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Abstract⎯The problem of refinement of the quality of filtering of noisy audio signals with the help of the
methods based on a discrete wavelet transform with real bases and a dual-tree (complex) wavelet transform
using analytical wavelets as basis functions is considered. Test examples and processing of experimental data
have shown that, in the case of the optimum selection of the threshold level, the approach using the dual-tree
wavelet transform ensures the minimum signal reconstruction error after correction of wavelet coefficients.
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INTRODUCTION
Currently, methods based on the wavelet transform

[1–5] are widely used for solution of the problems of
digital filtering of noisy signals. Numerous studies of
variants of signal filtering with the help of the discrete
wavelet transform (DWT) ensuring high-quality
cleaning of experimental data from noise are dis-
cussed, in particular, in [6–10]. The main idea of
wavelet filtering consists in the signal expansion at dif-
ferent resolution levels in which wavelet coefficients
with small magnitudes predominantly correspond to
fluctuations and coefficients with large magnitudes
correspond to the noise-free signal. For this reason, an
evident filtering variant consists in setting to zero small
wavelet coefficients associated with noise and random
distortions and subsequent reconstruction of the sig-
nal in the course of the inverse wavelet transform [2].
The quality of this filtering procedure depends on
selection of the threshold function by which the wave-
let coefficients are multiplied. Two variants, the “soft”
variant and the “hard” variant, are traditionally used
[6–8]. The first variant provides correction of all
wavelet coefficients, while the second variant provides
correction of only those coefficients that do not
exceed a specified threshold value.

While approaches based on the DWT are consid-
ered as standard variants of wavelet filtering, they have
several drawbacks among which oscillations of wavelet
coefficients near singularities complicating the signal
processing procedure, noninvariance with respect to
shift causing unpredictable changes in the patterns of

wavelet coefficients in the case of shifts of singulari-
ties, and the appearance of artifacts in the recon-
structed signal after correction of wavelet coefficients.
In order to eliminate these drawbacks, the method of
the dual-tree complex wavelet transform (DCWT) was
proposed and then refined in [11–15]. This approach
is approximately invariant with respect to shift and
operates with complex (analytic) wavelets constructed
on the basis of real wavelet functions by adding the
imaginary part calculated with the help of the Hilbert
transform. The DCWT method provides independent
calculation of two DWTs for determination of real and
imaginary parts of wavelet coefficients.

In this paper, we compare wavelet filtering meth-
ods based on the DWT and the DCWT for test exam-
ples and audio signals representing voice messages
recorded in the presence of noise of different intensity.
We show that application of the DCWT method can
substantially increase the quality of digital wavelet fil-
tering by lowering the signal reconstruction error after
correction of wavelet coefficients.

1. FILTERING BASED ON THE DISCRETE 
WAVELET TRANSFORM

The discrete wavelet transform provides signal
expansion in the basis of localized functions, which
represents a set of rescaled and shifted versions of par-
ent wavelet  [1]. Implementation of the DWT pro-
vides feeding of the signal to the input of two conjugate
quadrature mirror filters. Transmission of a signal
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through a low-pass filter can be considered as approx-
imation of this signal at different resolution levels and
transmission through a high-pass filter is interpreted
as detailing at a specified resolution level [2]. After
expansion of a signal in terms of scaling functions 
and wavelets , we obtain a set of coefficients con-
taining information on the signal structure at different
resolution levels [1, 4]:

(1)

Expansion coefficients in terms of wavelet functions
 characterize amplitude components of the signal

at different scales and different time instants. In the
course of filtering, small wavelet coefficients are set to
zero. In practice, two main variants of selection of the
threshold function, the hard variant and the soft vari-
ant, are used. In the case of the hard variant of the
threshold function,

(2)

only coefficients with small magnitudes are set to zero
[6], which keeps the signal amplitude undistorted but
is accompanied by the appearance of irregularities
caused by the discontinuous nature of function (2).
The soft variant of the threshold function,

(3)

eliminates irregularities but, in this case, all wavelet
coefficients  are corrected, by means of multiplica-
tion by function (3) and the signal amplitude becomes
smaller [7]. It should be noted that correction of all
coefficients is not an intrinsic drawback of the
method. In particular, in signal reception in commu-
nication systems, it is important to ensure efficient
suppression of interferences. Afterwards, the filtered
signal can be amplified.

The key problem in both variants of the threshold
function is selection of the value of parameter С. As fol-
lows from Fig. 1 presented for the test example (noisy
harmonic oscillations), parameter C takes different
optimum values for soft and hard setting of the thresh-
old function. Application of threshold function (3)
allows one to attain lesser value of the signal reconstruc-
tion error. The value of parameter C determines the
noise level that should be filtered out. One of widely
used methods of selection of the value of parameter C is
the universal threshold level proposed in [6]:

(4)
where  is the standard deviation of noise and N is the
number of wavelet coefficients ( ). The number
of coefficients in the discrete wavelet transform
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changes by a factor of two after passage from one res-
olution level to another. As a result, both approaches
based on global setting of the threshold value (C takes
a fixed value independent of the resolution level) and
approaches providing setting of different threshold
levels Сj depending on resolution j can be applied.
Estimate  is calculated by the following formula [10]:

(5)

where M is the median and J is the maximum resolu-
tion level of the DWT. Selection of the preceding level

 stems from the fact that, at this level, wavelet
coefficients predominantly correspond to noise. The
probability of signal distortions during threshold fil-
tering or the filtering error [7], which can be lowered
with the help of methods using minimum threshold
values causing lesser signal distortions, is often used as
a quantitative criterion.

For this purpose, an alternative threshold setting
method, the so-called SURE method [16], is widely
used. According to this method, the estimated value of
threshold level  is calculated as follows:

(6)

According to the performed investigations, the value
of quantity  is close to the optimum threshold value.
Nevertheless, this approach may also result in errors at
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Fig. 1. Dependences of the rms reconstruction error on
parameter C for the test signal (harmonic oscillations).
The reconstruction method is based on the DWT with
(solid curve) hard and (dashed curve) soft thresold func-
tions. Calculations were performed for the Daubechies
wavelet D8 and a noise level of 20 dB.

0.05

0.06

0.07

0.08

0.09

0.10

0 0.2

E
, r

el
. u

ni
ts

0.4 0.6
C



238

JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS  Vol. 62  No. 3  2017

YASIN et al.

large intensities of noise. In such situations, it is pref-
erable to combine the universal threshold level and the
SURE method: if wavelet coefficients are small,
the former approach is used; otherwise, the latter
method is applied. In order to determine selection of a
particular method, the minimum energy level

 is specified and the threshold
value is determined as follows:

(7)

Different variants of selection of threshold level C in
the case of soft setting of the threshold function are
compared in Fig. 2 for the test example (harmonic
function with additively admixed noise). According to
the obtained results, the approach based on setting the
universal threshold level results in the maximum rms
error. The SURE method ensures the minimum error.

2. FILTERING BASED ON THE DUAL-TREE 
(COMPLEX) WAVELET TRANSFORM

Approaches based on the standard DWT have sev-
eral substantial drawbacks, which were mentioned in
Introduction. Besides, they cannot give information
on phase relationships, which is often required in solu-
tion of some practical problems, for example, prob-
lems of interaction of self-oscillating systems. In order
to improve methods based on the wavelet transform,
the approach applying the complex wavelet transform
was proposed [11, 12]. Since term “complex wavelet
transform” is usually associated with application of a
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continuous wavelet transform with complex basis func-
tions, the method described in [11, 12] will be hereinafter
called the dual-tree wavelet transform. The basic idea of
this approach consists in addition of imaginary parts
obtained with the help of the Hilbert transform to real
scaling functions and wavelets, which results in complex
(analytic) low-pass and high-pass mirror filters.

In accordance with the DCWT method, we con-
sider complex wavelets  and
form two orthonormal bases using functions  and

. The wavelet transform is calculated inde-
pendently with the use of each basis. As a result, we
obtain complex wavelet coefficients .
Algorithmically, the DCWT method is reduced to two
independent pyramidal expansions of the signal.
Unlike the standard DWT, an additional requirement
is imposed: scaling functions and wavelets  must
be analytic functions. In order to satisfy this require-
ment, special algorithms for construction of mirror
filters are used [15]. In the performed studies, filters
proposed in [11] and their MATLAB computer imple-
mentation developed in [17] were used.

The results of comparison of wavelet filtering of the
test signal (harmonic function with additively admixed
noise) based on the DWT and DCWT methods are
presented in Fig. 3. As shows the analysis of the
obtained data, the optimum threshold level for the
DCWT method is lower than for the DWT method for
all considered values of the signal-to-noise ratio
(SNR). This means that application of the DCWT
method ensures lowering of the probability of possible
signal distortions resulting from threshold filtering
(the lesser the value of parameter C, the lower the
probability of removal of informative wavelet coeffi-
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Fig. 2. Dependences of the rms reconstruction error on the
singnal-to-noise ratio for the test signal (harmonic oscilla-
tions) in the case of reconstruction based on the DWT
method using the threshold function (formula (3)) and
Daubechies wavelets D20: (1) the universal threshold
level, (2) combined application of the universal threshold
level and the SURE method, and (3) the SURE method.
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Fig. 3. Dependences of the optimum threshold level on the
signal-to-noise ratio for the case of wavelet filtering of the
test signal (harmonic oscillations) with the use of the
(1) DWT and (2) DCWT methods.
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cients in the course of filtering), which is one of obvi-
ous advantages of this approach.

Examples of dependences of the rms filtering error
for the DWT and DCWT methods are presented in
Fig. 4. According to these examples, the DCWT
method ensures the minimum value of the rms filter-
ing error in the case of appropriate selection of the
threshold value.

3. WAVELET FILTERING OF AUDIO SIGNALS

After comparison of wavelet filtering methods on
the test example, let us consider application of these
methods to experimental data. For this purpose, we
consider various audio signals, predominantly voice
messages, with additively admixed white noise of differ-
ent intensity. An example of a fragment of the voice
message and the results of wavelet filtering of different
signals are presented in Fig. 5. Since spectral bands of
signal and noise overlap, wavelet filtering cannot com-
pletely remove existing fluctuations and setting of large
values of threshold levels for more efficient noise sup-
pression results in distortions of the information mes-
sage. For this reason, selection of optimum parameters
of performed filtering is an important problem.

Visual analysis of signals shown in Figs. 5c, 5d, and
5e indicates that the DCWT method ensures mini-
mum distortions. The results of calculation of the
minimum error attained in the course of wavelet filter-
ing based on the DWT method (variant of soft setting
of the threshold function, Daubechies wavelet bases
from D3 to D20) as well as the results of calculation of
the minimum filtering error in the case of application
of the DCWT method are presented in Fig. 6.

Fig. 4. Dependences of rms reconstruction error E on the
threshold level for the case of reconstruction of the test sig-
nal (harmonic oscillations) with the use of the (solid
curve) DWT and (dashed curve) DCWT methods. Calcu-
lations were performed for the Daubechies wavelet D20
and a noise level of 0 dB.
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Fig. 5. Results of wavelet filtering of a fragment of voice
message: (a) original signal, (b) signal with admixed addi-
tive noise, (c) signel after filering by the DWT method with
function (3), (d) signal after filtering by the DWT method
with function (2), and (e) signal after filtering by the
DCWT method.
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Note that these methods have different optimum
values of the threshold level: the optimum threshold
level is 0.020 for the DCWT method and is approxi-
mately two times higher (C = 0.039) for the DWT
method. In the case of selection of the optimum value
of parameter C, the rms error for the DCWT method
is approximately 9% less than for the DWT-based
method, which is a substantial improvement of the
quality of digital filtering. Comparable results (lower-
ing of the error by an average of 8%) were also obtained
for other examples of audio signals and different values
of SNR. Thus, we can assert that the DCWT method
has apparent advantages over the standard variant of
wavelet filtering using the DWT method.

CONCLUSIONS
Methods of wavelet filtering of noisy signals using

real and complex basis functions have been compared.
A method based on the discrete wavelet transform with
basis functions of the Daubechies family has been
tested for cases of soft and hard introduction of the
threshold function and three variants of setting the
threshold level. The method of the dual-tree (com-
plex) wavelet transform, which use analytic functions
as wavelets and provides addition of imaginary parts
calculated on the basis of the Hilbert transform to real
basis functions, has been considered. This approach
can eliminate such substantial drawbacks of the stan-
dard DWT as noninvariance with respect to shift and
the appearance of artifacts in the reconstructed signal.

As has been shown by the test example of a har-
monic function with additively admixed white noise,
the standard DWT method ensures the minimum sig-
nal reconstruction error in the course of wavelet filter-
ing in the case of selection of the soft variant of setting

the threshold function and introduction of the thresh-
old level according to the SURE method. This deduc-
tion has been confirmed for different SNR values in
the analyzed data. The DCWT method can lower the
digital filtering error as compared to that of the stan-
dard approach based on the DWT method and results
in additional lowering of the threshold level, which
corresponds to lowering of the risk of possible distor-
tions as a result of threshold filtering.

These conclusions have been confirmed during the
analysis of audio signals representing fragments of
voice messages with additively admixed white noise of
different intensity. The analysis of experimental data
indicates the superiority of the DCWT-based wavelet
filtering method. This approach has ensured an aver-
age of 8-% lowering of the wavelet filtering error in the
case of optimal selection of the threshold level. In
practice, the variant of setting the threshold level
according to the SURE method can be used to set a
near-optimum threshold level.
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Fig. 6. Dependences of rms reconstruction error E on
parameter C for reconstruction of the audio signal by the
(solid curve) DWT and (dashed curve) DCWT methods.
Calculations were performed for the Daubechies wavelet
D8 (which ensured the minimum filtering error) and a
noise level of 30 dB.
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