed that the extreme behavior would represent itself as
a sharp sudden increase in the wavelet energy in this particular band, while the
neuronal dynamics in other bands would remain non-extreme.

In order to check this hypothesis, the EEG spectrum was calculated for 30 indi-
vidual frequencies within the 1–30 Hz spectral band: f1 = 1 Hz, f2 = 2 Hz,. . . ,
f30 = 30 Hz. For each considered frequency, the values of wavelet energy M(t) and
normalized wavelet energy Wn(t) (n = 1,. . . , 30), i.e., W1(t) = W (f1, t), W2(t) =
W (f2, t),. . . , W30(t) = W (f30, t) were calculated from the EEG signal at every
moment of time t. The local maxima of wavelet energy W (t) were found and PDFs
of these maxima F (W ) were constructed. The corresponding typical distributions
(PDF) are shown in Figure 3a for the chosen frequency values: f = 5 Hz, f = 10 Hz,
f = 18 Hz, and f = 20 Hz. One can see that for low frequency (f = 5 Hz), the PDF is
accurately approximated by the Weibull distribution indicating non-extremal dynam-
ics. As the frequency increases, the probability distribution function F (W ) exhibits an
exceeding tail, which conforms the generalized Pareto distribution. According to the
Pickands–Balkema–de Haan theorem [44,45], such a behavior can be called extreme
behavior, if the amplitude of the wavelet spectrum in a certain frequency range
exceeds the intersection point of the Weibull PDF and the generalized Pareto PDF.
This additional part of distribution is more pronounced at higher frequencies and
can be seen most clearly at f = 20 Hz. It should be noted that some points of F (W )
are outside the analytical (yellow) curve of the Weibull distribution even at small
frequencies, i.e., at f ≤ 10 Hz. However, the number of such points is insignificant
and their occurrence is not determined by the extreme behavior; they are associated
with the EEG recording quality.

To compare the significance of the additional part on the PDFs for different
frequencies, we calculated the EEM frequency dependence in the range of 1–30 Hz,
which typical shape can be seen in Figure 3b. This dependence reaches a maximum at
f = 20 Hz. Since EEM is proportional to the area between the Weibull distribution
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Fig. 3. Results of statistical analysis provided for individual mouse recordings. (a) Distri-
butions of wavelet energy amplitudes for frequencies f = 5 Hz, f = 10 Hz, f = 18 Hz and
f = 20 Hz. Here, the blue dots correspond to empirical probability distribution function
F (W ), the yellow curve of Weibull distribution fits non-extreme part of F (W ), while the
red straight line of GPD fits extreme part of F (W ). (b) Extreme event measure (EEM)
frequency dependence in the range of 1–30 Hz. “1” and “2” highlight points belonging to
non-extreme and extreme behaviors, respectively. (c,d) Time series of normalized wavelet
energy W (t) for f = 5 Hz and f = 20 Hz, respectively. It can be seen that post-stroke
extreme behavior is perfectly fitted by GPD and mostly pronounced at high frequencies
(15–25 Hz).

curve and the empirical PDF F (W ) forW ≥Wδ, we assume that high EEM values are
associated with extreme events. In particular, we examined two specific frequencies in
the EEM frequency dependence, marked in Figure 3b by the arrows at f = 5 Hz (1)
and f = 20 Hz (2). The corresponding time series of the normalized wavelet energy
W (t) are shown in Figures 3c (frequency 1) and 3d (frequency 2). It is clearly seen that
the time series corresponding to “frequency 2” exhibits a number of well-pronounced
extreme pulses, while the time series corresponding to “frequency 1” looks normal.

To prove that the observed extreme events are related to seizures and post-stroke
EEG activity, we carried out the analysis of the EEG signals for two types of mice:
mice with post-stroke epileptic seizures and mice without epilepsy. For these two
groups of mice, we performed the same analysis as for the mouse in Figure 3 and
then compared the results. Figure 4 illustrates the results obtained for 6 healthy and
6 post-stroke mice.

Figure 4a shows wavelet energy amplitude PDFs for frequencies f = 5 Hz and
f = 20 Hz for healthy (marked in red) and post-stroke (marked in blue) mice. For
comparison, the overlapped distributions are plotted in the right column of Figure 4a.
One can see that at frequency f = 5 Hz these two distributions are quite similar.
However, the situation is a bit different at frequency f = 20 Hz, where one can
clearly see that the PDF of the post-stroke mouse unusually increases in the area of
higher values of W . As we proposed earlier, such an increase indicates the presence
of extreme events, whereas the corresponding PDF for a healthy mouse lacks it. We
also calculated the EEM frequency dependencies for two groups of mice, 6 healthy
and 6 post-stroke mice, shown in Figure 4b. It is obvious, that EEMs for post-stroke
mice demonstrate a well-pronounced maximum at f = 22–24 Hz associated with the
emergence of extreme events (see Fig. 3b). It is also clear that the EEM frequency
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Fig. 4. Results of statistical analysis for two groups of mice: mice with stroke and healthy
mice. (a) Left column: distributions of wavelet energy amplitudes at frequencies f = 5 Hz
and f = 20 Hz for a healthy mouse (marked in red); middle column: distributions of wavelet
energy amplitudes at f = 5 Hz and f = 20 Hz for a mouse with stroke (marked in blue);
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post-stroke mice for better visualization. (b) Box-and-whiskers plot of EEM versus frequency
for 6 healthy mice (colored in red) and 6 mice with stroke (colored in blue). One can see
the pronounced difference in post-stroke and healthy mice brain behavior by comparing the
introduced statistical measures. Moreover, EEM allows the localization of a frequency band
characterized by extreme brain behavior (10–30 Hz) with maximum at 22–24 Hz.

dependences for the healthy group are close to zero within the considered frequency
band and do not have pronounced maxima.

It should be noted that in the electrophysiological configuration used in this study
(low impedance electrodes placed over the cortical brain surface), the electrocor-
ticogram signal acquired in the animals is mostly associated with the activity of
subthreshold post-synaptic potentials (extracellular fields derived from transmem-
brane currents) from different neuronal networks (no isolate neuron), since at the
used filtering frequency (0.3–100 Hz) and sample frequency (500 Hz) the action poten-
tials do not contribute substantially to the EEG signal or electrocorticogram band
(<100 Hz). In addition, gap junctions also indirectly participate in extracellular fields
recorded from brain surface, although gap junctions permit an ionic transfer between
neural cells by modulating neuronal excibitability.



930 The European Physical Journal Special Topics

Although a significant proportion of patients and animals have EEG seizures in
the acute phase of stroke or other forms of brain damage (for example, traumatic
brain injury), across the literature the exact mechanisms underlying epilepsy after
stroke remain elusive. It was hypothesized that in the first hours after stroke, neu-
ronal networks within the ischemic penumbra (peri-lesional cortex, surrounding the
infarct core) may be capable of initiating post-stroke epileptogenesis. In our study,
seizures occurred exclusively during the first 2–3 h after stroke in an interval of 48 h
of analysis (post-stroke). However, recurring seizures were also found in humans and
animals longer after stroke, which is probably related with progressive molecular and
cellular events (for example, neurogenesis, synaptic plasticity, epigenetic, oxidation)
leading to structural and functional changes in neuronal networks. Complex changes
in neuronal excitability (hyper-excitability) were also proposed to occur in both
hemispheres (the infarcted and non-infarcted) and might account for the recur-
ring seizures occurring in later stages after brain stroke. However, as suggested in
previous stroke studies, during the acute phase of stroke (our study), hypoxia and
metabolic dysfunction, glutamate excitotoxicity and local GABAergic signalling inhi-
bition (which translates into desinhibition) might tentatively be responsible for the
abrupt epileptic episodes observed.

5 Conclusions

In this paper, we have shown that epileptic seizures observed in the EEG recordings of
rodents after an induced ischemic stroke, behave as extreme events. In the considered
case, the artificially induced ischemic stroke resulted in a change in the mice brain
activity. The post-stroke mice demonstrated a sequence of seizures during a rather
long time interval, and, afterward, returned to their normal activity. In our study, we
focused on the investigation of statistical properties of the post-stroke mice behavior
from the viewpoint of the extreme value theory (EVT), rather than a simple detection
of seizures in the EEG time series. These events manifested themselves as spontaneous
high-amplitude oscillations, which appeared during the first 2–3 h after induced focal
cerebral ischemia. The wavelet analysis of the EEG signals corresponding to the
observed extreme events revealed a sharp sudden increase in the wavelet energy in a
particular spectral range corresponding to epileptic seizure activity, while the energy
at other frequencies remained almost unchanged. The identified distinguished features
allowed us to develop a novel method for detection and quantification of extreme
events in EEG recordings associated with pathological brain activity.

The proposed statistical approach to pathological EEG analysis could be further
developed for detection and prediction of abnormal brain activity caused by ischemic
stroke. This is an actual and, at the same time, an open problem, which has sev-
eral other possible solutions. For example, one can use the properties of well-known
models uncovered via bifurcation analysis to develop a criteria for post-stroke seizure
prediction [52,53]. We believe that the developed method can be useful not only for
detecting epileptic seizures, but also for diagnosing and predicting other abnormalities
in the central nervous system.
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38. L. Fernández-Garćıa, N. Maŕı-Buyé, J.A. Barios, R. Madurga, M. Elices, J. Pérez-
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