
Abstract. A review of physical and mathematical methods for
reconstructing the functional networks of the brain based on
recorded brain activity is presented. Various methods are con-
sidered, as are their advantages and disadvantages and limita-
tions of the application. Problems applying the theory of
complex networks to reconstructed functional networks of the
brain to explain the effects of dynamic integration in the brain
and their influence on the diverse functionality of the brain and
consciousness, as well as processes leading to the pathological
activity of the central nervous system, are examined. Questions
concerning the application of these approaches are considered
both to describe the functioning of the brain in various cognitive
and pathological processes and to create new brain±computer
interfaces based on the detection of changes in functional con-
nections in the brain.

Keywords: functional connectivity, synchronization, complex
networks, neural networks, analysis of electroencephalo-
grams and magnetoencephalograms

1. Introduction

The brain is a complex network in which observations on a
large scale reveal several hundred regions and many thou-
sands of interconnected pathways formed from white matter
axons [1]. Studies of brain networks are motivated by the
belief that brain functions are not exclusively associated with
individual regions and connections, but rather arise from the
topology of the network as a whole, the so-called brain
connectome [2]. Despite remarkable achievements in modern
molecular neurobiology and genetics, both the mechanisms
and principles of brainwork at the cellular-network, systemic,
and functional levels in actual fact remain unclear.

Modern universally recognized physical and mathemati-
cal concepts proposed to describe brain functioning lay
emphasis on the mechanisms of electrogenesis, i.e., the
generation of electrical impulses (action potentials or
spikes), the basic anatomical architectonics of brain struc-
tures (hippocampus, cerebellum, thalamus, cortical layers,
etc.), the processes of signal propagation along nerve fibers,
and the basic mechanisms of synaptic neurotransmission and
plasticity [3]. They are comparatively easy to describe based
on the systems of differential equations and stochastic
models. However, it remains to be elucidated how these
processes form brain functional systems, including both
relatively simple functions, such as motor control or sensor-
imotor transformations, and higher cognitive functions, e.g.,
learning, memory, and consciousness. On the other hand, the
actually measured parameters (signals of electro- and
magnetoencephalography (EEG/MEG) or functional mag-
netic resonance imaging (fMRI)) are often rather difficult to
square with cellular-networkmodels of neuronal interactions.

One example of such a tie-in is the concept of brain
rhythmic activity at the cellular level up to the functional
one. It turns out that brain rhythms [4±6] determine the
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possibility of implementing cognitive functions, such as
associative perception, focusing of attention, and phase
precession in the hippocampus for the solution of spatial
navigation tasks. The list of models proposed by Russian
biophysicists includes but is not limited to those of oscillatory
neural networks [6], complex pulse-propagation networks
with plastic connections [7, 8], nonlinear effects of synchroni-
zation, competition, chaos [9, 10], polychronization [11], and
the physical and chemical foundations of cognitive functions
[12]. These models describe the relationships between the
cellular network organization of the brain and the dynamic
processes contributing to the realization of cognitive func-
tions. However, these are conceptual models that can not fully
explain the data obtained by brain researchers using the
available neuroimaging methods.

In an attempt to account for the rich brain functionality
associated with a relatively stable structure of the connec-
tome, neuroscientists are showing increasing interest in the
topology of brain functional connectivity dynamically
formed and rearranged between different cerebral regions
during the performance of various cognitive tasks [13, 14],
manipulation of working memory content [15], processing of
sensory information [16], and even at rest [17]. Functional
connectivity reconstructed from recorded time series of brain
activity describes the statistical dependence between the
dynamic patterns of individual brain regions. Time series
data can be obtained by various neuroimaging methods, such
as monitoring the hemodynamic response of the brain using
fMRI [18] and functional near-infrared spectroscopy (fNIRS)
[19], as well as by analyzing the brain's electrical or magnetic
activities based on EEG [20] and MEG [21, 22] data,
respectively. The functional relationships can be determined
in several ways, including cross-correlation, mutual informa-
tion, spectral coherence, or machine learning methods.

This review is focused on considering the most effective
and widely used methods for elucidating functional connec-
tivity (see Section 2.3 for details). To recall, although a
statistical relationship between two areas of the brain is
often perceived as a sign of a functional relationship, this
does not necessarily imply a causal relationship [23]. The
functional connectivity is nonstationary and often changes
within tens or hundreds of milliseconds, since it is continu-
ously modulated by various factors and processes in the
brain, such as fatigue [24, 25], sensory stimuli [26], or
cognitive task content [27]. Even when measured by methods
that operate at a low sampling frequency, e.g., fMRI or
fNIRS, the functional connectivity can exhibit nonstation-
ary dynamics, e.g., in the resting state [28].

Another type of connection identified in studies on large-
scale brain networks are `effective' connections used in the
reconstruction of a network of directed interactions in the
brain, taking account of causality relationships between
neuronal elements. Indeed, an effective brain network is an
empirical mathematical model that takes into consideration
the observed data and is selected from a number of possible
models using objective criteria to prove the correctness of the
model. Recent developments in this area resulted in the
creation of approaches to `network detection,' including the
identification ofmathematical graph-basedmodels of effective
brain connectivity that best explain the empirical data [29, 30].

It should be noted that the assessment of effective
connections opens up great prospects for a higher-quality
in-depth analysis of integrative brain dynamics; however,
most modern research activities are still focused on the

reconstruction and analysis of functional connectivity in the
brain. Therefore, this more standard approach is the central
topic of the present review.

To analyze the emerging and dynamically changing
functional networks of the brain, the apparatus of the theory
of complex networks based on themathematical graph theory
is widely employed. It has proven itself well in investigations
of complex network structures in nonlinear physics, genetics,
energy, biophysics, sociology, etc. [31, 32]. In neuroscience,
such networks or graphs described as a set of nodes (brain
areas) and edges (functional connections reflecting statistical
relationships between them) can be analyzed using various
quantitative tools andmethods developed in the framework of
the modern network theory [2, 33±38].

The reconstruction of functional connections between
brain areas is an important step toward a concise meaningful
description of brain networks and their integration in the
process of cognitive activity or as a consequence of patholo-
gies known to affect the central nervous systemwith the use of
data obtained by various neuroimaging techniques [39±45].
Such functional networks, as well as their dynamic patterns,
turn out to be very informative for solving applied problems,
including medical applications (monitoring brain activity,
identifying pathological and stressful conditions, diagnostics
of neurodegenerative disorders, etc.), cognitive neuroscience
(studying sensory information processing mechanisms, deci-
sion-making processes, planning motor activity, short-term
memory operations), and neurotechnologies, including the
design and creation of brain±computer interfaces [46±50].
The use of the network approach in brain research organically
and naturally integrates some areas of neuroanatomy
(`structural' connections in the brain [1]) and brain dynamics
(`functional' and/or `effective' connections [51]) by finding
correlations between the dynamics of the brain's neuronal
ensemble measured with the use of various neuroimaging
methods or found mathematically (e.g., by reconnecting) and
the underlying anatomical and cellular substrate.

It should be noted that the principles of information
processing in the brain and the clarification and extension of
relevant cellular models are quite actively discussed with
reference to various fundamental and applied aspects. One
of these aspects is the role of the extracellular substance in the
transport of information. Ongoing experimental studies show
that glial cells, such as astrocytes, are able to modulate
synaptic transmission in the brain and influence information
transfer processes [52]. Moreover, the extracellular matrix of
the brain that serves as a framework for signal neuronal
networks is also capable of modulating information transmis-
sion in cerebral structures [53]. In fact, glia and the matrix
represent an active extracellular environment into which the
neuronal network is submerged. The question of whether the
glia and the matrix provide the necessary substrate for the
generation of cognitive functions in the brain (similar to an
active substance in laser generation in physics) still remains
open.

An important fundamental aspect of the principles of
brain work is the brain's structural plasticity. In Hebb's
classical interpretation, plasticity means the ability of a
neural network to enhance one pathway or another to
transmit a neuronal signal, if there is a functional need for
this, or to weaken it, if this pathway is not used. This concept
envisages, apart from that, structural changes: whenever
necessary, not only new receptors but also new synapses can
be formed, which is likely to cause both correction of
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connection weights and alteration of the entire network
architecture. Moreover, it is believed that new elements
(neurons) can be brought in from the respective stem cell
storage (e.g., the dentate fascia of the hippocampus). From
the standpoint of physical and mathematical descriptions,
such networks must be modeled by multidimensional
dynamic systems with variable dimensions, although a
generally accepted technique for the purpose is yet unavail-
able. Nevertheless, the modern literature tends to develop, in
the context of structural plasticity, models of growing neural
networks that can be endowed with functional activity in the
future [54, 55].

The view that the brain is a totality of complex neuron-
glia networks with variable dynamic characteristics from the
point of view of its macrodescription for practical (including
medical) applications accentuates the problem of elucidating
the dynamics of functional connections between different
local brain regions performing various cognitive tasks under
normal and pathological conditions. Obviously, the func-
tional networks (described by graphs) obtained as a result of
such reconstructions represent an image, albeit a rather crude
one, of the activity of the corresponding neuronal-glial
networks. This image, however, is a complex dynamic
subject, the study of which is a nontrivial task, especially
with respect to the realization of higher nervous functions for
which the brain activates large neuronal ensembles. Their
complexity increases exponentially with the growth of the
number of neurons. As a consequence, the performance of
cognitive tasks requires effective communication and integra-
tion of neural networks between distributed brain areas.
Integration processes in the large-scale network of the brain
develop depending on the anatomical features of neural
connections, but are not limited to them.

The construction and subsequent analysis of a cerebral
functional and/or effective network using the approaches of
the theory of complex networks are illustrated in Fig. 1. The
functional data on the dynamics of various brain regions
recorded when monitoring electrical activity (the top of Fig. 1)
or hemodynamic response (the bottom of Fig. 1) can be
converted into a network form [56, 57]. In the case of
neuroimaging with the use of fMRI, the network nodes are
usually obtainedbydividing the areas of cortical and subcortical
gray matter with due regard for their anatomical boundaries or
by specifying uniformly distributed volume elements (voxels) of
a fixed size. When analyzing the brain's electrical activity based
on the results of EEG/MEGor blood flowmeasurements in the
cortical regions using fNIRS, the nodes are usually chosen
naturally as the locations of sensors on the surface of the head
[58]. However, this approach, called sensor level analysis, does
not take into account the fact that each EEG or MEG sensor
can reflect the activity of several sources of neuronal activity in
the brain, representing their superposition (see Section 2.1). An
alternative approach is to reconstruct the sources of neural
activity from EEG=MEG data. It consists of specifying node
sources by dividing the volume or the surface of the brain into
areas, obtaining the corresponding time series of their dynamics,
and analyzing connections at the level of reconstructed sources
(see Section 2.2).

After the nodes are specified, it is possible to determine
their dynamics in time characterized by time series (e.g., by
changes of the potential or the magnetic field in the case of
EEG or MEG, blood-oxygen-level-dependent (BOLD) sig-
nals in case of fMRI). To recall, the use of EEG/MEG is often
preceded by the preliminary processing of time series, in

particular, to select the frequency range of interest either by
filtering or based on the wavelet transform [59, 60]. Then, the
time series are used to evaluate functional or effective
connections, the full set of which between all nodes can be
aggregated into an adjacency matrix, which is a mathematical
representation of the network graph (see Section 3.1.1).
Various mathematical approaches are used to estimate the
significance of connections as well as effects of segregation
and integration in the brain's functional networks (see
Section 3.1.2). Review articles [57, 61, 62] can be recom-
mended for the interested reader. Section 3.1.3 discusses the
formalism and principles of constructing multilayer func-
tional brain networks. To remove insignificant or weak
interactions, various methods of statistical analysis are used,
specifically, the correction of statistical significance levels
taking into account multiple comparisons by the permuta-
tion method [63]. Section 2 is devoted to the analysis of the
main problems and approaches to the reconstruction of
functional connections based on neuroimaging data.

It can be concluded that modern network approaches,
actively developed in nonlinear physics and mathematics,
have enriched our understanding of brain functioning.
Consideration of the application of the methods for the
reconstruction and analysis of complex networks from large
sets of experimental neurophysiological data is the central
topic of this review. Concrete examples of investigations into
emerging functional brain networks are presented in Sec-
tions 3.2±3.4; their application to the creation of multimodal
and network brain±computer interfaces is briefly discussed in
Section 4.

2. Reconstruction of functional connections
from experimental data on brain activity

2.1 Problems and limitations inherent
in the reconstruction of functional networks
A description of physical and mathematical methods for the
reconstruction of functional connections should be preceded
by considering problems that can significantly affect the
results obtained and their interpretation. First and fore-
most, this concerns signals of the brain's electrical activity
(MEG/EEG) and signals of local field potentials intrinsic in
the nature of these signals. The limitations described below
should be considered when choosing concrete methods and
developing new approaches for the reconstruction of brain
connections and functional networks.

Sensor level

Preliminary treatment
(time-frequency analysis)

Electrical
activity
EEG
MEG

Hemodynamics

Identiécation
of sources

Selection
of areas

Time
series

Reconstruction
of connections

Functional network
of the brain

Analysis based on
the theory of graphs

fMRI

Source level

fNIRS

Figure 1. General scheme for constructing and analyzing the functional

network of the brain using data obtained by various neuroimaging

methods and approaches to examining neural processes at the level of

sensors or at the level of sources of neural activity.
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2.1.1 Bulk conductivity and field propagation. This problem
pertaining to the analysis of functional connections at the
sensor level based on multichannel MEG/EEG signals is
related to the nature of propagation of an electromagnetic
field. The fact is, noninvasive methods of magneto- and
electroencephalography do not provide access to the sources
of neuronal activity, but represent an instantaneous linear
superposition of the activity of several sources [64, 65]. In
other words, several sensors can simultaneously reflect the
activity of a single source. This effect is called `bulk
conductivity'. In addition, the activity of the sources under-
goes a distortion as it propagates through the skull bones, the
skin, and other conductive media that can be regarded as low-
frequency filters. As a result, the recorded signals from a
source of neuronal activity become `smeared' in space (the
field propagation problem) which causes the appearance of
false correlations between signals registered by closely located
sensors and significantly complicates the interpretation of the
reconstructed functional relationships. The bulk conductivity
problem deserves close attention and has been considered in a
number of reviews [57, 66]. There are several approaches to
compensate for the effect of bulk conductivity.

The first and simplest method is to use communication
metrics taking no account of the contribution of instanta-
neous correlation, i.e., introducing no appropriate delay
(0 or 180�). This is possible with the help of such functional
coupling metrics as the weighted phase lag index [67], the
imaginary part of coherence [68], and the phase slope
index [69]. In the case of analysis of effective connections, it
corresponds to the consideration of an additional `instanta-
neous' component in the vector autoregressive model [70, 71].
This method is rather effective, since it disregards the effect
of the simultaneous appearance of the field from a single
source on several sensors and the corresponding false
connections.

The second method is the transition from the reconstruc-
tion of connections at the sensor level to that at the source
level. In this case, the problem of bulk conductivity
disappears by itself in a natural way, but the analysis of
connections becomes much more complicated by the appear-
ance of an additional stage of data processing associated with
the reconstruction of sources of neuronal activity (this
approach is described in detail in Section 2.2).

The third method for the suppression of the bulk
conductivity effect is a correct consideration of altered
functional connections, i.e., a change in the functional
connection metric under the conditions of a given experiment
or two different experiments as compared with that in the
background conditions. This strategy is based on the fact that
the bulk conductivity effect similarly manifests itself under
different experimental conditions; therefore, correct `sub-
traction' allows false connections to be suppressed.

2.1.2 Signal-to-noise ratio. An important factor that can
significantly affect the assessment and subsequent interpreta-
tion of functional connections can be a problem related to the
noise level in the experimental signal being analyzed and its
ratio to the useful component. The problem arises because the
recorded signal always contains a noise component originat-
ing from measurement and recording errors, as well as from
random processes generated by the brain's neuronal ensem-
ble; hence, the difficulties encountered in the evaluation of
functional connections in a pair of signals differing in the level
of signal-to-noise ratio due, for example, to different

impedances of the electrodes in the case of EEG recording.
Also, a change in the useful signal-to-noise ratio during the
experiment can lead to the appearance of false differences
when comparing functional connections under different
conditions. This issue is discussed at greater length in
Ref. [57] as exemplified by the assessment of the direction-
ality of connections for two different model signals using the
Granger causality method.

2.1.3 Problem of statistical significance of connections. Mod-
ern neuroimaging technologies permit us to represent brain
activity with high spatial and temporal resolution. The
specificity of designing and conducting neurophysiological
experiments makes the analysis of these data multifactorial,
since it implies taking account of different experimental
conditions in which they were obtained. Therefore, determin-
ing characteristics of brain activity associated with concrete
effects or conditions can be a very nontrivial task. The main
difficulty in this case is finding the correction due to the
multiple comparison problem (MCP) that appears when it is
necessary to build a family of statistical inferences. There are
traditional conservative methods to address this problem,
such as the Bonferroni correction, which consists of lowering
the critical level pB � pcr=N, where N is the number of
comparisons, pcr is the selected value of the critical level
(usually 0:05), and pB is the value of the critical level taking
into account the Bonferroni correction. It is clear that the
Bonferroni correction makes it possible to eliminate the
influence of the effect of multiple comparisons when their
number is small (N < 10) and becomes weakly applicable
when a large number of hypotheses are tested simultaneously.

Such a situation naturally arises when comparing experi-
mental results in the frequency, space, and time domains that,
as a rule, contain a large number of data pairs for comparison
(N4 102). To analyze spatial-frequency-temporal character-
istics of neuronal activity, more advanced and efficient
methods using the nonparameteric cluster-based permuta-
tion test have been developed [63]. The main purpose of such
statistical testing is to rule out areas (or clusters) of frequency,
spatial, or temporal distribution in which significant changes
in the measurement data under different experimental
conditions were determined inadvertently. Such analysis is
aimed at reducing the probability of a type I error, i.e., the
number of false positive results.

The problem of correct statistical testing, taking into
account the correction due to multiple comparisons, is
especially relevant with respect to results of the assessment
of functional connections. Specificity of the solution of this
problem is first of all determined by the necessity to identify
`clusters'. The authors of a recent study [72] proposed and
described in detail a new correct approach to the statistical
analysis of the difference in functional relationships under
two different experimental conditions that is actually an
extension of the nonparametric cluster analysis. An advan-
tage of this approach is it simultaneously reveals significant
differences between functional connections in the frequency,
temporal, and spatial domains.

2.2 Reconstruction of brain sources to assess connections
The field propagation problem mentioned in Section 2.1.1
arises from the fact that the same area of brain activity is
usually recorded by several neighboring sensors at a time
which limits the possibilities for the practical use of various
functional connectivitymeasures in the brain calculated at the
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sensor level, i.e., based on the signals recorded during EEG or
MEG. The field propagation problem significantly compli-
cates correct interpretation of the results. An analysis of
neuronal interactions in the space of activity sources in the
brain, characteristics of which (position and power) can be
reconstructed by special methods based on solving the so-
called inverse problem [65, 73], allows an effective solution to
this problem. Another important reason for the transition
into the source space when assessing connections is the ability
to determine the real anatomical location of the interacting
brain regions. Here and hereinafter, sources are understood
to be the sources of neuronal activity in the brain.

Methods for the location (reconstruction) of sources are
constantly being improved, which makes it possible to
directly assess the activity of neuronal sources that generate
signals observed at the sensor level and facilitates solving the
field propagation problem.

In this section, we briefly consider the general principle of
reconstruction of neural activity sources and specific features
of their use for the assessment and analysis of connections in
the source space. Most source-level analytical methods are
implemented in two stages.

(1) Assessment of the activity of neuronal sources in the
brain from signals recorded at the sensor level by solving the
inverse problem. Themain classes of thesemethods are briefly
discussed below.

(2) Calculation of connections between recovered
sources, which is usually limited to a set of predefined areas
of interest in the brain.

A notable exception to the above two-step approach is
dynamic causal modeling [74]. This approach is described in
more detail below.

2.2.1 Source reconstruction methods. The existing approaches
to the reconstruction of neural activity sources make it
possible to achieve a spatial resolution of functional brain
imaging comparable to that of fMRI and positron emission
tomography (PET). With a known set of MEG or EEG
signals from an array of external sensors, the inverse problem
reduces to the assessment of the properties of current sources
inside the brain that generate these signals. First of all, it is
necessary to solve the direct problem within which the
potentials and external fields on the scalp are calculated for
a given set of neuronal current sources. Note that the
characteristic frequencies of MEG and EEG signals are, as a
rule, below 1 kHz, and most studies consider a frequency
range from 0.1 to 100 Hz. As a consequence, the physical
processes of propagation of electromagnetic fields resulting in
the observedMEG or EEG signals can be described using the
quasi-static approximation of Maxwell's equations [75].

Equivalent current dipoles or multipoles are used as
source models to solve direct and inverse problems [75, 76].
It is important to note that neuronal activity does not consist
of discrete sets of current dipoles. They are just a convenient
representation of the coherent activation of a large number of
pyramidal cells that can extend over several square centi-
meters of gray matter. In other words, a current dipole is the
most highly sought model in work with MEG and EEG data,
since a primary current source of arbitrary length can always
be broken into small fragments, each represented by an
equivalent current dipole.

Calculating scalp potentials and induced magnetic fields
requires solving the direct problem for a given source model.
When surface integrals are calculated over realistic head

shapes, the corresponding equations are solved numerically.
However, there are analytical solutions for simplified geome-
try, such as that of the human head considered to be made up
of a set of nested concentric uniform spherical shells
representing the brain, skull, and scalp [77, 78]. For a more
accurate solution to the direct problem, anatomical informa-
tion obtained from high-resolution volumetric images of the
brain (using, for instance, MRI or X-ray computed tomo-
graphy) should be used to determine the surface boundaries
of the brain, skull, and scalp from these images [79]. The
surfaces found can then be used to calculate direct fields by
the boundary element method or the finite element method
[80]. Note that one of the most popular head models in MEG
studies is the semi-realistic single-shell model proposed in
[81], which is characterized by an optimal ratio of accuracy
and computational complexity.

There are two classes of methods for the assessment of
sources from EEG andMEG data (i.e., for the solution to the
inverse problem): parametric and visualizing (nonparametric)
[75, 82±84]. In parametric methods, it is assumed that the
sources can be represented by several equivalent current
dipoles with unknown coordinates and moments determined
by nonlinear numerical methods. Nonparametric methods
are based on the assumption that the primary sources are
intracellular currents in the dendritic trunks of cortical
pyramidal neurons aligned normally to the surface of the
cortex. In other words, a separate current dipole is assigned to
each of the several tens of thousands of elements of the
division (tessellation) of the cerebral cortex surface, while
the orientation of the dipole is determined by the local normal
to the surface. The inverse problem in this case is linear, since
the only unknowns are the amplitudes of the dipoles in each
element of the partition.

Figure 2 presents an example of the reconstruction of the
activity of sources in the cerebral cortex by the method of
dynamic visualization of coherent sources [85] from the
MEG data (306 channels) recorded in a subject who
perceived a Necker cube blinking at a frequency of 6.67 Hz
[86]. The result was obtained using the FieldTrip software
package [87] in the frequency range determined by the
doubled cube blinking frequency: 13:33� 2 Hz. Excitation
of the primary visual cortex and the visual association area
was observed.

Note that the above description of the general approach
to reconstructing neural activity sources in the brain does not
pretend to be complete; it is only a brief introduction to this
issue necessary to disclose the main topic of the review. A
detailed discussion of the methods for reconstructing the
sources can be found in Refs [75, 82].

To implement the second step of the approach to the
analysis of connections at the source level (the reconstruction
of connections between localized sources), connectivity
measures analogous to those used at the sensor level are
employed. A detailed discussion of various connectivity
measures is given in Section 2.3.

Note that the dynamic modeling of causality is concep-
tually different from the methods discussed above [74]. It
aims to build a biophysically plausible generative model of
the measured data that describes how an input signal
activates the system of predetermined interconnected neuro-
nal populations to generate an output signal similar to the
measured one. Unlike two-stage methods, the dynamic
modeling of causality does not permit calculating para-
meters of neural activity sources separately but ensures
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evaluation of the parameters of connections and sources in a
single step [88±91].

2.2.2 Defining areas of interest. Almost all methods for the
analysis of functional connectivity between sources allow
calculating the connectivity measures between each pair of
selected areas of interest or between several areas of interest
and the rest of the brain. Obviously, the choice of the areas of
interest is a critical step, since the quality of the time series
obtained in them determines the accuracy of the analysis of
connections between them. Thus, the incorrect choice of the
areas of interest can lead to an erroneous result. Let us
consider a few strategies for identifying areas of interest.

(1) Pre-selection (a priori selection). The areas of interest
can be selected based on a priori information about their
involvement in the performance of a certain experimental
task (for example, using results of preliminary functional
visualization) [85, 92±95]. The a priori selection permits us to

calculate connectivity measures between all possible pairs of
the areas of interest. However, their location may prove
suboptimal, or some important areas may be overlooked.

(2) Assessment of cortico-peripheral coherence. This strat-
egy is based on the estimation of coherence between peripheral
physiological signals and brain activity reconstructed on a
discrete grid. Such an estimation allows identifying areas of
the brain in which the activity is modulated by the rhythmic
processes of peripheral signals. Evaluation of cortico-periph-
eral coherence can be used, for example, with vibrational
components arising during movements and recorded using
electromyography (EMG) and tracking devices [85, 95±101].
Brain regions showing maximum cortico-peripheral coher-
ence can serve as reference areas in the analysis of cortical-
cortical connections.

(3) Assessment of coherence at the sensor level. Gross et al.
[85] demonstrated the use of data about coherence between all
sensor combinations for an MEG system with planar
gradiometers and found coherence between far regions. The
respective sources were localized by an iterative procedure. In
all likelihood, however, this strategy can not be properly
implemented in the majority of cases in view of the field
propagation problem.

(4) Constructing power maps. One of the most widely used
strategies is the choice of the areas of interest based on
neuronal activity maps. Brain regions showing the most
intense activity during the performance of an experimental
task or the greatest difference in the activity under different
experimental conditions are selected for a further analysis of
connections. This approachwas proposed inRef. [102], where
minimum norm estimates were used to reconstruct the time
series of sources from nonaveraged data. The most activated
regions were identified using surrogate data. To reduce the
number of active elements to be considered in the brain
volume (voxels), an iterative procedure was used. After the
final set of voxels was collected, phase locking was analyzed.
This approach was further developed for use in experiments
with multiple fragments of brain activity records [74]. A
similar method was applied in a study of visual-motor
connections [100].

(5) Methods based on the calculation of coherence. In
Refs [103, 104], an approach was proposed to identify
strongly connected areas of the brain based on the calculation
of the density of connections over the entire brain. The density
of connections for a given voxelwas determined as the number
of long-range connections exceeding a given coherence thresh-
old.A connectivity densitymap can be constructed taking into
account the coherence threshold, and regions of local maxima
on it can be selected as areas of interest. Changes in the density
map under various experimental conditions can be analyzed
to identify changes in the connections associated with the
performance of a specific task.

Ideally, it is possible to disregard any threshold values and
calculate connections between all possible combinations of
voxels. However, even voxels of moderate size tend to
produce several million combinations, which complicates
the calculation and interpretation of the resulting connectiv-
ity matrices.

In Ref. [105], a computationally efficient algorithm for
post-processing of voxel correlation matrices based on a
singular-value decomposition is proposed. The sources were
reconstructed by the minimum norm estimation method. The
calculation of singular-value decomposition of a very large
correlation matrix for the sources was reduced to calculating
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the singular-value decomposition of the inverse operator that
maps signals coming from the sensors into the source space.
The sources of neural activity, the first eigenvector of which
exceeded some predetermined threshold value, were identi-
fied as correlated areas. The proposed method is efficient
since it does not rely on a priori information, nor does it
directly use the activity of the sources. Nevertheless, the
choice of the number of relevant eigenvectors and their
threshold value, as well as a restriction on the orthogonality
of the singular-value decomposition method, is often proble-
matic and depends on the experience and intuition of the
researcher.

2.2.3 Limitations and features. Interpreting the results of a
connectivity analysis at the level of neural activity sources is
complicated by field propagation effects. This is true
regardless of the connectivity measure used if its calculation
is preceded by the application of the `traditional' inverse
method. By traditional inverse methods are meant those that
do not explicitly distinguish between `interactions' due to the
field propagation and real interactions between the sources.
These approaches include ray methods, distributed source
models, and dipole fitting approaches [75, 82].

The authors of Refs [106, 107] proposed two effective
methods aimed at eliminating the influence of the field
propagation effect before the solution to the inverse pro-
blem. One of these methods uses the imaginary part of the
cross-spectral density matrix at the sensor level to identify
spatial topographies of the pairs of interacting neuronal
sources [107]. The application of an additional minimum
overlap constraint permits us to locate interacting sources.
The use of the imaginary part of the cross-spectral density
guarantees that the interaction cannot be explained by the field
propagation effect [68]. The authors of [106, 107] succeeded in
locatingm-rhythmandparieto-occipitala-rhythm `generators'
using the EEG data set.

Another method is based on the decomposition into
independent components of the residuals of a multivariate
autoregressive model fitted to the sensor level data after an
initial analysis of the principal components [106]. The
residuals of the fitted autoregressive model reflect zero-lag
interactions between sensors and, indirectly, between the
underlying sources. These zero-delay interactions are a
consequence of the field propagation effect. A subsequent
analysis of the independent components separates the
residuals into a set of statistically independent time series. It
is assumed that these components are the residuals of the
source-level autoregressive model. The mixing matrix of the
independent components contains the topography of inter-
acting sources and can be used to determine their location.
This approach was applied to EEG data to identify directed
connections of an oscillatory network in the a-frequency
range.

Thus, the combined use of methods for the location of
neural activity sources and a connectivity analysis based on
the reconstructed data on their dynamics opens up prospects
for studying transient interactions between brain regions,
including the nature of these interactions and their direction
[108±112]. Nevertheless, an analysis of connectivity at the
source level is far from trivial; caution is needed when
interpreting its results [113]. Special attention should be
given to the following issues.

(1) An analysis of connections at the source level allows,
to some extent, a solution to the field propagation problem.

However, it does not provide a perfect solution. It is
necessary to carry out a quantitative assessment of field
propagation based on the results of a source-level recon-
struction of connections. This step usually includes the use
of estimates of spatial inhomogeneity of the reconstructed
sources [114, 115]. Moreover, it is necessary to regularly
analyze power variations under changing conditions and
take them into consideration when interpreting the results.

(2) The choice of the areas of interest often requires either
an interaction with the user or the involvement of some
arbitrary parameters. Ideally, the use of any a priori
information for the choice of areas of interest should be
replaced by an estimation of the connectivity among all
possible combinations of voxels.

Figure 3 presents an example of a connectivity map
constructed using the FieldTrip software package [87] based
on data on reconstructed sources for an experiment with the
perception of a blinking Necker cube. The sources were
reconstructed from recorded MEG signals (see Fig. 2). Due
to the initially large number of dipole sources (more than
8,000), the resulting matrix contains over 64 million elements,
which makes it uninterpretable. The most effective strategy
for reducing the connectivity matrix dimension is the use of
brain parcellation. Such diagrams are usually built on the
basis of anatomical information about the human brain or
modalities. Then, the connections are assessed between the
brain regions for a given parcellation scheme rather than
between individual dipole sources. To build themap shown in
Fig. 3, the multimodal cerebral cortex parcellation scheme
proposed in [116] was used; it contains 180 regions for each
hemisphere. The imaginary part of coherence was used as a
connectivity measure, which made it possible to effectively
suppress parasitic coherence caused by the propagation of an
electromagnetic field [68].

2.3 Hierarchy and classification of the methods
for reconstructing functional connections
Let us briefly consider the classification and hierarchy of the
most frequently used effective measures for assessing func-
tional connections (Fig. 4). First, all methods can be divided
in terms of applicability for determining the direction of
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interaction. The undirected methods tend to assess the
magnitude of the interdependence between signals without
reference to the direction of exposure. Conversely, the
directed methods presuppose the determination of statistical
causality when, for example, in the case of Granger causality,
it is possible to predict the behavior of one signal from that of
another; hence, the possibility of identifying causal (directed)
connections.

Within the framework of both directed and undirected
methods for the assessment of functional connections, a
distinction can be made between model-dependent and
model-independent approaches. As a rule, model-based
approaches (shown in white in Fig. 4) assume linear interac-
tions between two signals. The simplest measure for undir-
ected model interactions is Pearson's correlation coefficient,
which characterizes the linear dependence between two
random variables (see Section 2.3.1). Another model-based
approach allowing evaluation of nonlinear interactionsmakes
use of methods for synchronizing two signals that, despite the
convenience and simplicity of interpretation, do not permit
assessing the directionality of connections (see Section 2.3.2).
A more general approach that does not imply linear relation-
ships is the mutual information method (see Section 2.3.3)
measuring the generalized (linear and nonlinear) interdepen-
dence between two or more time series based on information
theory. The mutual information method belongs to the class
of model-independent approaches (see black boxes in Fig. 4
and Section 2.3.3). Convenient methods for the assessment of
the functional dependence, not based onmodels either, are the
recurrent method and the method using a universal approx-
imator (a feedforward artificial neural network) that actually
makes it possible to reveal generalized synchronization
between two processes (see Section 2.3.4).

Finally, one can distinguish between functional connec-
tivity measures calculated from the representation of signals
in time or frequency domains. To identify individual rhythmic
components, it is convenient to consider the frequency-
domain representation of the signals. A transformation to
the frequency domain can be achieved using nonparametric
(Fourier decomposition, wavelet analysis, Hilbert transform)
or parametric (autoregressive models) methods. Functional
connectivity indicators in the frequency domain can then be
used to assess interactions among brain regions. Many of
these methods quantify, to one degree or another, the phase
coordination between rhythmic components in the signals.
The nonrandom distribution of the phase difference may

indicate a functionally significant connection between neuro-
nal populations.

Let us consider various methods for evaluating functional
and effective connections in more detail.

2.3.1 Linear methods. Pearson's correlation coefficient. The
simplest and most easily interpreted measure for the assess-
ment of functional connections in the time domain is the
Pearson correlation coefficient, which characterizes the linear
statistical relationship between two processes. Within the
framework of the linear interaction model, the Pearson
coefficient shows the fraction of variance of one quantity
explained by the dispersion of another and vice versa. Let the
time series X�fX1;X2; . . . ;XNg and Y�fY1;Y2; . . . ;YNg
represent neural activity recorded by sensors x and y,
respectively. Then, the Pearson correlation coefficient is
defined as

rXY � covXY

sXsY
; �1�

where covXY is the covariance of the time series X and Y,

covXY � 1

N

XN
t�1
�Xt ÿX ��Yt ÿY � ; �2�

sX, sY and X, Y are mean square deviations and mean values
of the time series X and Y.

Independent processes correspond to rXY � 0, while
rXY � �1 indicates a positive (in-phase) or negative (anti-
phase) correlation, respectively.

A few important features of the Pearson correlation
coefficient as a functional connectivity measure follow from
this mathematical definition. First, the Pearson correlation
coefficient describes the relationship between two processes
from the standpoint of amplitude synchronization. Second,
this measure generally evaluates undirected interaction.
Third, it does not take into account the temporal structure
of the signals under study; in other words, the correlation
takes the same value if the time series are randomly mixed. In
addition, the assessment of the functional relationship using
the Pearson correlation coefficient is most strongly influenced
by the bulk conductivity effect, since it reveals instantaneous
linear amplitude correlation (see Section 2.1.1).

Some of the above limitations can be taken into account
by temporarily shifting one signal relative to another. Let
Y t�fYt;Yt�1; . . . ;YN�tg represent a time series Y shifted t
time counts to the left with respect to theX series. In this case,
the Pearson correlation coefficient is a function of the time
shift:

rXY �t� � covXY t

sXsY t
: �3�

Consideration of the dependence of the Pearson correla-
tion coefficient on the time shift allows taking into account
the temporal structure of the data and drawing conclusions
about the direction of the analyzed functional connection.
Note that the presence of a maximum of this dependence at
t > 0 indicates that process X affects Y �X! Y �; conversely,
process Y affects X �Y! X � when the maximum is at t < 0.
It is important that an analysis of the linear correlation of
time series shifted in time with respect to each other make it
possible to eliminate the influence of the bulk conductivity
effect, since it excludes the instantaneous correlation �t � 0�,
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which can be falsely caused by field propagation from one of
the sources.

Figure 5a illustrates the results of the calculation of
functional connections as exemplified by a pair of signals
from the thalamo-cortical network of the brain in WAG/Rij
rats during the formation of an episode of absence epilepsy.
The calculation is based on the experimental data from our
work [117] and provide a good example of the methods for
analyzing functional connections, because this type of
epilepsy is characterized by enhanced synchronization of the
neuronal activity in the cortex and thalamic nuclei, as
opposed to that during normal activity (Fig. 5b).

Figure 5c shows a change in functional connectivity
calculated based on the Pearson coefficient (1). It can be
seen that a linear analysis reveals an increased correlation 2 s
before the attack and a sharp decrease in the linear
correlation coefficient during the seizure. This suggests
that a linear analysis is not suitable for studying the spike
activity when the interaction between brain regions is
essentially nonlinear.

Coherence. Pearson's correlation coefficient is a linear
measure of functional connectivity in the time domain. A
widely used equivalent measure for quantifying phase
synchronization in the frequency domain is the coherence
coefficient [59, 96±98, 118, 119] (some authors prefer the term
magnitude squared coherence).

To begin with, let us represent X and Y signals in the
frequency domain using the Fourier transform:

SX�o� �
�1
ÿ1

dt X �t� exp �ÿiot� � AX�o� exp
ÿÿjX�o�

�
;

�4�
SY�o� �

�1
ÿ1

dt Y �t� exp �ÿiot� � AY�o� exp
ÿÿjY�o�

�
;

where SX;Y�o� are the complex Fourier spectra of signals X
and Y, respectively, AX;Y�o� and jX;Y�o� are the amplitudes
and phases of signals X and Y being analyzed. Then, the
coherence coefficient is calculated as

cohXY�o��
��AX�o�AY�o� exp

�
i
ÿ
jX�o� ÿ jY�o�

�������������������������������
A 2

X�o�A 2
Y�o�

q : �5�

Here, the numerator is the cross-spectral density of signals
X and Y at frequency o and the denominator is the square
root of the product of the spectral powers of X and Y at
frequency o. According to the above mathematical defini-
tion, the coherence coefficient varies from 0 to 1:
cohXY�o� � 0 corresponds to the absence of correlation at
o and, on the contrary, cohXY�o� � 1, to complete correla-
tion.

2.3.2 Nonlinear methods. Linear methods of analysis of
functional connections described in Section 2.3.1 allow us to
obtain an unambiguous and correctly interpreted result only
for the linear relationship between the signals under investiga-
tion. As a rule, neuronal interactions are nonlinear, and a
family of nonlinearmethods has been developed to overcome
this limitation. The most popular and frequently used ones
are discussed below.

Nonlinear associations. A method for evaluating non-
linear associations was proposed by the authors of [120,
121] as a generalization of the linear correlation analysis.
Let us consider, without the loss of generality, the amplitude
of signal Y versus the amplitude of signal X. The expectation
of Y based on the known X value is expressed analytically as

mY jX�X� �
�1
ÿ1

Yp �Y jX � dY ; �6�

in this case, the dependence given by relation (6) is a
regression curve, and the nonlinear association measure Z 2

is calculated as

Z 2
XY �

s 2
Yt ÿ s 2

Yun

s 2
Yt

; �7�

where s 2
Yt is the total variance of Y, and s 2

Yun is the
`unexpected' variance of Y. The latter is calculated as the
difference between the total variance of Y and the expected
variance of Y obtained from the regression curve.

Unlike the linear correlation coefficient, which is sym-
metric, i.e., rXY � rYX, the nonlinear associationmeasuremay
turn out to be asymmetric, Z 2

XY 6� Z 2
YX. This property is of

interest and importance from the standpoint of analysis of the
nature of interaction between X and Y. If the relationship
between the signals is linear, then Z 2

XY approximates the
Pearson correlation coefficient r 2XY and, accordingly, is
symmetric. In the case of a nonlinear but one-to-one
correspondence between X and Y, the asymmetry turns out
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to be slight. Marked asymmetry of the nonlinear association
measure is observed in the case of a nonlinear and ambiguous
relationship between X and Y. By analogy with the correla-
tion coefficient, one can introduce a time shift between the
signals under study to estimate the directionality of the
connection and make this metric more resistant to the bulk
conductivity effect.

Phase lock measure. A mathematical concept of impor-
tance for constructing nonlinear methods to assess functional
connections is chaotic synchronization [122, 123]. Numerous
studies in the field of neuroscience show that the phase of a
signal as its temporal characteristic can often turn out to be
more informative than its amplitude, due to the correspond-
ing changes in synchronicity. This type of synchronization in
which the capture of phases of oscillatory neuronal activity is
observed is termed phase synchronization [124±127].

One of the most popular metrics for assessing phase
synchronization in neuroscience is the phase locking value
(PLV) [128]. This measure is based on the fact that, during
phase locking, the phase difference between the two signals,X
and Y, remains constant in the absence of amplitude
correlation, which is mathematically expressed as��jX�t� ÿ jY�t�

�� � const : �8�

To isolate the phase dynamics of a signal, the analytical signal
concept is often used [129]:

H �t� � X�t� � i ~X�t� ; �9�

where X�t� is the initial signal, and ~X�t� is its Hilbert
transform defined in the sense of principal value (v.p.) of the
Cauchy integral:

~X�t� � 1

p
v:p:

�1
ÿ1

X�t 0�
tÿ t 0

dt 0 : �10�

The analytical signal phase is defined as

jX�t� � arctan
~X�t�
X�t� ; �11�

and the measure of phase capture of two signals, X and Y,
having phases jX and jY is calculated according to the
following expression:

PLVXY�t� �
���� 1N XN

t�1
exp

�
i
ÿ
jX�t� ÿ jY�t�

������ : �12�

PLVXY was found to lie in the range from 0 to 1, where
1 characterizes exact phase synchronization and 0 means
complete independence of the phases of the signals under
consideration. Compared to the coherence measure cohXY,
the phase capture measure PLVXY provides a more accurate
result and requires fewer computational resources and fewer
data for a given temporal resolution. Moreover, the phase
capture measure is an optimal choice in an analysis of
nonstationary signals.

The evaluation of functional connectivity using the phase
capture measure is exemplified in Fig. 5d. The corresponding
phase difference calculated using the Hilbert transform is
shown in Fig. 5b. In contrast to the Pearson linear correlation
index rXY, PLVXY increases sharply after the onset of an
attack of absence epilepsy, demonstrating strengthening of

the nonlinear interaction from the perspective of phase
synchronization of neuronal activity in the thalamo-cortical
network of the brain.

A similar analysis of phase locking was carried out in
connectivity studies at the source level in addition to the
traditional analysis of coherence [95, 100, 103]. Both
coherence and phase lock measures are symmetric; there-
fore, they do not allow the directionality of connections
between interacting signals to be assessed. However, time
delays can be estimated from the phase slope of the cross-
spectrum of the time series of interest [130, 131].

Phase lag index. In addition to the traditional measures
for the assessment of phase synchronization developed in
physics (e.g., in the theory of chaotic oscillations), new
approaches to the analysis of functional connectivity have
recently been proposed based on the temporal dynamics of
signal phases. The elaboration of new approaches is
motivated by the necessity to interpret the results obtained
by traditional methods subject to the effects described in
Section 2.1. In what follows, we consider an increasingly
popular functional coupling metric, the phase lag index (PLI)
[132], which takes into account a number of the previously
mentioned problems and limitations.

The main purpose of using the phase lag index is to assess
phase synchronization while eliminating problems related to
bulk conductivity and changes in the impedance of the
electrodes (in the case of EEG recording). This can be
achieved by disregarding the phase differences concentrated
around values that are multiples of p: 0, p, 2p, 3p, etc. One of
the ways is to introduce a certain asymmetry index for the
phase difference distribution in the vicinity of zero; in the
absence of coupling between the signals, the distribution is
uniform and symmetric, whereas any deviation from
symmetry serves as an indicator of the coupling. Here,
asymmetry means that the probability of finding the phase
difference in the interval ÿp < jX ÿ jY < 0 differs from
that in the 0 < jX ÿ jY < p range. Such asymmetry implies
the presence of a nonzero phase difference (or delay), the
nature of which is unrelated to the neural activity source
common to the two signals due to the simultaneous
observation of the bulk conductivity effect on the neighbor-
ing electrodes.

The phase lag index characterizing asymmetry of the
phase difference distribution is defined as

PLIXY �
��
signÿjX�t� ÿ jY�t�

���� ; �13�

where the operator h. . .i means time averaging. Note that
expression (13) requires that the phase difference be deter-
mined within the �ÿp; p� interval. If it is determined in the
�0; 2p� interval, the expression for the evaluation of PLI
should be presented in the form

PLIXY �
��
signÿ sin �jX�t� ÿ jY�t�

����� : �14�

In accordance with (13) and (14), PLI was found to lie in a
range from 0 to 1, where 1 corresponds to an ideal phase
capture other than a multiple of p, and 0 indicates the
complete absence of connectivity. It is also important that
the phase lag index (PLI) in this definition not provide
information on the directionality of the connection, i.e.,
which of the two signals has a leading phase. This problem
can be solved by excluding the modulus from expressions (13)
and (14).
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An alternative way to assess functional connections
between signals from short time series is provided by the
wavelet bicoherence method [133, 134], which finds applica-
tion in the study of cognitive processes and the processing of
stimulus information (see, for instance, [135±137]).

2.3.3 Evaluation of functional connectivity based on mutual
information.Mutual information characterizes the amount of
data on the state of a system derived from a dataset on the
state of another system [138]; it allows us to reveal linear and
nonlinear dependences between the time series or neuronal
sources of interest [139, 140]. If only the state of system X is
known, it is possible to estimate the average amount of
information about its state or entropy:

H�X � � ÿ
XN
t�1

PX�Xt� log2 PX�Xt� ; �15�

where PX�Xt� is the probability of X taking the value Xt. This
value also has the meaning of the uncertainty of observing
stateX. If at the same time processY takes place that assumes
state Yk, then the definition of the conditional probability
should be used and expression (15) presented in the form of
conditional entropy:

H�X jY � Yk� � ÿ
XN
t�1

PXY�Xt;Yk�
PY�Yk� log2

PXY�Xt;Yk�
PY�Yk� :

�16�
Here, PXY�Xt;Yk� is the joint probability that X � Xt while
Y � Yk. The quantityH �X jY � Yk� characterizes the uncer-
tainty of stateX at a known valueY � Yk. Fromhere, one can
find the average uncertainty of state X over all known Y
values:

H�X jY � �
XN
k�1

PY�Yk�H �X jY � Yk�

� ÿ
XN
k�1

XN
t�1

PXY�Xt;Yk� log2
PXY�Xt;Yk�
PY�Yk�

� H �X;Y� ÿH �Y � ; �17�
where

H �X;Y � � ÿ
XN
k�1

XN
t�1

PXY�Xt;Yk� log2 PXY�Xt;Yk� : �18�

SinceH �X � is the a priori uncertainty of stateX, andH �X jY �
is the a posteriori uncertainty at known Y values, the fraction
of stateX uncertainty reduced by virtue of information about
state Y can be expressed as

IXY � H �X � ÿH �X jY � � H �X ��H �Y � ÿH �X;Y �

� ÿ
XN
k�1

XN
t�1

PXY�Xt;Yk� log2
PXY�Xt;Yk�

PX�Xt�PY�Yk� : �19�

The quantity IXY is called cross-mutual information [141]. If
processes X and Y are completely independent, then
PXY � PXPY; therefore, IXY � 0.

For example, the authors of Refs [139, 140] used magnetic
imaging as an inverse method [142] to determine the zones of
activity in the brain. The areas of interest were determined by

identifying coherently activated brain regions. Time series of
activity of each area of interest were registered; then, an
analysis of mutual information was carried out. Mutual
information was calculated between all possible pairs of the
areas of interest in a given range of time delays.

It is also important to understand that the mutual
information measure is symmetric with respect to direction-
ality IXY � IYX; however, the use of signals with time delays
can give an idea of the directionality of connections.

2.3.4Methods based on generalized synchronization.Recently,
a few more measures for the assessment of functional
connections have been proposed; some of them based on the
diagnostics of generalized synchronization deserve special
attention [123, 143±146]. Synchronization of this type
implies the unambiguous functional correspondence
between the states of two related processes:

Y �t� � F
ÿ
X�t�� : �20�

Evidently, the limiting case of generalized synchronization is
complete synchronization, Y �t� � X�t�.

The above mathematical definition of generalized syn-
chronization applies to the case of unidirectional action
X! Y. For the mutual connection X$ Y, the generalized
synchronization criterion is expressed as follows [147]:

F
ÿ
X�t�;Y�t�� � 0 : �21�

From the standpoint of nonlinear dynamics, in the case of
generalized synchronization, the trajectory of one system in
the space of states is totally determined by the trajectory of the
other system and vice versa. To consider the dynamics of
systems in the state space based on the known time series, the
corresponding phase trajectories x�t� and y�t� are recon-
structed from the initial signals X�t� and Y�t� using the
Takens theorem [148]:

x�t� � �X�t�;X�t� l �;X�t� 2l �; . . . ;X
ÿ
t� �mÿ 1�l �	 ;

y�t� � �Y�t�;Y�t� l �;Y�t� 2l �; . . . ;Y
ÿ
t� �mÿ 1�l �	 ;

�22�

where l is the shift and m is the dimension of the state space.
Note that the values of l and m can be chosen either
empirically or based on mathematical criteria [149, 150]. The
methods allowing an evaluation of the functional connections
betweenX andY from the recovered trajectories x�t� and y�t�
are described below.

Recurrent analysis. Recursion or repetition in time is a
fundamental property of various natural processes. It means
that a given system returns to its earlier states in the course of
evolution. The recurrence plot as a method for visualizing a
repetition process is a powerful tool for analyzing systems
based on time series reflecting their dynamics (see the detailed
review by Marwan et al. [151]).

Let x � fx1; x2 . . . ; xNg be a discrete time series; then, the
recurrent matrix can be given by the following expression:

Ri; j
x �

1 : xi � xj ;

0 : xi 6� xj ;

�
i; j � 1; . . . ;N ; �23�

whereN is the number of considered states, and xi � xj means
the equivalence of states up to an error (distance) e.
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A comparison of recurrent matrices of two processes gives
information on the relationship between them. Romano et al.
[152] showed that two processes are functionally related
(in fact, they are in a generalized synchronization mode) if
they have similar recursion maps. Based on this finding,
Goswami et al. [153] developed a connectivity measure
referred to as the recurrence-based measure of dependence
(RMD). This measure characterizes the dependence between
the two processes and its direction. Thus, the RMD
determines the presence or absence of a causal relationship
in a pair of processes in terms of establishing a functional
(linear or nonlinear) dependence between them.

For a pair of trajectories, x�t� and y�t�, the RMD is
defined as

RMDxy � log2

�
1

N

XN
t�1

RMD i
xy

�
; �24�

RMD i
xy �

P �xi; yi�
P �xi�P �yi� : �25�

The probabilities P �xi� and P �yi� as well as the joint
probability P �xi; yi� are calculated based on the recurrent
matrices (23) of the x�t� and y�t� processes:

P �xi� � 1

N

XN
j�1

Ri; j
x ; �26�

P � yi� � 1

N

XN
j�1

Ri; j
y ; �27�

P �xi; yi� � 1

N

XN
j�1

JR i; j
xy ; �28�

JR i; j
xy � Ri; j

x R i; j
y ; �29�

where JR is the joint recurrent matrix of x and y.
To find the direction of the nonlinear interaction between

processes x and y, we introduce the time shift t into equations
(24) and (25):

RMDxy�t� � log2

�
1

N 0
XN 0
k�1

RMDk
xy�t�

�
; �30�

RMDk
xy�t� �

Pxy�xk; yk�t�
Px�xk�Py�yk�t� ; �31�

where N 0 � Nÿ t and yk�t is the trajectory yk shifted by t
with respect to xk. The RMDxy�t� dependence has a local
maximum t �xy � argmax�RMDxy�t��. The sign t �xy determines
the direction of the connection: process x affects y, if t �xy > 0,
and vice versa. In addition, the value RMD �xy �RMDxy�t �xy�
can be used to assess the strength of connectivity between
processes x and y.

The recurrent approach has been successfully used to
analyze the functional relationship over short biological and
climatic time series [16, 25, 153±155]. The advantages of this
approach include the possibility of using short time series and
revealing nonlinear directed interactions.

Machine learning. A fundamentally different approach to
the analysis of functional connections from the standpoint of
generalized synchronization was proposed in [117], where the

mathematical apparatus of machine learning was used to
identify functional dependence (21). To reveal dependences
between the behavior of trajectories x�t� and y�t�, a feedfor-
ward artificial neural network (ANN) was used. AnANN is a
computing system designed to reveal unknown and usually
complex functional relationships between input and output
data [156]; therefore, it provides a suitable tool to diagnose
generalized synchronization. Indeed, in accordance with the
approximation theorem, an ANNwith nonlinear functions in
hidden layers can approximate any arbitrarily specified
function [157, 158]. A nonlinear ANN can also approximate
themapping of functions fromone finite-dimensional discrete
space to another [156]. This property of ANNs allows
approximating the functional relation F in (21), considering
only an experimental data set x�ti� and y�ti�, where ti � iDt is
the discrete moments of time and 1=Dt is the sampling rate.

Figure 6 illustrates schematically the proposedmethod for
detecting functional connections using ANNs. When con-
sidering two related processes, the dynamics of which are
represented by multidimensional signals (or trajectories in a
multidimensional space of states) x�t� and y�t�, functional
connectivity implies y�t� � F �x�t��. From the mathematical
point of view, an ANN is a mapping f : x! y; therefore,
ANNs can be used to build a model of the unknown ratio
F �. . .� and determine the state y only on the basis of state x. In
other words, given that there is a true functional relation
y�t� � F �x�t��, the ANN can approximate it and give a
sufficiently accurate estimate y 0�t� of the y�t� state based on
x�t�. On the contrary, if x�t� and y�t� are functionally
unrelated, the ANN cannot learn to find a correspondence
between states x�t� and y�t� and therefore cannot accurately
predict the state of the latter system. It can be concluded that
the criterion for identifying the functional connectivity is the
equality of the predicted actual values of y and those
predicted using the ANN: y 0�t� � y�t�.

To train the ANN, a pair of multidimensional time series
(trajectories) reflecting the dynamics of interacting systems
x�fx�t1�; x�t2�; . . . ; x�tN�g and y � fy�t1�; y�t2�; . . . ; y�tN�g
can be used. Suppose, without loss of generality, that x acts
on y. Vector y�ti� is put in correspondence with each vector
x�ti�; x and y stand for input and target data, respectively. The
data are normalized in the [0, 1] range, mixed, and divided
into training and test sets in equal proportions. To correct the
retraining of the model, the discrepancy between the training
and validation errors is checked if these values diverge during
the last 10 learning epochs; then, the process ends and starts

x y
y � F �x�ìyes or no?

Functional connection model
in the form of a feedforward ANN F �. . .�

y0

Generalized
synchronization,

if y � y0

Figure 6. Schematic representation of the method for the assessment of

functional connections using a feedforward ANN (modified scheme from

Ref. [117]).
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anew. To quantify the degree of functional dependence, the
coefficientR 2 is used that evaluates the correspondence of the
initial y�t� and output ANN y 0�t� data:

R 2 � 1ÿ
PD

d�1
PN

i�1
ÿ
yd�ti� ÿ y 0d�ti�

�2PD
d�1
PN

i�1
ÿ
yd�ti� ÿ �yd

�2 ; �32�

where D is the number of measurements of the time series (or
the space of states), yd�t� and y 0d�t� are components d of vector
y�t� and its prediction made using the ANN, respectively. R 2

ranges from 0 to 1 and characterizes the amount of data
accurately predicted by the ANN. BecauseR 2 � 0:5 indicates
that only half of the data is accurately approximated by the
model, this value is further considered the threshold accuracy.

The described method tested in an analysis of generalized
synchronization in model chaotic systems was used to
demonstrate the rearrangement of functional connections in
the thalamo-cortical network of WAG Rij rats during an
epileptic discharge (the results are described in detail in
Section 3.4). An example of the analysis of functional
connections using machine learning shown in Fig. 5e demon-
strates excellent agreement with the nonlinear PLVXY method
based on phase synchronization.

The advantages of the method include the capability to
work with short time series and analyze nonlinear connec-
tions between interacting processes. In addition, the
approach based on the application of machine learning is
resistant to noise, which is important in the context of the
analysis of functional connections in signals of a biological
nature.

2.4 Methods for assessing effective connections
The methods for assessing functional connections discussed
in the foregoing assume connectivity between the analyzed
brain areas as a certain statistical relationship evaluated by
calculating a time series correlation or synchronization that
characterize their neural activity. Another equally important
concept of brain connectivity analysis is effective connectivity
[51]. In the framework of this concept, connectivity is
understood as the impact of one neuronal system on
another, reflecting the causality of interaction between active
brain regions. In other words, connectivity reflects the
direction and strength of the information flow between
different parts of the brain. In Sections 2.4.1 and 2.4.2, the
most extensively used methods for the reconstruction of
effective connections are considered.

2.4.1 Dynamic causal modeling. Dynamic causal modeling
(DCM) is one of the most widely used methods for the
analysis of effective connections [159] that belongs to the
class of model-based techniques. The key idea behind the
DCMapproach is the simulation of the response of a dynamic
system in the form of a network of interacting sources of
neural activity described by a system of ordinary or stochastic
differential equations in the framework of either a neural
mass model [91] or a conductivity-based model [160].
Originally, the DMP method was developed to analyze
fMRI data; later, it was modified for the treatment of MEG/
EEG data [89].

Regardless of the neuroimaging technique, the construc-
tion of a phenomenological dynamic model is based on the
experimental design, understood as a method of conducting
research with the use of suitable tools, a set of stimuli, and
information on the mode of their presentation.

As a rule, a neurophysiological experiment is aimed at
studying the brain either in the state of activity provoked by
the performance of a specific task or in the state of passive
rest. In the former case, the reaction of the brain depends on
the stimuli controlled by the experimenter. External stimuli
control neuronal processes either directly, e.g., through
evoked potentials, or by modulating them via the interaction
between large neuronal ensembles. In the framework of the
model, both mechanisms (external and modulatory) are
considered to be separate factors. In the second case, only
internal interactions in the neural network of the brain are
taken into account.

In general terms, the dynamic model of causality is
presented in the following form:

_z�t� � F
ÿ
z�t�; u�t�; y� ;

h�t� � G
ÿ
z�t�; y�� e ; �33�

where z�t� is the function describing the state of the system of
neurons at the time point t, u�t� is the external stimulus, y are
the parameters of the model (topology and strength of
internode connections), F is the function determining the
dynamics of neural processes, h�t� are the signals of neural
activity generated and measured during the experiment, G is
the function relating dynamics of neural processes to output
signals, and e is the additive measurement noise. Based on
(33), the definition of the model consists of setting the
functional relations F �. . .� and G�. . .� and the choice of
`active' connections in the hypothetical network interaction
model.

Several potential models having been identified, and it is
necessary to select parameters for each of them. In the
framework of the DCM approach, this procedure is carried
out using the variational Bayesianmethods under the Laplace
approximation [161], which makes it possible to assess the
adequacy of the model based on the probability of observing
the output data using a concrete model. Friston et al. [162,
163] present a detailed description of the procedures for the
choice of models and selection of parameters.

2.4.2 Granger causality. In addition to the methods for
determining effective connections based on a neuronal
interaction model, there is a family of approaches using
observational experimental data alone. The most popular of
them is the Granger causality test [164]. In its classical form,
Granger causality is a linear mathematical apparatus for the
statistical testing of the hypothesis of whether the information
about process X is of value for predicting process Y based on
two principles: (1) the cause precedes the effect; (2) the cause
has unique information about the future meanings of the
effect.

The null hypothesis for testing Granger causality is
formulated as follows:

P
ÿ
Y �t� 1�jI�t�� 6� P

ÿ
Y �t� 1�jIÿX�t�

�
; �34�

where Y �t� 1� is the next value of process Y �t� to be
predicted, and I �t� and IÿX�t� are complete information and
information excluding process X, respectively, available by
the time point t. According to theGranger causality principle,
process X is the cause of process Y provided that the null
hypothesis (34) is accepted.

In the multidimensional case, the Granger causality
analysis is performed as a fitting of the vector autoregressive

596 A E Hramov, N S Frolov, V AMaksimenko, S A Kurkin, V B Kazantsev, A N Pisarchik Physics ±Uspekhi 64 (6)



model to the available time series. Let X�t� �
fX1�t�;X2�t�; . . . ;XD�t�g be a multidimensional (multichan-
nel) time series of dimension D; then, Granger causality is
expressed in the form

X�t� �
XL
l�1

A�l �X�tÿ lDt� � e�t� ; �35�

where L is the time delay, Dt is the time series sampling step,
andA�l � is the matrix of regression coefficients for each value
of the delay l. The time delay L is determined in accordance
with the Akaike criterion [165] or the Schwarz criterion [166].
Based on expression (35), the time series Xi predicts the time
series Xj if at least one element of Ai; j�l � (l � 1; . . . ;L) differs
significantly from zero.

TheGranger causality analysis has a number of important
limitations. First, it is sensitive to the common input problem
and can yield ambiguous results in the form of false
connections in the case of more than two time series. Second,
the results of the causality analysismay be incorrect in the case
of nonlinear nonstationary time series. Third, in the tradi-
tional formulation, the method is aimed at identifying linear
patterns and cannot reveal nonlinear interactions. Modifica-
tions of the method for the analysis of nonlinear connections
have been proposed in a number of papers [167±169].

The Granger causality analysis was adapted for use in the
frequency domain [170±172], which is important for the
analysis of experimental neurophysiological signals. Esti-
mates of directed interactions between brain regions in the
frequency domain can be obtained using multivariate auto-
regressive models [173]. After fitting the multivariate auto-
regressive model to signals at the sensor level or at the source
level, directed interactions can be quantitatively determined
using a directed transfer function [174] or partial directed
coherence [171, 175].

Note also that Granger causality in the source space was
carried out by a number of research teams [93, 94, 103, 176,
177]. Astolfi et al. [93, 94] applied structural equation
modeling in addition to the directed transfer function to
evaluate effective connections using both simulated and
recorded high-resolution EEG data. These approaches were
further modified to enable the calculation of time-varying
effective connections using adaptive multivariate autoregres-
sive models [178].

3. Integration processes in the brain

The human brain interacting with the environment is
incessantly involved in cognitive processes associated with
the treatment of sensory information and its analysis,
decision-making, and control of motor functions. Under
real conditions, the cognitive processes are inextricably
linked to one another, in contrast to those under conditions
of a special neurophysiological experiment designed so as to
be focused on the effects associated with one of the processes
and to neutralize the influence of others. In the context of
neural activity, these processes correspond to integrative
dynamics of the cerebral cortex characterized by functional
interaction among its different parts.

The important role of functional interactions in the
cortical neuronal network during realization of cognitive
and behavioral functions is confirmed by neuroimaging data
[179±182]. Specifically, the results of fMRI indicate that the
brain realizes its functions through the interaction among

various functional subnets, both in the passive waking state
and under a cognitive load. By now, a large number of
functional subnets have been discovered, viz. the `dorsal
network of attention support,' `fronto-parietal network,'
`executive control network,' and `network of the passive
mode of brain operation' [183]. These subnets are located in
different parts of the cerebral cortex, but they interact with
one another during cognitive activity, the efficiency of which
depends on the degree of functional integration of cerebral
neuronal networks [184].

Results of research show that mental fatigue leading to a
decline in cognitive abilities is accompanied by a decrease in
the effectiveness of interactions between different subnets
[185]. It also confirms the need for functional integration to
support an effective cognitive activity. Finally, the activity of
the brain under cognitive load conditions is also associated
with an increase in the degree of integration within the
cortical network to ensure access to additional resources.
According to [186], an enhanced cognitive load lowers
modularity in the functional brain network. In this case, the
network of the passive mode of brain operation strengthens
connections with other subnets, while its own internal
connections weaken.

It can be concluded that the integrative dynamics of the
distributed cortical network of the brain mediated through
the functional interaction among its various parts support
sensory-motor and cognitive activity; they also permit
dynamically managing cognitive resources to maintain the
high efficiency of brain work.

Let us consider a number of important examples of
integrative processes in the functional networks of the brain
associated with the treatment of sensory information, the
planning of motor acts, and pathological activity during
epilepsy. To begin with, here is a brief introduction to the
mathematical apparatus of the graph theory used to describe
characteristics of reconstructed cerebral functional networks
[31, 187] (see Section 3.1).

3.1 Mathematical apparatus
of the theory of complex networks
3.1.1 Basic definitions. From the mathematical point of view,
the functional network of the brain can be represented as a
graph [2, 36, 188]. An undirected (directed) graph G �
�n;l� contains a set of nodes (or vertices) n �
fn1; n2; . . . ; nNg 6� 0 and many unordered (ordered) pairs of
nodes l � fl1; l2; . . . ; lKg which represent the edges (or
connections) of the graph [189]. If the number of elements in
n andl corresponds to the number of network nodesN and
the number of links K, a graph defining the network can be
denoted as

GN;K � �n;l� : �36�

Anetwork node is usually described by the number i in the
setn. In an undirected graph, each connection is determined
by a pair of nodes, i and j, and is denoted �i; j � or li j. Two
nodes connected by an edge are called adjacent or neighbor-
ing. In a directed graph, the order of the two nodes is
important: li j denotes the link directed from the ith node to
the jth one, while li j 6� lj i. The usual way to graphically
represent a graph is to draw a point for each node and
connect the two points with a line if the two corresponding
nodes are connected. How these points and lines are drawn is
of no consequence: the only thing that matters is which pairs
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of nodes form a connection and which do not. Examples of
undirected and directed graphs with N � 12 and K � 18 are
presented in Figs 7a and b, respectively. For a graph of sizeN,
the number of edges lies within 04K4KN � N�Nÿ 1�=2.
GraphG is called sparse ifK5N 2 and dense ifK � O�N 2�. A
graph is termed complete if K � KN, i.e., when all nodes are
connected to each other.

Moreover, the notion of a weighted graph is introduced:

GW
N;K � �n;l;w� ; �37�

which includes, in addition to numerous nodes n and links
l, a set of quantities usually referred to as weights, w �
fw1;w2; . . . ;wKg, which are the real numbers associated with
the connections fl1; l2; . . . ; lKg. In this case, two nodes are
characterized not only by the presence of a connection
between them but also by the weight (intensity) of the
connection (interaction).

The central concept in graph theory is the reachability of
two different nodes in a graph. In fact, two nodes that are not
adjacent may nevertheless be `available' to move from one to
the other. A transition from node i to node j is an alternating
sequence of nodes and edges (a sequence of neighboring
nodes) that starts with i and ends with j. The length of the
path from the ith node to the jth one is defined as the number
of edges in this sequence. A path between two nodes is a
transition in which no node is visited more than once. The
minimal distance between two nodes is usually called the
shortest path. In addition, the concept of a closed path is
introduced; it consists of at least three nodes of a cycle in
which no edge is repeated. A cycle of length k is usually called
the k-cycle, denoted byCk.C3 is the simplest cycle, referred to
as a triangle. A graph is called connected if for each pair of
different nodes i and j there is a path from the ith node to the
jth one; otherwise, the graph is considered disconnected.

In the network theory, it is convenient to consider the
matrix representation of a graph. The graph GN;K (36) can be
fully described by specifying the adjacency (or connectivity)
matrixA, i.e., a square matrixN�Nwhose element ai j (i; j �
1; . . . ;N ) equals 1 when link li j exists and 0 if otherwise. In
other words, the adjacencymatrix is symmetric for undirected
graphs and contains 2K nonzero elements. The weighted
graph GW

N;K (37) is represented as a square matrix of weights
W N�N, elements of which, wi j, are equal to the weight
(intensity) of the connection between the ith and jth nodes;
wi j � 0 for unconnected nodes.

In the graph theory, various characteristics of graphs are
distinguished, which can be conditionally divided into two
groups: (1) segregation measures reflecting the possibility of
identifying some subnets within the network (clustering and
modularity of the network); (2) network integration measures

describing certain aspects of the effectiveness of communica-
tion among all nodes inside the analyzed network.

3.1.2 Network integration and segregation. Studies on
human and animal brain networks in the context of the
theory of graphs have demonstrated a nonrandom organi-
zation of functional cerebral connections, including the
tendency of nodes (i.e., brain regions) to cluster into
organized ensembles [1]. The tendency of the brain toward
local clustering is combined with a high throughput of
information flows, as evidenced by the high efficiency and
the small average path length of functional brain networks
formed, for example, while processing sensory information
[2, 190, 191]. A combination of the high degree of global
integration of the brain network with the presence of hub
nodes showing high centrality and enhanced efficiency of
local information processing suggests the presence of such a
type of network organization of the brain as small world
topology [192].

A graph of the `small world' type has the following
property: two arbitrary vertices i and j are not adjacent with
a high probability, but one is reachable from the other by a
small number of transitions through other vertices. The
typical distance L between two arbitrarily chosen vertices i
and j, defined as the number of steps needed to reach one from
the other, increases in proportion to the logarithm of the
number of vertices N in the network: L / log N. This type of
network architecture promotes local information processing
and at the same time allows information to be effectively
integrated throughout the system [193].

In Refs [1, 194, 195], a hypothesis was put forward that
suggests that the modular structure of the neural network is
beneficial for the brain, since high connectivity between the
elements in one module contributes to the local (in terms of
the entire network) realization of specialized functions, e.g.,
primary processing of sensory information [195], while
reducing the cost of organization of the information flow
between different areas of the brain [196].

It should be noted that a number of experimental studies
[197±199] have produced evidence of a high degree of
coincidence between the functional and structural modules
of the central nervous system in health and disease. Specifi-
cally, it has been shown that the modular structure of the
brain's functional network and the associated structure of
cerebral functional subsystems are interconnected via a
relatively small number of densely connected brain nodes
with high centrality (hubs) [200, 201] confined to the frontal
and parietal regions of the cortex and the central lobe of the
brain [202]. It has been shown that the totality of white matter
tracts connecting these nodes of the brain's functional
network with a high degree of centrality at relatively large
distances consists of large axonal projections [203±205].

In fact, the connections between the hubs of the functional
brain network topologically form a `central highway' for the
global `neuronal traffic' in the brain. This core of connected
hubs forms a system called the `rich club' [201]. Importantly,
such a system is not free from drawbacks, despite the
advantages due to the high efficiency of information transfer
within a similarly organized network. Suffice it to say that
lesions in the connections between the `rich club' nodes
disrupt information transfer in the system as a whole [206],
which may seriously interfere with the performance of motor
acts after a stroke and result in the physical destruction of part
of the neuronal ensemble of the brain [207, 208].

a b

Figure 7. Examples of undirected (a) and directed (b) graphs with N � 12

and K � 18.
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Network integration measures reflect the efficiency of
communication among all nodes in the entire network. The
simplest characteristic describing the number and density of
connections in the network is the degree ki of the ith node,
which can be defined in terms of the adjacency matrix as

ki �
X
j2n

ai j : �38�

If a graph is directed, the degree of the node consists of two
components: ki � k out

i � kinpi , where kouti �
P

j ai j is the
number of outgoing connections and kinpi �

P
j aji is the

number of incoming connections.
The basic topological characteristic of a graph G can be

obtained in terms of the distribution of degrees P�k� of the
nodes, defined as the probability that a node chosen at
random has the degree k or as the fraction of nodes in the
graph having the degree k, which is equivalent. Information
about how the degrees are distributed between the nodes can
be obtained either by constructing P�k� or by calculating the
moments of distribution:

hkn i �
X
k

knP �k� : �39�

The first moment hki is the average degree of a network node
and is often used in the analysis of real networks.

The shortest paths in the network play an important role
in internode communication. If, for example, some data need
to be sent from one node to another, the paths of a minimum
length are optimal for the fastest transfer and saving
resources. For this reason, the shortest paths, like the degrees
of nodes, play an important role in the internal structure of
the network. It is convenient to represent all the lengths of the
shortest paths of graph G in the form of matrix D, where the
element di j is the minimal length of the path from node i to
node j. Based on matrix D, it is possible to introduce an
important characteristic describing the integration of net-
work nodes, i.e., the length of the shortest path averaged over
all pairs of nodes:

L � 1

N�Nÿ 1�
X

i; j2n; i6�j
di j : �40�

The connection of two nonadjacent nodes, say j and k,
depends on the nodes belonging to the paths connecting these
nodes. Therefore, a measure of `importance' of a given node
in the network can be obtained by counting the number of
shortest paths passing through it and determining the so-
called intermediate centrality of the node. Along with the
degree of a node, intermediate centrality is one of the
standard node centrality measures in the network. The
strictly intermediate centrality bi of the ith node is defined as

bi �
X

j; k2n; j6�k

nj k�i�
njk

; �41�

where njk is the number of shortest paths connecting the jth
and the kth nodes, and njk�i� is the number of shortest paths
connecting the jth and kth nodes and passing through the ith
node.

Turning back to the topology of complex networks, one
can distinguish between homogeneous and heterogeneous
networks. The homogeneity of a network structure implies
that almost all its nodes are topologically equivalent, as in
regular lattices or random graphs. In the latter, for example,

each of the N�Nÿ 1�=2 possible connections is present with
an equal probability, which means that the distribution of
node degrees is either binomial or Poisson-type in the large
graph size limit. Homogeneous networks in the brain are
exemplified by `small world' networks describing the features
of cerebral functional networks of a subject at rest [209].

Heterogeneous networks are characterized by a highly
nonuniform distribution of the degrees of nodes determined
by the presence of hub nodes connected with many other
ones. The hubs are often present together with a large number
of weakly connected elements. A typical example of such
networks is provided by freely scalable networks character-
ized by a power-series distribution in the form of the power
law P�k� � kÿa with exponents a 2 �2; 3�. Thus, hubs are
nodes with a high degree of centrality, as shown in Fig. 8a.
Their presence is a marker of the structural ordering and
hierarchical organization of a complex network.

The main marker of the structural ordering in the brain,
regarded as an integrated complex network system, is the
deviation of the distribution of node degrees P�k� in a
functional network from the Poisson distribution. Studies of
functional brain networks have demonstrated the distribu-
tion of the degrees of nodes with `heavy tails' [210±212], which
suggests the existence of a number of highly connected areas
[213]. Certain areas of the brain are characterized by a
higher degree, low clustering, short path length, and high
centrality. They are actually hubs in the functional network
of the brain [200, 214]. Such hubs play a central role in
establishing and maintaining effective communication
among brain regions, which is critically important for its
normal functioning [215, 216].

To recall, high-centrality nodes tend to bind more tightly
to other hubs than do low-centrality ones. As is mentioned
above, this integration phenomenon is referred to in terms of
the network theory as the `club of the rich' by analogy with
social systems in which well-connected high-centrality indivi-
duals not infrequently tend to unite in clubs [217, 218]
(Fig. 8b). The presence or absence of a `club of the rich' can
yield important information about the network structure,
especially about its stability, hierarchical ordering, and
specialization [218, 219]. For example, a strong tendency
toward integration of power grids into `rich club'-like
systems arises from the necessity to create grids capable of
readily distributing electricity from one station to another to
reduce the likelihood of a critical failure. On the other hand,
the absence of `club of the rich' structures in protein
interaction networks reflects the high level of their functional
specialization. References [201, 220±222] report examples of
the tendency to organize cerebral functional networks into
structures with `rich club' properties.

An analysis of integration in the brain's networks requires
an understanding of segregation in a functional network and
knowledge of its internal structure. Themost typical situation
of network segregation is the formation of a structure called
the community structure. Such organization means that the
nodes of a network can be easily combined into groups
(communities or modules) characterized by a high density of
connections between those nodes belonging to a given group
and sparser connections between the communities. However,
there are situations in which communities may overlap.
Therefore, in the general case, to define a network as a
structure of communities, it is necessary to establish the fact
that pairs of nodes are more likely to be connected if they are
both members of the same community and less likely to be
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such if they belong to different communities. Elucidation of
the structure of communities in complex networks is a
powerful tool for understanding the structure and function
of a network and mechanisms of its restructuring.

There are a large number ofmethodsmaking it possible to
analyze segregation in the cerebral network, with special
emphasis on its communities and the degree of clustering.
Their general goal is to find meaningful divisions into groups
by analyzing the structural properties of the entire graph and
introducing certain network segregation measures to char-
acterize the degree to which the network can be split into local
structures (clusters or modules) with a large number of inter-
element connections inside them. At the same time, such
structures have a small number of connections that link them
to the rest of the network, as shown in Fig. 8c presenting
examples of the formation of dedicated structures in the
network.

The simplest and at the same time the most common
effect of segregation in a network is clustering, also known
as transitivity, which suggests a connectivity structure in
which two nodes communicate with each other with a
greater probability if they are linked to the third one [31].
Another example of segregation in a network is the
modularity effect, reflecting the fact that the network as a
whole can be divided into separate modules or communities
with a high density of internal connections contrasting with
the low density of connections between a module and the
rest of the network.

To analyze modularity, the algorithm of Girvan and
Newman [223] is widely used for breaking a network into
components in an iterative process based on the identification
and gradual removal of connections with the largest dis-
tances. Because the edges of a graph lying between commu-
nities are expected to have the greatest length, their recursive
removal may ensure an acceptable division of the network
into communities. A number of modifications and additions
to this algorithm have been proposed for the search for
modularity in complex cerebral networks [224±226], includ-
ing structural and functional ones [227±229].

Structural and functional networks of the brains of
humans and higher animals are characterized by a high

degree of clustering and modularity, which may serve as one
of the criteria for the detection of pathological conditions of
the brain. For example, there is a tendency towards a
reduction in clustering of structural connections in the
connectome of patients with schizophrenia compared to
that in control subjects [230]. The effect of impaired
clustering is especially well pronounced in the frontal,
temporal, parietal, and cerebellar regions of the brain [231],
which confirms the general tendency to clustering impair-
ment in the connectome of patients presenting with schizo-
phrenia. Results of the studies of the cerebral functional
network in schizophrenics suggest, in general, reduced
clustering [232, 233]. Examination of such patients using
fMRI have revealed simultaneous impairment of clustering
and modularity in brain functional networks in cases of
schizophrenia developed in childhood [234].

3.1.3 Multilayer functional networks of the brain. It should be
noted that the traditional models of cerebral networks in the
form of graphs described in the preceding paragraphs
illustrate only one way of interaction between network
nodes. At the same time, such neuroimaging technologies as
fMRI, MEG, and EEG record the dynamics of brain regions
in time in different frequency ranges. It is often important to
store and compare information about the spectrum dynamics
in different frequency ranges [235±239]. For example, the
perception of a visual stimulus is accompanied by a decrease
in the amplitude in the alpha range (8±12 Hz) and its increase
in the beta range (20±30 Hz) in the occipital region of the
brain [240]. In addition to the measurement of functional
interactions using fMRI=fNIRS or MEG=EEG, methods for
the in vivo elucidation of the connectome structure, such as
diffusion tensor imaging (DTI) [241], detect the presence and
measure the strength of physical connections between
different brain regions.The availability of multimodal data-
sets requires a quantitative model universal and flexible
enough to describe interactions among different scales and
modalities in order to obtain a deeper insight into the brain's
organization.

To solve this problem, it was proposed to use multilayer
networks to simulate many complex interactions in brain
functional networks [242±244]. A multilayer network is a
generalization of a traditional network making possible a
network description of multimodal data [245, 246]. Multi-
layer networks are built on the basis of a weighted graph (37)
of a traditional network with the addition of a supplementary
set of layer indices s:n!sÐfrom a set of nodes to a set of
layer indicess, i.e.,

MW
N;K;D � �n;l;w;s� : �42�

It is assumed that the set of layer indices has the form
s � S1 � S2 � . . .� SD, where each set si is called the ith
layer of a multilayer network, and the network itself in this
case is D-dimensional. From the point of view of the graph
theory, the only difference between traditional andmultilayer
networks is that, in a traditional network, each node is
assigned a label ni 2 N, whereas, in a multilayer network, a
vector label s�ni� � �n1i ; n2i ; . . . ; nD

i � is assigned to each node.
In the multilayer formalism, it is possible, in essence, to
construct several levels of traditional networks, with each
level describing some feature or aspect of multimodal data.
Intralayer connections serve the same purpose as in a
traditional network; they reflect connections between nodes

Hub

Modularity

Clustering

Club of the rich

a b

c

Figure 8. (Color online.) Examples of integration in complex-topology

networks: (a) a node with high centrality (hub), (b) a rich club-like

structure, and (c) examples of segregation of the formation of dedicated

structures (a cluster and a module).
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on a layer representing a single property of the modeled data.
Interlayer connections provide a description of interaction
among various properties of a single node. This permits
considering several modes of interaction between the nodes
of a multilayer network characterized by a vector of proper-
ties.

Let S1 � H be the number of nodes on each layer which
are physical objects (e.g., a sensor on the head surface during
EEG/ MEG). Let us denote the nodes of the network by the
index i (i � 1; . . . ;H ) and the number of nodes in the total
network by the index v (v � 1; . . . ;N, N � DH ). Figure 9a
illustrates the difference between the nodes and vertices in a
multilayer network.

Multilayer networks can also be described in terms of
matrix formalism, like traditional networks. For each pair of
vertices in a network with indices i and j, it is possible to
introduce weight wi j corresponding to the connection
between these vertices. One can also introduce the super-
adjacency matrix �A for a multilayer network MW

N;K;D,
analogous to the adjacency matrix of a traditional network,
i.e., a square matrix DH�DH in size with elements ai j � wi j

that can be represented as the block matrix

where matrix blocksAi are the adjacency matrices for vertices
on the ith layer, and Ekl are the matrices containing the
weights of connections between the vertices of the kth and lth
layers of the network. For the model network presented in
Fig. 9a, Fig. 9c shows the structure of its matrix, where the
dark cells correspond to intralayer connections, gray cells, to
interlayer connections, and white cells, to the absence of
connections.

There are various approaches to the reconstruction of
connections in multilayer networks in relation to modeling
brain networks. One of them is to take into account fMRI,
EEG/MEG (functional connections) and DTI (structural
connections) data for an individual person, which makes it
possible to build a multilayer network with two layers of
functional and structural connections (see, for example, [247],
where fMRIdatawere used to construct a two-layer network).

fMRI or EEG/MEG data can be used to build a
functional network, with the nodes representing brain
regions and connections reflecting the statistical relationship
between activities in each region. Taking account of the DTI
data allows a structural network to be constructed by dividing
the brain into regions again andmeasuring the strength of the
connections between them. Finally, a multilayer brain net-
work is constructed by adjusting each of these functional and
structural networks to the corresponding layers of the
multilayer network (Fig. 10a). Another example is the
reconstruction of multilayer functional networks based on
multichannel temporal fMRI, MEG, or EEG data. This
method consists of decomposing a signal into several
frequency bands for each brain region and subsequently
assessing the functional similarity between the regions in
each of these frequency ranges after the reconstruction of
the respective layers. Figure 10b shows an example with two
layers corresponding to two frequency ranges, a (8±12 Hz)
and b (20±30 Hz). Interlayer connections can be added in a
variety of ways [248], e.g., by connecting all brain regions to

themselves through all layers [239, 249] or by measuring the
similarity of signals between the layers [250, 251].

Multilayer networks of the brain provide a powerful
analytical tool; the most difficult aspect of their construction
appears to be the reconstruction of connections between
vertices on different layers corresponding to a single network
node. This procedure is difficult to formalize and the question
remains open from the standpoint of a correct mathematical
procedure. One of the simplest methods is to use a multiplex
networkmodel [252] assuming all interlayer connections to be
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Figure 9. Different representations of a multilayer (two-layer, for simpli-

city) network. Representation of the network in the form of a graph with

reference to network division into layers (a), where intralayer connections

are shown by solid lines and interlayer connections, by dashed lines.

Classical representation of a network graph (b) with identical connections

(shown by solid lines). (c)Adjacencymatrix, the same for both representa-

tions. Intralayer connections in the matrix are marked with a dark color,

the interlayer connections are gray, and the absence of bonds is white.
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Figure 10. Illustration of the construction of a multilayer functional

network of the brain according to neuroimaging data. (a)Accounting

and comparison of EEG (the layer of functional connections) and DTI

(the layer of structural connections) data, (b) network layers correspond-

ing to functional connections in different frequency ranges.
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similar and having weight w0. In this case, the super-
adjacency matrix (43) contains the matrix blocks Ekl � w0I,
where I is the identity matrix of dimensionH.

3.2 Functional networks formed during processing
of visual sensory information
The perception and processing of sensory information are the
main functions of the brain that ensure the interaction of a
living organism with the environment. Life processes are
associated with the continuous receipt of sensory informa-
tion (tactile, visual, auditory, etc.), its processing, and further
use for making decisions. It is known that certain parts of the
cerebral cortex are involved in the processing of various types
of sensory information. For example, visual information is
processed in the occipital and parietal cortex, while auditory
information is treated in the temporal lobes.

However, the spatial differentiation of the above pro-
cesses occurs only at the stage of primary processing, i.e.,
within the first tens of milliseconds after the presentation of
the stimulus. At subsequent stages, sensory processing is an
integration process that combines the analysis of various
types of sensory information and the identification of
characteristic features of sensory data required for decision
making. In this case, neuronal ensembles of the prefrontal
and parietal cortex associated with attention and working
memory are activated, in addition to the areas responsible for
primary sensory processing. Along with the integrative
dynamics of the neural network of the cerebral cortex caused
by simultaneously proceeding cognitive processes, the proces-
sing of sensory information can also involve additional areas
of the cerebral cortex when the magnitude and complexity of
the processed stimuli increase.

Let us consider the integration processes taking place in
the neural network of the cerebral cortex in association with
processing visual information. To begin with, it should be
noted that sensory processing in the brain is carried out under
the influence of two processes: top-down and bottom-up,
each involving different neuronal populations and activating
different functional connections between them. The ascend-
ing processes are associated with involuntary attention
activated by visual stimuli [253]; they control information
processing in the primary visual cortex at the early stages of
perception. The descending processes are, in turn, associated
with conscious stimulus processing. One such process is
selective attention, which determines the ability of a subject
to distinguish characteristic features of sensory information
necessary to make a decision [254, 255]. The descending
processes are formed in the cerebral cortex and affect the
processes of perception and processing of visual information
in deeper structures.

Thus, a visual stimulus activates an ascending process
which triggers its processing in the primary visual cortex. This
process begins in the visual zone V1 located in the occipital
lobe of the cerebral cortex. The visual areaV1 transmits visual
information along two visual pathways: dorsal and ventral, as
shown in Fig. 11a.

The dorsal path begins in the primary visual zone (V1),
passes through visual zone V2, then goes toward visual zone
MT (also called V5) and to the posterior part of the parietal
lobe of the cerebral cortex. The dorsal path is associated with
motion, the idea of object location in space, control of eye
movements, and the use of visual information for assessing
the reachability of objects. The ventral pathway also begins in
the V1 zone and passes through V2, but then goes through

visual zone V4 toward the ventral (lower) part of the temporal
lobe of the cerebral cortex. The ventral pathway operates in
the processes of shape recognition, the formation of the idea
of an object, and the functioning of long-term memory.
Interaction between different visual areas occurs through
anticipatory and feedback neuronal connections. The pre-
sence of anticipatory and feedback loops is determined by the
hierarchical structure of the visual cortex [256]. The antici-
patory connections are directed from primary zone V1 to the
higher-level zones within the ventral and dorsal pathways.
Feedback, in turn, is oriented opposite to the direction of the
visual pathways, its final target being the V1 zone [257].

In primary visual perception, the transmission of informa-
tion within the ventral and dorsal pathways is carried out
through functional neuronal connections. An analysis of
neural activity recorded invasively in different parts of the
visual cortex of primates demonstrates the leading role of
low-frequency a-rhythms (8±12 Hz) and b-rhythms (15±
30 Hz), as well as high-frequency g-rhythms (> 50 Hz) in
neuronal interaction involving both anticipatory and feed-
back connections [256]. Invasive recording in humans, in
contrast to that in primates, is problematic, but a comparative
analysis of invasive recordings in monkeys and noninvasive
recordings in humans indicates a similar hierarchy of visual
cortex regions [258]. In addition, it has been shown that, in
humans, as in monkeys, the low-frequency (a� b (8±30 Hz))
and high-frequency (g) neuronal activities ensure the trans-

b
6

5

4

3

2

1

1 2 3 4 5 6
Anatomical hierarchy

levels

F
u
n
ct
io
n
al

h
ie
ra
rc
h
y

le
ve
ls
(g
-r
an

ge
)

V1

V2

V4

MT

c6

5

4

3

2

1

F
u
n
ct
io
n
al

h
ie
ra
rc
h
y

le
ve
ls
((
a
�
b)
-r
an

ge
)

Anatomical hierarchy
levels

1 2 3 4 5 6

V1
V2

V4

MT

Dorsal êow

Ventral êow

®´

V4

V3

V2

V1

aPosterior
parietal cortex

Inferior temporal cortex

Figure 11. (Color online.) (a) Two paths of the ascending visual informa-

tion processing flow. The lower part of the figure shows connections

between the anatomical hierarchy of the regions of the cerebral visual

cortex and the functional hierarchy deduced from the directionality of

connections calculated for high-frequency g (b) and low-frequency (a� b)
(c) ranges using MEG signals. (Based on data from [256, 257].)

602 A E Hramov, N S Frolov, V AMaksimenko, S A Kurkin, V B Kazantsev, A N Pisarchik Physics ±Uspekhi 64 (6)



mission of information along feedback and anticipatory
connections, respectively.

To elucidate the functional hierarchy, the authors of [258]
applied a method for reconstructing directed connections
based on Granger causality with the use of magnetoencepha-
lography data. For each pair of regions, the strength and
directionality of communication in the low-frequency �a� b�-
and high-frequency g-ranges were determined. Based on the
coefficients obtained for each area, the directed influence
asymmetry index (DIAI) was calculated (Fig. 11b, c). Large
DIAI values indicate a high position of the area in the
functional hierarchy where neurons experience a stronger
impact from the lower levels. It was shown that the functional
hierarchy calculated on the basis of connections in the g-range
coincides with the anatomical hierarchy (Fig. 11b). This
means that upstream information is propagated through
high-frequency neuronal interactions.

An analysis of the hierarchy of functional neuronal
connections in the �a� b�-range revealed an inverse correla-
tion with the anatomical hierarchy in the case of ventral flow
(Fig. 11c). This result suggests that the downstream transmis-
sion of information is mediated through neuronal interac-
tions in the low-frequency �a� b�-range. To conclude, visual
zones V4 and MT belonging to high levels of the anatomical
hierarchy of the ventral and dorsal streams occupy different
positions in the functional hierarchy based on the analysis of
interactions in the �a� b�- and g-ranges. The authors of [258]
attribute this to peculiarities of the processed visual informa-
tion.

The role of functional neuronal connections involved in
the downward flow of visual information processing is
considered in Refs [259, 260]. The authors of Ref. [259], in
contrast to those of [258], calculated connections separately in
the a- and b-frequency ranges using the wavelet bicoherence
method. The authors of [259] considered the connections
among five regions of the occipital-parietal cortex by
analyzing EEG signals recorded from the head surface at the
sensor level. It was shown that the perception of a visual
stimulus is accompanied by the strengthening of functional
connections in the neural network of the occipital-parietal
cortex in the a- and b-frequency ranges.

The characteristic structure of connections is illustrated
by Fig. 12a, where the line thickness reflects their strength. It
can be seen that, in the frequency ranges considered, the
strengthening of the connections takes place both within the
occipital and parietal regions and between them. The
influence of the complexity of visual information on the
structure of functional connections was also considered.
Figure 12b shows connections that strengthen with increas-
ing complexity of sensory information. It can be seen that the
increased complexity promotes the strengthening of the
connections inside the parietal region in the b-range and of
the connections between the parietal and occipital regions
within both ranges.

Summarizing the results of the above work, it can be
supposed that, although the interaction within the descending
flow occurs in the a- and b-frequency ranges, the interaction
in the b-range is most pronounced in the parietal region as the
complexity of the processed information grows. This assump-
tion is consistent with the hypothesis of the existence of a
center of attention in the parietal cortex functioning due to
neuronal interactions in the b-frequency range [261].

Attention is known to be one the main descending
processes that control the perception and processing of

sensory information. This process involves neuronal popula-
tions of the frontal and prefrontal cortex, besides those of the
parietal region, thus forming a distributed fronto-parietal
cortical network. Functional interactions among the neuro-
nal populations in the fronto-parietal cortical network are
possible owing to the synchronization of neural activities
among brain regions in the b-range.

It is known that the involvement of various parts of the
fronto-parietal network is associated with an increase in the
volume and complexity of the information being processed. A
small amount of sensory information can be easily processed
within the parietal region. An increase in the amount of
information to be processed requires additional resources
provided by the involvement of the frontal and prefrontal
cortex [262], as confirmed by an analysis of experimental
data. However, the mechanisms underlying the formation of
functional connections between distant neuronal ensembles
are still hypothetical. Reference [135] considers coherent
resonance induced by an external influence in the cortical
neural network to be one of the possible mechanisms behind
such functional interaction.

Coherent resonance is a well-known phenomenon in the
theory of nonlinear oscillations, involving the fact that the
response of an auto-vibrating system to an external influence
becomes most coherent in the presence of an optimal noise
level at the excitation boundary [263±265]. When an excitable
system is the network of a large number of elements, coherent
resonance is such that most of them exhibit synchronous
activity in response to an external influence in the presence of
internal noise [266±268]. The authors of [135] hypothesize, by
analogy with a network of self-oscillating elements and a
cortical neural network, that the formation of coherent neural
activity under the influence of internal noise should also
demonstrate the effect of coherent resonance. The presence
of noise in the neuronal ensemble of the brain is well known.
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The sources of noise are, in particular, fluctuations caused by
the opening and closing of ion channels [269±271].

To detect coherent resonance in the neural network of the
brain, experiments were carried out to register EEG signals in
subjects undergoing visual stimulation. Copies of Leonardo
da Vinci's Mona Lisa differing in contrast intensity were
shown several times to each of them. Examples of images with
three levels of contrast are presented in Fig. 13a.

It is known that an enhancement of image contrast
increases the frequency of neuron generation in deep brain
structures involved in the primary processing of visual
information [272]. These neurons then excite the cortical
network, in which further processing takes place. An analysis
of experimental data shows that the greatest coherence of the
neural activity in the cerebral cortex is observed at a certain
intermediate level of image contrast. The experimental results
obtained indicate that the behavior of the neural network of
the brain demonstrates the coherent resonance effect. The
effect is observed at different contrast intensities in different
people because characteristics of internal noise are individual
for each subject (see, for instance, [273]).

It is worthy of note that the activation of neuronal
populations in the frontal cortex and the strengthening of
functional connections coordinating the activities of these
two areas are observed when an optimal-contrast image is
presented. Fig. 13b shows the structure of functional
connections in the a- and b-frequency ranges for different
contrast versions of the images. Evidently, a distributed
fronto-parietal functional network is formed at an intermedi-
ate contrast level, meaning that internal noise in the brain's
neural network improves the effectiveness of processing a
visual stimulus by virtue of coherent resonance that, in turn,
coordinates integration processes in large neuronal ensem-
bles.

As discussed above, the reconfiguration of the structure of
functional connections and the involvement of additional
regions of the cerebral cortex are due to both the varying
complexity of sensory information and the integration of
sensory processing into other cognitive processes, such as
decision making. The use of machine learning methods in
[274] to investigate visual information processing under
uncertainty conditions showed that decision-making in the
case of a high degree of uncertainty takes about 0.6±0.8 s,
while the classification of unambiguous stimuli requires much
less time (0.3±0.4 s). According to [16, 275], the stages of
sensory processing and decision-making can be separated
both in time and in space. For example, processing a visual
stimulus occurs within the first 0.2 s after its presentation and
is characterized by synchronization of neural activities in the
occipital and parietal regions. The decision-making process
begins at subsequent stages and is characterized by the
involvement of the frontal and prefrontal cortex with the
establishment of strong functional connections between them.

From the standpoint of the formation and reconfigura-
tion of functional neuronal connections, this process is
discussed at length in [16], where the brain activity in a
group of human subjects was analyzed during the perception
and interpretation of a bistable image, a Necker cube. The
subjects had to press a button corresponding to one of two
interpretations of the bistable stimulus within a short time
interval of 1±1.5 s. To reconstruct functional connections,
changes in the EEG signal energy in the a- and b-frequency
ranges were calculated from the results of a continuous
wavelet analysis. The functional connections were then
reconstructed from the values obtained using the recurrent
interaction measure [276]. Variations in the intensity of
connections between brain regions were compared with its
level in the pre-stimulus period of the EEG. Two adjacency

a

b
Occipital cortex

Frontal cortex

I � 0.1 I � 0.4 I � 0.7

Figure 13. (Color online.) (a) Three visual stimuli (Mona Lisa by Leonardo da Vinci) differing in contrast intensity 1. (b) The structure of functional

connections in a- and b-ranges (red and blue lines, respectively) corresponding to the processing of visual stimuli with different contrasts. (Based on data

from [135].)
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matrices,Minc andMdec, containing connections with increas-
ing and decreasing weights, were introduced. In this case, the
reconfiguration of the functional network is described by the
ratio of the numbers of the strengthening and weakening
connections:

R �
PN

i�1
PN

j�1 Minc�i; j �PN
i�1
PN

j�1 Mdec�i; j �
; �44�

where N is the number of EEG channels.
An analysis of the structure of functional connections

revealed a number of features related to decision-making. It
was found that 0.3 s before pressing the button, the test
subjects experienced a strengthening of the neuronal connec-
tions in the b-range described by an increase in the proportion
of functional connections R (44) strengthened during percep-
tion of a visual stimulus (Fig. 14a). A detailed analysis of the
network structure was carried out by calculating the degrees
of nodes for outgoing connections k out

i; inc (38) using the
adjacency matrixMinc. The k

out
i; inc value was shown to increase

during the time period that preceded making a decision
(Fig. 14b), while the greatest value of the degrees of nodes
was recorded in the frontal cortex. An analysis of the
structure of functional connections showed that the increase
was associated with both a rise in the density of connections
inside the frontal cortex and a greater number of outgoing
connections directed towards the occipital region (Fig. 14b,
time point t3). The results obtained confirm the theory that
high-level processes associated with the treatment of sensory
information, its interpretation, and subsequent decision-
making are realized through the activation of the fronto-

parietal functional network. It is shown that the leading role
in this network is played by the frontal regions.

The main result of Ref. [16] is the establishment of the fact
that the structural characteristics of functional connections
do not depend on the complexity of a visual stimulus. This
means that a brain processing sensory information selects a
set of characteristic features of the stimulus necessary for
making a decision [277]. It can be assumed that the pre-
decision processes associated with the extraction of the
relevant characteristics of the stimulus depend on its complex-
ity and take longer time as the complexity increases.

It can be concluded that the processing of sensory
information is an integrative process that combines interact-
ing ascending processes at the initial stages of stimulus
perception and interacting descending processes associated
with an increase in the cognitive load (complexity of
information) and the enhanced relationship between sen-
sory processing and other processes, such as decision-
making. The ascending processes are associated with the
formation of functional neuronal connections in the high-
frequency g-range and the descending ones, with the forma-
tion of connections in the lower-frequency b-range.

3.3 Integration and segregation
of the functional brain network in planning motor activity
The motor functions of the human brain, together with its
cognitive activity, are naturally exploited in everyday life.
These two forms of brainwork are closely inter-related, which
is easy to explain in terms of the development of bipedalism
(a form of terrestrial locomotionwhere an organismmoves by
means of its two rear limbs or legs). This type of motion with
the body in an upright position enables human beings to resist
gravitational effects, keep balance, and control the mode of
their gait. Taken together, these actions led to the necessity of
processing a large amount of sensory information and
converting it into motor commands. It is assumed that it
was the evolution of human bipedal locomotion that led to a
genetic mutation which, in turn, initiated the formation of
large neuronal populations responsible for the execution of
logical purposeful movements followed by the development
of cognitive functions and consciousness [278, 279].

There are a number of publications in support of this
hypothesis. Specifically, it is known that motor and cognitive
processes take place in one spatial-frequency domain of
neural activity of the brain. Namely, low-frequency a=m-
and b-rhythms are observed in the frontal and sensorimotor
regions of the cerebral cortex, where their interaction ensures
the planning of various actions and control over their
implementation. Moreover, it was shown that the develop-
ment of attention promotes successful motor activity [280],
and episodic memory is involved in motor control in animals
[281]. Also, a number of studies demonstrated that cognitive
activity develops more intensively when there is an urgent need
to perform more complex motor functions [278, 282].

It should be specially emphasized that cognitive and
motor functions of the brain develop in close connection
with each other over the entire lifespan of a human; they
determine the mechanisms of structural and functional
reorganization of the brain at various stages of its develop-
ment [278]. For example, the postural activity needed to
maintain a certain position of the body in space, explore the
surrounding world, and learn empirically may be reduced in
childhood. This slows down the development of the cerebral
cortex and cerebellum and thereby causes a disruption of the
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coordination among neural activity rhythms underlying the
relationship of cognitive and motor activities. Therefore,
developmental disorders, as well as confusion of the brain
integrative dynamics, equally affect normal cognitive and
motor functions [283].

From the point of view of normal brain functioning, the
overlapping areas of the cortical neural network responsible
for the performance of cognitive andmotor functions become
excited when someone watches the movements of outsiders
and at the stage of planning one's ownmovements. In the first
case, the interaction between the motor and cognitive
functions implies the involvement of long-term memory and
the extraction of information relevant for understanding and
interpreting actions of the surrounding people. In the second
case, this interaction guarantees accurate planning and precise
implementation of the planned actions. In such situations, the
phase of planning a movement is inextricably linked with the
subsequent execution of the motor act, because human
movements are not simple reflexes evoked by external
commands or stimuli. As a rule, they are planned and
performed to achieve a certain goal. Therefore, a motion is a
result of a series of complex cognitive processes taking place at
all stages, from the formulation of a motor task and its
planning to the performance and control of motor functions.
Obviously, the solution to such a complicated problem
stimulates the interaction and integration of several parts of
the brain, ensuring the execution of various functions [279].

Motor processes in the brain are supported by several
centers ofmotor control located in themotor cortex (Fig. 15a).
The central part of themotor cortex of the brain is the primary
motor cortex (M1). Its main task is low-level control of well-
developed motor activity; the neuronal ensemble of this area
directly controls the work of the muscles. In addition to
control in the primary motor cortex, control over minor and
more specific motor activities, as well as over sequential
movements, is performed in the premotor cortex (PMC).
The supplementary motor area (SMA) supports planning
movements. In this regard, the integrative dynamics of the
motor cortex obeys a functional hierarchy at the base of which
is theMl cortex for processing information about movements
of the basic type, then comes the PMC ensuring the
performance of more complex motor functions, and last, at
the upper level of the hierarchy, is the SMA, responsible for
high-level processing of information related to planning and
controlling targeted actions. This description emphasizes the
functional segregation of motor cortex regions of the brain
with reference not only to the importance of the functions they
perform but also to the interaction among them that ensures
the successful execution of deliberate actions.

Figure 15b illustrates the effective connections between
regions of the motor cortex reconstructed by dynamic causal
modeling (DCM) [159, 286]) as applied to fMRI data [284] in
a group of healthy subjects asked to clench their right hands
into a fist. It can be seen that a movement of the right hand
enhances connectivity in the opposite left (L) part of the
motor cortex with simultaneous suppression of the activity in
M1 and SMA of the right (R) hemisphere.

An analysis of the number of strengthening outgoing
connections shows that the neural processes associated with
the free execution of movements are controlled by the
supplementary motor cortex of the corresponding hemi-
sphere and transmit commands to the primary and premotor
regions. These regions receive sensory information from the
muscles and receptors through a feedback mechanism; they

also exchange information with each other and thereby
ensure successful control of movements.

The relationship between cognitive and motor functions
of the human brain is also confirmed by the ability to imagine
motor activity. Imagining movements is a specific cognitive
task consisting of mental representation of a motor act
without its subsequent execution. There are two types of
imaginary motor activity: kinesthetic and visual. The former
is imagining or planning limbmovements `in the first person';
the latter is imagining the execution of movements watched
from the sidelines [287]. It is kinesthetic imaginary motor
activity that activates overlapping regions of the cerebral
cortex involved in the actual performance of movements,
whereas visual imaginary activity has a quite different
structure associated largely with the prefrontal cortex [288].
Moreover, imaginary and real motor activities differ signifi-
cantly in terms of connectivity of the cerebral motor cortex.

A comparative analysis of effective connections in the
motor cortex identified on the basis of the Granger causality
was undertaken in the framework of fMRI studies using the
grapho-theoretical approach [285]. The significant differ-
ences in the topology of the effective connections in the
motor cortex were found to be associated with real and
imaginary movements of the right and left hands (Fig. 16).
Indeed, since an imaginary movement precedes a real one, its
execution naturally strengthens principal connections and
activates additional ones. Moreover, a closed circuit is
excited between the primary motor (M1) and primary
somatosensory (S1) regions in the hemispheres opposite to
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Figure 15. (Color online.) (a) Parts of the human cerebral motor cortex:

primary motor cortex (MI), premotor cortex (PMC), supplementary

motor area (SMA). (b) Functional connectivity between parts of the

cerebral motor cortex during right hand movement in a control group of

healthy participants in FMRI studies. (Based on data from [284].)
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the type of movement performed (right or left hand). It is
known that S1 supports the individual experience of sensing
one's own body [289], while M1 is involved in the processing
of sensory information needed to perform a forthcoming
action [290]. The strengthening of integration between the
somatosensory and motor functional networks suggests that
the brain turns not only to the processing of external sensory
information but also to its own earlier experience to
successfully perform motor acts, which makes it possible to
effectively develop and train more accurate motor functions.

The described interactions among different parts of the
brain in healthy people undergo significant changes in patients
whohave suffered a stroke that caused significant changes in the
structure of neuronal connections in the motor cortex due to
damage or death of the nerve tracts linking its various regions
[291, 292]. This, in turn, seriously impairs motor functions and
lowers the general cognitive background in post-stroke patients.

A number of studies have addressedmechanisms of reorganiza-
tion of functional connections in the motor cortex from the
perspective of developing strategies for the rehabilitation of the
lost functions and restoration of normal brain operations [293,
294]. One of the effective methods for training motor functions
is mental practice, including imagining motor activity, since it
activates the same parts of themotor cortex and the connections
between them that are involved in the execution of real motor
actions [295, 296]. Furthermore, a positive effect in the form of
the strengthening of functional connections between the
premotor and primary motor cortex was demonstrated in
post-stroke patients as a result of rehabilitation procedures
including mental practice and physical therapy [292, 297].

Reference [298] demonstrates mechanisms of reorganiza-
tion of functional connections among different parts of the
cerebral motor cortex in stroke patients that promote the
improvement of motor functions under the effect of therapy.
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Figure 17 illustrates the related changes in the functional
connections between parts of the motor cortex. The forma-
tion of symmetric connections at the level of reconfiguration
of the motor cortex functional network in the healthy and
affected hemispheres was observed during performance of
similar tasks in the post-treatment period. Imagining move-
ments gave rise to a closed circuit between the premotor
and primary motor cortex common to both hemispheres
(Fig. 17c, d). The execution of real movements resulted in
connections between the additional motor and primarymotor
cortex common to both hemispheres, as well as between the
premotor and primary motor cortex (Fig. 17g, h). At the same
time, the behavioral characteristics of the performed move-
ments calculated using Fugl±Meyer indices [299] improved
after therapy; they positively correlated with the strength of
the effective connection between the premotor and accessory
motor cortex (r � 0:94), as well as between the primary and
premotor cortex (r � 0:87).

Thus, the execution of motor activity is a consequence of
interaction among several parts of the cerebral motor cortex.
Moreover, these parts show a strict functional hierarchy,
which ensures their activation and interaction at different
stages of the fulfillment of motor tasks for planning and
controlling movements. Many studies show that a distur-
bance of such interactions worsens the quality of movement
performance in patients with severe neurological symptoms.

3.4 Functional interaction between brain regions before
and during an epileptic seizure
One of the most well-known types of brain activity character-
ized by the functional interaction between different cerebral
regions is associated with an epileptic seizure. An electro-
encephalographic marker of this pathological activity is a
peak-wave discharge, i.e., high-amplitude oscillations with a
well-pronounced fundamental frequency. Such activity in the
cortex and deep-lying structures of the brain is recorded in
several EEG channels at a time. For example, this activity in
the somatosensory cortex and thalamic nuclei of rats with
absence epilepsy contributes to the formation of a functional
thalamo-cortical network responsible for the onset and
development of an epileptic attack [300, 301]. To recall,
absence epilepsy is characterized by nonconvulsive (non-
motor) seizures (absences).

Figure 18 presents recordings of electrical activity in a rat
brain at the onset of an episode of absence epilepsy (the
beginning of the seizure is denoted by the vertical dashed
line). The recordings were obtained with the use of high-
impedance invasive electrodes implanted into the somatosen-
sory cortex (S1) and thalamic nucleus (Po) [302]. Figure 18a
shows signals characterizing the activity of individual
neurons recorded using spike sorting algorithms. Figure 18b
illustrates the total activity of large neuronal ensembles in the
cortex and thalamus. It can be seen that the onset of an attack
corresponds to a high- amplitude rhythmic activity. Oscilla-
tions of the total electric potential have the form of sharp
surges (spikes) followed by a low-frequency oscillation
(wave). A comparison of Figs 18a and b gives evidence that
spike generation frequencies in the cortex and thalamus
coincide; moreover, a similar frequency is recorded in the
signals of activity of individual neurons.

It can be argued that an epileptic seizure is a global
synchronization mode involving neurons located in different
parts of the cerebral cortex and thalamic nuclei and
synchronizing the activities of these regions. In other words,

the epileptic activity is associated with the formation of a
characteristic structure of functional connections. The detec-
tion of the peculiar patterns inherent in this process can, on
the one hand, contribute to understanding the factors
responsible for the development of an attack and, on the
other hand, enable prediction of an attack and even its
prevention, e.g., by the destruction of functional connections
[301]. To reconstruct them, various methods are used based
on the time-frequency analysis of nonlinear associations and
causality, recurrent analysis, and artificial intelligence meth-
ods.

Let us consider the application of various methods for the
reconstruction of functional connections, e.g., the analysis of
the thalamo-cortical network in the brain of WAG/Rij rats
genetically predisposed to absence epilepsy. WAG/Rij rats
are a valuable model for in vivo studies of epilepsy [303].
Animals with advanced epilepsy are known to experience
several ten seizures per hour, which makes it possible to
collect good statistics for testing algorithms [304]. According
to the results of neurophysiological studies, the thalamo-
cortical network plays a key role in the formation of an
epileptic seizure.

Consider a set of signals of neural activity recorded using
seven chronically implanted electrodes in: (1) layers 4±6 of the
somatosensory cortex; (2) the posterior thalamic nucleus
(Po); (3) the ventral postero-medial thalamic nucleus,
VPM); (4) the anterior thalamic nucleus, ATN); and (5) the
reticular thalamic nucleus (RTN). Based on the fact that an
epileptic seizure is characterized by synchronous oscillations
in a frequency range of 5±10 Hz [305], it seems appropriate to
focus on the reconstruction of functional connections in this
region of the spectrum.

In Ref. [302], this process was realized in two ways, viz. by
the traditional method for calculating wavelet bicoherence
and using a technique based on the degree of similarity
between vibration spectra. The latter approach permits
determining the degree of coherence between ui j signals
based on the relation

ui j �
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Figure 18. Recordings of electrical activity in the rat brain at the onset of a

peak-wave discharge: (a) the activity of individual neurons and (b) the

total activity of neuronal ensembles in the cortex S1 and thalamus Po.

(Based on data from [302].)
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where f1 and f2 are the boundaries of the frequency range
being considered and Wi; j� f � are the amplitudes of the
wavelet spectra of the analyzed EEG signals. In Ref. [302], a
continuous wavelet transform with a Morlet wavelet fre-
quently applied to process neurophysiological data was used
[306]. Normalized valuesWi; j� f ��D fWi; j� f �=

�
D f Wi; j� f 0� df 0

were taken for the calculation. To obtain the normalized
values, the spectral amplitude calculated for the [ f1, f2]
range was divided by the energy of the spectrum calculated
for a wider range D f. Due to this, Wi; j� f � reflected the part
of the spectral energy concentrated in the frequency range
of interest. In [302], a rise in Wi; j� f � was associated, first,
with the fact that most of the neuronal ensemble was
involved in rhythm generation at frequencies [ f1, f2] and,
second, phase coherence of activity in this group of neurons
increased.

It follows from the above that large values of coefficient
(45) indicate that neuronal populations of a comparable size
in the neuronal ensembles i and j participate in generating
activity in the [ f1, f2] range. In contrast to wavelet
bicoherence, the method under consideration disregards
phase relationships among the analyzed signals. This simpli-
fication makes it possible to reduce the time needed to
calculate a correlation among several channels, which allows
the use of a real-time approach in the seizure prediction
interface [301, 307].

Figure 19a shows coherence coefficients of electrical
activity signals from the brain calculated in a 5±10 Hz
frequency range using wavelet bicoherence (w) and the
degree of coherence (u) (45). The coefficients are averaged
for the signals recorded in the cerebral cortex and thalamus.
First, it can be seen that the values calculated on the basis of
the two approaches are in excellent agreement with each
other. Second, the characteristic features of the cerebral
cortex and thalamus associated with the onset of an epileptic
seizure can be identified. It appears that the neural activity of
the cortex is characterized by a rise in coherence within a few
seconds after the onset of an attack. In the thalamus,
coherence reaches a maximum during the first 5 seconds
after the onset of the seizure and thereafter decreases. A
comparison of the signals of electrical activity recorded in the
cortex and thalamus at the onset of an attack (t1) and 10 s
after (t2) shows that synchronization increases between
cortical channels and decreases between thalamic channels
(Fig. 19b).

These results suggest that the onset of an epileptic seizure
is associated with an enhancement of functional interaction
between the neuronal populations of the cerebral cortex and
thalamus leading to the synchronization of oscillations of the
electric potential in a frequency range of 5±10 Hz. During an
attack, the interaction between the neuronal ensembles of the
cerebral cortex increases, while it decreases between the
thalamic populations

In a recent study [117], the functional interaction between
neuronal populations of the thalamo-cortical network was
determined based on the assessment of generalized synchro-
nization (see Section 2.3.4). Generalized synchronization of
two dynamic systems implies a functional relationship
between their states. To elucidate this functional depen-
dence, a machine learning technique was used in the form of
an artificial neural network (ANN). It was shown that 3 s
before the onset of an attack (Fig. 20a) the connections
between neuronal populations were present in both the
cerebral cortex and the thalamus. This means that the onset

of an epileptic seizure is accompanied by the establishment of
a functional connection between the cortical and thalamic
neuronal populations (Fig. 20b).

The above observations suggest the necessity of strength-
ening functional connections between neuronal populations
of the cerebral cortex and thalamus for the development of an
epileptic seizure. Strengthening connections promotes a
functional relationship between variations of the electrical
potential recorded in these brain areas. A time-frequency
analysis shows that the establishment of the functional
connection synchronizes activities of these areas in a
frequency range of 5±10 Hz, which corresponds to epileptic
activity. Synchronization of the activity in the cortex and
thalamus takes place at the onset of an attack and is
accompanied by the strengthening of functional connections
in both the cortex and the thalamus, as well as between them
(Fig. 20b). During the attack, the signals in the thalamus
undergo desynchronization, while synchronization persists in
the cortex. It can be supposed that in this case the cortex
supports the formation of the epileptic seizure, whereas the
weakening of functional connections between the cortex and
the thalamus gradually leads to a loss of epileptic activity in
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thalamic neuronal populations, which results in the termina-
tion of the discharge.

Observations reported in preceding paragraphs suggest
the leading role of the cerebral cortex in the development of
an epileptic seizure and the need for a functional interaction
between the cortex and the thalamus for its generation.
However, which brain region, the cortex or the thalamus,
initiates the attack remains to be clarified. Identification of
the part of the brain responsible for the onset of an epileptic
seizure is of primary importance in the context of clinical
research. It is necessary not only to assess the degree of
interaction (strength of connection) but also to determine
which area of the brain affects others (i.e., to determine the
direction of connections).

In Ref. [308], this problem was addressed using the
Granger causality method (see Section 2.4). The authors
documented the strengthening of connections between
neuronal populations of the cerebral cortex 2 s before the
onset of a seizure. One or two seconds prior to the attack, the
connections directed from the cortex to the thalamic nuclei
Po, ANT, VPM, andRTN formed. Simultaneously, feedback
outgoing from the thalamic nuclei Po, ANT, and VPM
toward cortical neuronal populations ctx4, 5, 6 appeared.
The data obtained indicate the leading role of cortical
neuronal populations in the initiation of an epileptic seizure.
These findings are confirmed by the results of the reconstruc-
tion of the connections using the previously described
recurrent interaction measure.

Figure 21 shows the directed connections undergoing
significant strengthening 2 s (Fig. 21a) and 1 s (Fig. 21b)
before the onset of the seizure. The big red dot indicates the
node with the largest number of outgoing connections. The
key role of the cerebral cortex (layers 5 and 6) is well apparent
during the time period preceding the discharge. Two seconds
prior to the attack, the cortical connections and the connec-
tions between the cortex and the thalamus become strength-
ened. The connections outgoing from layer 5 of the cerebral
cortex (ctx5) to thalamic nuclei ANT and Po appear. The
records obtained from the RTN thalamic nucleus are not
considered in the case under discussion, but Ref. [308] gives
evidence of the strengthening of connections between RTN
and other thalamic nuclei (Po, ANT, and VPM). It can be
assumed that the interaction between neuronal ensembles of
the cortex and thalamic nuclei is mediated through the
thalamic nucleus RTN, in agreement with Ref. [308].

Strengthening connectivity between cortical regions 5, 6
and the thalamic nucleus Po is confirmed in [309] by the
nonlinear association method (see Section 2.3.2). These data
also suggest the leading role of the cerebral cortex in the
development of an epileptic attack, and the relationship
between the cortical regions and the thalamic nucleus Po is
considered to be an indispensable condition for the induction
of a seizure. The leading role of Po in the generation of the
attack has been demonstrated in [310]. A phase consistency
analysis [311] shows that the onset of the seizure is associated
with the strengthening of connectivity between Po and the
remaining thalamic nuclei.

A time-frequency analysis of preictal activity [310] reveals
an increase in the spectral energy in the somatosensory cortex.
According to the results described in preceding paragraphs, a
rise in the spectral energy of a neuronal ensemble can be due
either to the involvement of a larger part of the ensemble or to
the establishment of phase synchronization between the
activities of individual neurons. The preictal activity is

characterized by phase synchronization in the neuronal
ensembles of the cortex and the thalamus, leading to an
increase in the spectral energy of recorded electrocortico-
graphic signals within a certain frequency range. Because an
epileptic seizure is associatedwith the interaction of the cortex
and the thalamus, it can be supposed that the spectrum of
signals recorded in both these regions during the preictal
period is characterized by a simultaneous increase in the
energy in a certain range.

It was shown in [312] that the onset of an epileptic attack is
preceded by the formation of time-frequency patterns of
`discharge precursors' in the cortex and thalamus character-
ized by a local increase in the energy in the frequency ranges
y=a (5±11 Hz) and d (3±5 Hz) simultaneously in both areas of
the brain. Thus, the precursors, along with the peak-wave
discharge itself, are also characterized by synchronization of
the neural activity in the thalamo-cortical network of the
brain. An analysis of a large number of seizures in a group of
experimental animals showed that 80±90%of the attackswere
accompanied by the appearance of y=a- and d-precursors of
the epileptic discharge simultaneously in the cortex and
thalamus.

To sum up the results of this section, it can be concluded
that the onset of an attack of absence epilepsy is accompanied
by the strengthening of functional connections among
neuronal populations of the thalamo-cortical network. A
large number of studies show that the key role in the
development of an attack is played by the cortical neuronal
populations that affect the thalamic structures. Results of the
reconstruction of functional connections by various methods
indicate that the connections among cortical neuronal
populations become strengthened 2 s before an attack;
thereafter, cortico-thalamo-cortical connections begin to
appear. On the contrary, the destruction of the discharge is
associated with the disintegration of the thalamo-cortical
connections and the release of thalamic nuclei from the
formed functional brain network.

4. Network brain±computer interfaces

Brain±computer interfaces (BCIs) are devices for interaction
between humans and the environment by means of reading
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Figure 21. (Color online.) Directed functional connections in the thalamo-

cortical network reconstructed using the recurrent interaction measure in

the preictal period 2 s (a) and 1 s (b) before the onset of epileptic discharge.
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and decoding signals of brain activity and translating them
into control commands for external devices [313]. The
principle of operation of traditional BCIs is schematically
illustrated in Fig. 22. As a rule, BCIs distinguish meaningful
signs based on the analysis of neural activity recorded
separately by each sensor (univariate data analysis [314]).

Over recent decades, BCIs have been successfully used not
only to control external devices but also to control and restore
the sensorimotor functions of the human brain [315, 316]. The
greatest successes have been achieved in the sphere of motor
BCIs used to rehabilitate impaired humanmotor functions or
to control devices by generating imaginary motor commands
by the BCI operator [317, 318]. First and foremost, this is due
to the fact that the relationship between motor activity and
the underlying neural activity of the brain has been fairly well
studied and represents readily reproducible and stable
patterns characterizing a human being [319±321], which
allows accurately tuning algorithms for decoding motor
commands. Second, input parameters for motor BCIs may
be signals from both single neurons and a collection of
neurons in the case of invasive recording, as well as signals
of the electrical activity characterizing the total electric field
of local neuronal groups (noninvasive EEG). At the same
time, invasivemethods of recording neural activity provide an
opportunity for an accurate classification of more complex
movements [322], while EEG is amore convenient technology
for addressing everyday and rehabilitation tasks [323, 324].

At the same time, a number of studies show significant
inter-subject variations of sensorimotor activity patterns
[325, 326]. They are manifested as the variability of frequency
ranges of the characteristic neural activity rhythms, the
magnitude of the spectral power of excited or suppressed
oscillations, and the location of the sought patterns in space.
As a result, the accuracy of real-time recognition of imaginary
activity patterns usually does not exceed 70±80%. As follows
from the materials presented in Sections 2 and 3, the
functional connections forming between cerebral cortex

regions may serve as more relevant and stable signs of
ongoing cognitive and motor processes. Thus, the network
properties of brain functioning can also be employed as basic
elements of new-type BCIs, so-called network BCIs, (Fig. 22).
The latter differ from traditional ones in that they analyze
fundamentally multichannel data in order to form a vector of
signs based on information about functional relationships
between brain areas.

A recent review [66] reports successful examples of
network BCIs that use functional connections in the brain as
reference signs for deciphering neural activity associated with
the imagination of movements. In particular, the authors of
[327] use a network metric based on the phase synchroniza-
tion of EEG signals to assess the structure of the emerging
network of functional connections during the movement of
the fingers on the right and left hands. Hidden Markov
networks were used to evaluate and classify the resulting
network structures. The proposed method proved more
efficient than the traditional assessment of evoked desyn-
chronization of the m-rhythm in themotor cortex in a group of
15 subjects.

The authors of [328] investigated the efficiency of network
BCIs for the recognition of imaginary movements of arms
and legs using the metrics derived from the vector autore-
gressive models to assess effective connections. It was shown
that the use of the direct transfer function to assess the
effective connections ensures an acceptable accuracy of the
movement classification in the framework of traditional
approaches to the estimation of the m-rhythm spectral power
in the motor cortex. Interestingly, other methods considered
in Ref. [328] demonstrate a significantly lower accuracy.

The reconstruction of functional networks based on phase
synchronization has also been successfully applied for the
classification of imaginary hand movements in [329]. The
authors compared the functional relationships calculated
from the value of the a-rhythm phase capture using a
multichannel EEG signal filtered in the 6±14-Hz frequency
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signs
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Figure 22. Schematic representation of the concepts of traditional BCIs (a) and network BCIs (b). Traditional BCIs identify meaningful signs based on

signals from individual channels of multichannel data, whereas network BCIs analyze multidimensional signals of neural activity and highlight

meaningful signs of network interaction in the brain.
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band. Based on the analysis performed, the five most
significant pairs of EEG signals were identified, the measure
of synchronization between which significantly changes
during imagination of a movement in comparison with that
during background activity. The results suggest that the pairs
of EEG sensors (Cz-Cp3) and (Fz, Cp4) are most informative
for imaginary movements of the right and left hands,
respectively. The results obtained suggest the possibility of
using this algorithm in BCIs.

In a recent study [330], a new efficient algorithm for the
classification of imaginary movements based on a two-level
isolation of the network signs of brain activity was proposed.
Initially, the minimum spanning tree method was applied to
EEG signals to reconstruct the global network structure. At
the second stage, local network structures were used to
determine the network characteristics establishing a corre-
spondence between the type of movement and the functional
connectivity of cerebral cortex areas. The algorithm was
tested using the open BCI Competition IV Dataset I
database and demonstrated an accuracy of 89.50%, surpass-
ing that of other classificationmethods applied to the same set
of experimental data. This also suggests good prospects for
using the `network' approach as the algorithmic basis of
motor BCIs.

The BCI technology also shows prospects for applications
to problem solutions outside clinical and rehabilitation
practice, e.g., to train cognitive functions in humans,
including memory and learning ability. Earlier, attempts
were made to create such BCIs based on the registration of
local potentials [331±333], signals of activity from individual
hippocampal neurons [334], evoked potentials, and evoked
desynchronization [25, 240, 335].

Despite the fact that fundamental aspects of neurophys-
iology related to higher nervous activity are not yet fully
understood, it is known that they are underlain by dynamic
activation of distributed neuronal circuits [336]. Therefore,
the optimal input parameters of BCIs for training cognitive
functions could be the network characteristics of the
reconstructed functional or effective connections in the
brain. For example, the properties of functional connections
reconstructed from multichannel EEG signals by the phase
synchronization method were used to create BCIs for speech
communication [337]. In this case, as in the classical virtual
keyboard with a choice of characters using BCIs on the
evoked P300 potential, the operator was presented with sets
of characters that were sequentially highlighted on the screen
[338±340]. The authors evaluated synchronization between
the EEG channels when highlighting the letter of interest on
the screen and in the absence of highlighting. A high degree of
synchronization was shown between a certain number of
EEG channels at time intervals corresponding to the proces-
sing of the letter. In addition, a high efficiency of the proposed
network approach was shown in comparison with the
traditional one based on the detection of the P300 potential
when it was necessary to classify a large number of letters.

Mikulan et al. [341] have developed BCIs to classify sleep
phases based on the assessment of phase synchronization in
the upper g-range (90±120 Hz) from intracranial EEG signals
using a method for calculating the phase lag index (see
Section 2.3.2, expression (13)) resistant to common source
and bulk conductivity problems. It was shown that both the
phase delay index itself and the degree of nodes are
significantly higher in the state of waking than during sleep.
In addition, the phase lag index in the upper g-range (90±

120 Hz) demonstrates more significant differences between
sleep states than in the lower (30±60 Hz) and middle (60±
90 Hz) g-ranges, as well as in the y-, a-, and b-ranges.

In a recent paper [342], a network interface was proposed
to predict the efficiency of performance of a cognitive task in
real time. The authors of [342] considered the reaction time of
the subjects to a command exposed on a screen. They
identified the intervals of fast and slow reactions and
compared the average strength of connections in a functional
network reconstructed using a phase synchronization mea-
sure. Significant differences in the average strength of
connections in the network formed in a situation with the
fast reaction compared with that for the slow reaction were
observed in the pre-stimulus period. This finding made it
possible to accurately predict the response rate in test
subjects.

One more trend in the development of neurointerfaces is
the construction of hybrid multimodal systems that use EEG
and electromyography (EMG) signals to control assistive
devices [343, 344]. Such devices find application in post-
stroke neurorehabilitation with the use of robotic exoskele-
tons and prostheses with neural control [345]. The addition of
electromyographic activity to motor-imaginary commands in
the proper muscle groups increases the accuracy and relia-
bility of their recognition.Moreover, a hybrid system actually
involves the peripheral nervous system in the rehabilitation
process of plastic rearrangements in the respective brain
networks, which can significantly promote the restoration of
sensorimotor coordination in the brain. Such work with
multimodal signals opens up promising prospects for the use
of network methods in the diagnostics of various states of the
human nervous system.

It can be inferred that the network approach, together
with the use of multimodal signals in the analysis of the active
brain and the nervous system at large, not only provides a tool
for investigating the fundamental aspects of the functioning
of the distributed neural network in the brain but can also be
successfully applied for the practical development of BCI
technologies. The studies carried out thus far have demon-
strated the applicability of the network approach to the
creation of BCIs for motor function rehabilitation and the
diagnostics and training of human cognitive functions.

5. Conclusion

This review was designed to analyze the current state and
future prospects of an area of neuroscience developing in
close cooperation with physics, mathematics, and informa-
tion technologies, including machine learning and artificial
intelligence methods for the study and reconstruction of
cerebral functional networks. We tried to describe the
motivation for such research, the setting of relevant tasks,
and the most popular approaches to address them. Special
attentionwas given to the correct reconstruction of functional
connections based on the highly imperfect data provided by
modern neuroimaging techniques and to the solution to
arising problems. Equally great attention was given to the
classification and comparison of modern physical and
mathematical methods for reconstructing neuronal connec-
tions with special reference to the relationship among various
methods. For some of the most widely used ones, additional
calculations based on integrated experimental material were
made to assess their relative value. We carried out an analysis
of functional connections both at the sensory level (most
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extensively used in scientific research and EEG/MEG
experiments) and at the level of reconstruction of neuronal
activity sources. Finally, we described the important limita-
tions of both approaches that are likely to affect the correct
interpretation of functional connections reconstructed from
multichannel EEG/MEG data.

The review also considers examples of the application of
functional networks and their analysis with the use of the
mathematical apparatus of the graph theory to the inter-
pretation of experimental data. We confined ourselves to
three tasks of special importance from the fundamental and
applied points of view: (1) processing a sequence of stimuli in
the brain with subsequent decision-making based on the
information obtained; (2) planning and controlling motor
acts needed for the rehabilitation of patients presenting with
cortical lesions, e.g., after a stroke; (3) analysis of functional
connections in the thalamo-cortical network of the brain
involved in the generation of an epileptic discharge. Finally,
Section 4 discusses the possibility of real-time detection of the
changes in the graph metric of the brain's functional network
to create a `network' brain±computer interface.

It is safe to infer that the development of increasingly
more sophisticated methods for recording brain activity
based on the progress in invasive [346, 347] and noninvasive
[348, 349] technologies will further enhance the efficiency of
approaches based on the reconstruction of functional and/or
effective brain networks and thereby contribute to the
understanding of brain functioning under normal and
pathological conditions. The improvement of the quality of
activity recording and the increased number of recorded
channels coupled to the possibility for a more detailed
observation of the brain regions of interest are expected to
provide a deeper insight into the brain functioning mechan-
isms based on the continuous reorganization of cerebral
networks and to promote the development of effective
technologies for the early diagnostics and treatment of
neurodegenerative diseases.

The reviewing of brain functional networks involved in
processing sensory information and motor activity was
supported by the Russian Science Foundation (grant 17-72-
30003). The review of materials related to brain pathologies
was carried out with the support of the Russian Foundation
for Basic Research (grant 19-52-55001). The analysis of the
use of the recurrent method for the diagnostics of functional
connections was carried out in the framework of the
Presidential Program for Support of Leading Scientific
Schools (grant NSh-2594.2020.2).
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