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A dynamical system approaching the first-order transition can exhibit a specific type of critical behavior
known as self-organized bistability (SOB). It lies in the fact that the system can permanently switch between the
coexisting states under the self-tuning of a control parameter. Many of these systems have a network organization
that should be taken into account to understand the underlying processes in detail. In the present paper, we
theoretically explore an extension of the SOB concept on the scale-free network under coupling constraints. As
provided by the numerical simulations and mean-field approximation in the thermodynamic limit, SOB on scale-
free networks originates from facilitated criticality reflected on both macro- and mesoscopic network scales. We
establish that the appearance of switches is rooted in spatial self-organization and temporal self-similarity of
the network’s critical dynamics and replicates extreme properties of epileptic seizure recurrences. Our results,
thus, indicate that the proposed conceptual model is suitable to deepen the understanding of emergent collective

behavior behind neurological diseases.
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I. INTRODUCTION

Many natural and man-made systems deliver diverse func-
tionality by switching between coexisting stable states, i.e.,
multistability. In living systems, this phenomenon regulates
the processes on different scales: from the interaction of inner
organ systems to cell cycles and neuronal synchronization
on considerably smaller scales [1-3]. Specifically, the ability
to switch between the multiple patterns of local coherence
on the brain’s cortical network underpins many aspects of
consciousness [4]. Past works have identified that in nor-
mal conditions, emergent neuronal avalanches expose distinct
power-law scaling properties, which are the hallmarks of self-
organized criticality (SOC) [5-8].

On the contrary, excessive synchronization involving large-
scale networks into coherent motion is an example of
undesired and harmful behavior, which is the case of the
brain’s epileptic condition [9-11]. Such extreme bursts of
coherence lie beyond the power-law distribution and are most
probably rooted in the bistable dynamics of neuronal ensem-
bles. In this regard, Di Santo et al. have extended the theory of
SOC and have described these dynamics as a self-organized
bistability (SOB) [12]. They have proposed a conceptual
model of a system in the vicinity of the first-order transition—
a singular point at which both stable states are simultaneously
present. The switching between these states is provided by
self-tuning the control parameter under the impact of dissipa-
tion and driving force. Remarkably, the observed avalanches
obey the statistics of dragon kings (DKs), which are rare and
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significantly large events. At the same time, the occurrence
of DKs originates from the system’s nonlinearity. Therefore,
these events are not random and even predictable to some
extent [13]. Overall, these facts confirm the fundamental sig-
nificance of the SOB concept in nontrivial neural dynamics
under epileptic conditions.

However, to provide further insight into the origins of bista-
bility on damaged neuronal populations, one has to account
for their networked organization [14]. It is well known that
the interplay between structure and dynamics enriches the
available modes of collective behaviors [15,16]; Thus, it is
essential to understand how the structural properties drive
SOB on complex networks and give birth to excessively large
avalanches.

In our latest work [17], we have introduced a conceptual
network model under coupling constraints that should be con-
sidered a network extension of the SOB theory. In this model,
the dissipation and driving of the interelement coupling self-
tuning as suggested by SOB, is biologically motivated by the
general aspects of neuroastrocyte interaction. Its dysregula-
tion provides a metabolic mechanism for astrocyte-dependent
hyperexcitability [18] and is recognized as one of the driving
factors of epilepsy [18,19]. Another feature of the model that
needs to be emphasized is the exploitation of a self-similar
scale-free (SF) structure that determines the bistability of
collective behavior, i.e., an explosive transition, under certain
conditions [20-22]. Although the SF organization of local
neuronal populations is debatable and has not been proven so
far, there are several indirect signs and arguments based on
the underlying criticality of neural dynamics in support of this
hypothesis [8,23,24].

Consistent with SOB, our model has replicated the ap-
pearance of epileptic seizure generation and self-termination
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of a supercritical synchronized state due to the interplay be-
tween the explosive synchronization and coupling constraints.
We referred to such a state as an extreme synchronization
event due to its spontaneous occurrence and short lifetime.
Although we have demonstrated that the designed model pro-
duces solitary synchronization events, the critical transitions
leading to such a hazardous behavior have not been fully
addressed.

In this paper, we exploit extensive theoretical analysis to
derive the conditions of SOB for the proposed network under
coupling constraints. We primarily focus on the Barabasi-
Albert (BA) model, a paradigmatic model of a SF network
grown through the preferential attachments [25]. This model
yields a degree distribution with constant exponential decay of
—3. For this model, we derive the mean-field approximation
in the thermodynamic limit that is in good agreement with
the numerical simulations of a finite-size network. Having
analyzed continuous synchronization diagrams and statistical
properties of the synchronization events occurrence, we show
an essential role of self-organized bistability in producing
and terminating short-term synchronization. We establish that
these events reproduce the statistical properties of extreme
value theory and epileptic brain activity. Finally, we gener-
alize our analysis for SF networks with an arbitrary scaling
exponent and reveal that such a structural property has a
particular impact on the emergence of SOB and its temporal
self-similarity.

II. MODEL

Consider a network of N Kuramoto phase oscillators,
whose rotation is defined by the system of differential equa-
tions,

de; al .
= wi+xiz;,4,»j sin(9; — 6;), (1)
J=
i = a(do — ;) — Bri. (2
dt
In Eq. (1), 6; and w; denote instantaneous phase and natural
frequency of each ith Kuramoto oscillator, i = 1, ..., N. The

adjacency matrix 4;; defines the connectivity of the SF net-
work yielding a power-law degree distribution P(k) ~ k~7.
To construct A;; we use the BA model that generates a
degree-degree correlated SF network based on preferential at-
tachment [25] yielding a degree distribution with fixed scaling
exponent y = 3. In the BA model, m = 3 new edges preferen-
tially attach between a new vertex and existing vertices at each
step of the growing process. To explore the influence of scal-
ing exponent, we employ the Chung-Lu (CL) that generates
an uncorrelated SF network with an arbitrary predefined value
of scaling exponent y [26,27]. The CL model is described in
detail in the Appendix. In both models, we adjust w; = k; to
fulfill the frequency-degree correlation. Macroscopic motion
of the ensemble is defined by the complex order parameter
Re' = 1/N Y1 €.

Following Di Santo et al. [12], Eq. (2) describes the
self-tuning of individual coupling strength ;. Here, cou-
pling consumption (a dissipation) is a function of local order
parameter r; = 1/k;| szy:l A;je|, which implies that the

maintenance of a certain level of coherence in the neighbor-
hood of the ith unit consumes its coupling ability at rate S.
Besides, each unit diffusely couples to an external source that
provides the recovery of individual coupling ability to the
level ) at rate « (a driving force).

To provide deeper insights into the dynamics of Egs. (1)
and (2) concerning the BA model, we used the mean-field
formalism proposed by Ichinomiya [28]. Considering the mo-
tion of the ensemble at the mean frequency Q2 = (w) = (k)
with the average phase W, we can replace ¢ =6 — V. In a
continuous limit, the density of oscillators having phase ¢ and
degree k at time moment ¢ is defined by p(¢, k, ¢) such that

02” d¢ p(¢, k,t) = 1 that obeys the continuity equation,

0
L vy} =0, 3)

Eq. (3), therefore, describes the motion of the networked
system (1) and (2) in the continuous limit with vy = d¢/dt.
Let us define the global order parameter through the density
o(¢, k, t) in the integral form

R = L (a7 dé kP(k)pe®
= pe'?, 4
k) Jm 0

and rewrite Eq. (1) using the obtained definition (4) to find the
mean-field approximation of vy,
_d9

vy = = = (1= AR sin ¢)k — (k). 5)

In Eq. (5), we suggest that A; = A and r; = R. Given (4)
and (5), Peron and Rodrigues found the steady-state solution
of Eq. (3) for a frequency-degree correlated SF network [29],

8(¢p — arcsin [5502]), 1k — (k)| < ARK,
pik. @)= Ath) herwi
Tk—{(k)—*RK sin @] otherwise,

with normalization term A (k).

The condition |k — (k)| < ARk is fulfilled for the phase-
locked fraction of networked oscillators whereas the remain-
ing possess incoherent drift. Since only phase-locked units
contribute to the global coherence of the ensemble, Eq. (4)
becomes

2
R:i/ kP (k) 1—<k_<k)) dk. (1)
(k) Jye—goy1<ore ARk

To complete a mean-field approximation of the system (1)
and (2) we should complement Eq. (7) with account of cou-
pling constraints. In the steady state d/dt = 0, it becomes

A=Ay — gR. ()

To provide rigorous conclusions, we present Eqs. (7)
and (8) in the thermodynamic limit N — oo by explic-
itly taking the exact degree distribution P*°(k) = 2m(m +
1)/[k(k + 1)(k + 2)] and mean degree (k)>° = 2m for,the BA
model [30,31]. Furthermore, we denote a mean-field approxi-
mation of the order parameter as R*.

Using mean-field analysis one can also estimate condi-
tions for the trivial solution of Eq. (7), R* = 0 to lose its
stability. By letting R* — +0, Peron and Rodrigues derived
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FIG. 1. (a) Forward and backward synchronization diagrams
without excitability constraints 8 = 0. (b) A forward diagram in the
presence of a finite excitability consumption 8 = 0.04. Synchroniza-
tion diagrams in both panels are computed for fixed ¢ = 0.04. In
panel (b), the median value, the maximum value, and the interquartile
interval (IQI) of R(¢) were computed over the time series of 2x 10*
time units. In both panels, the black solid line and vertical dashed
line show a mean-field approximation R* and the critical point Ao,
respectively.

this critical point, which in the thermodynamic limit is A, =
1/[rmP>*(2m)] ~ 1.485 [29]. Accounting for coupling con-
straints we define the critical point for our model (1) and (2)
as

1
)"OL': é 0
o

TmP>(2m) + 5% ©)

where R® = 1/+/N is a finite estimation of the order parameter
in the incoherent state.

III. RESULTS

We start with considering forward and backward contin-
uations of a described network by increasing and decreasing
Ao using increment §1¢ = 0.02. Equations (1) and (2) for a
finite-size network are integrated for N = 1000 units.

Figure 1 reports synchronization diagrams R(X¢) in the ab-
sence and presence of coupling constraint for fixed ¢ = 0.04.
As expected, without consumption 8 = 0 [Fig. 1(a)], our sys-
tem exhibits an explosive transition reproducing a hysteresis
loop demonstrated in the pioneering work on a frequency-
degree correlated SF network by Gémez-Gardefiez et al. [20].
A mean-field approximation also predicts an explosive tran-
sition indicating a bistability region where both R* = 0 and
R™ # 0 are stable (1o ~~ 1.485).

Numerical results for a system under coupling consump-
tion B = 0.04 show that the onset of forward transition is
largely delayed concerning the critical point Ag.. Figure 1(b)
displays that both coherent and incoherent solutions are pos-
sible in the region between A¢. and the onset of forward
transition. It follows from Eq. (2) that the stable coherent state
is only possible if coupling consumption is compensated by its
recovery a(Ag — A;) = Br; for each network unit. Since the
latter condition is not fulfilled in the area between Ay. and
the onset of forward transition, the turbulent state R >~ O here
remains preferable for the network. However, rare transitions
to synchronized state shown in Fig. 1(b) as the outliers of R(t)
distribution are possible due to Ay > Aq..

Based on Fig. 1(b), three characteristic areas can be dis-
tinguished: (i) the region of subcritical dynamics Ag < Agc;

/2

038 .’
< :
5 0.6 | 0=0.04, ho=1.5
% ’ i ---- forward
g ! ---- backward
= 0.4 .E — attracting
T |
S 02 |

0.0 -

1.4 1.6

0=0.04,20=2.3 | |
---- forward : !
---- backward
| = attracting

Order parameter, R
s o
NS

S
o

o
=)

o
)

L 0=0.04, 10=2.0
---- forward

| ---- backward
—— repelling
— attracting

Order parameter, R
s o
P

o
o

0.0l _
09 1.0 1.2 1.4 1.6
Ensemble-average coupling, <2>

FIG. 2. (a)—(c) Phase portraits of the macroscopic dynamics of
the SF network under coupling constraints on the plane (R, (1))
for fixed values of 8 = 0.04, « = 0.04, and different Ay’s: (a) Ag =
1.5—subcritical dynamics; (b) Ao = 2.3—supercritical dynamics;
(¢) Ao = 2.0—critical dynamics. Dashed black and gray lines in
(a)—(c) display the forward and backward synchronization diagrams
R()\) for g = 0. Corresponding phase portraits on the complex plane
in the polar coordinate system (R, W) are presented in (d)—(f).

(ii) the region of critical bistable dynamics between g, and
the onset of forward transition; (iii) the region of supercritical
dynamics after forward transition corresponding to a coherent
motion.

Now, we illustrate the network’s dynamics in terms of
its macroscopic parameters under variation of Ag. Figure 2
reports macroscopic motion on the parameter plane (R, (1)),
where (L) = 1/N vazl A; is the ensemble-average level of
coupling ability, accompanied by corresponding trajectories
on the complex polar plane (R, W). As expected, in a subcriti-
cal region, the system converges to a turbulent drift around the
fixed point at a lower branch of the hysteresis curve [Figs. 2(a)
and 2(d)]. In a supercritical mode, it is attracted to an upper
branch that corresponds to the limit cycle at mean frequency
Q = (k) [Figs. 2(b) and 2(e)].

Remarkably, in the region of critical bistable dynamics,
the system mostly drifts near the fixed point R >~ 0 in the
vicinity of transition point A, ~ 1.485. However, the turbu-
lent drift may occasionally push the trajectory beyond the
critical point. Hence, the network explosively synchronizes
as reflected by motion along the repelling trajectory toward
the upper branch [Fig. 2(c)]. Having landed the upper branch
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FIG. 3. Distribution of mesoscopic parameters—(a)—(c)local or-
der parameter r; and (d) and (e) individual coupling level A,—versus
node’s degree k;. The distributions are presented for fixed o =
0.04, B = 0.04, and different values of Ay: (a) and (d) 1o = 1.1—
subcritical behavior; (b) and (e) Ay = 1.6—weak criticality; (c) and
(f) Ao = 1.9—strong criticality. Black lines indicate approximations
ri = 1/4/k; in the left column and A; = Ay — B/(a+/k;) in the right
column.

the network moves to backward transition forced by resource
consumption. As the network exhausts the coupling resource,
it undergoes the backward transition. Eventually, the diffusive
mechanism of coupling recovery returns the trajectory to the
starting position near the forward transition point on the lower
branch of the hysteresis curve. The reported process repeats
over time as the coupling becomes excessively strong (A) >
A. due to chaotic fluctuations in the vicinity of the critical
point.

The criticality of the considered Kuramoto model under
coupling constraints that determines the spontaneous appear-
ance of synchronization events is reflected on the mesoscopic
level, i.e., on the level of local populations. Log-log plots
in Fig. 3 show the distributions of local order parameter
ri(k;) and individual coupling ability X;(k;) during a long-
term period of turbulent motion (2x10* time units). In a
subcritical regime Ao = 1.1, the local order parameter is
well approximated by inverse square root law r; = 1/4/k;
[Fig. 3(a)]. It indicates that below the critical value Ay, =
1.517, phases within the local groups are homogeneously
distributed on the unit circle, implying turbulent motion across
all the mesoscopic scales. Substituting r; = 1/4/k; in Eq. (2)
and letting dA;/dt = 0, one finds the stationary distribution
of individual coupling ability in a subcritical regime X; =
o — B/(a+/k;) that perfectly fits the empirical distribution at
Ao = 1.1 [Fig. 3(d)].

At Ay = 1.6 slightly exceeding the critical value Ao, [weak
criticality, Figs. 3(b) and 3(e)], inverse square root approx-
imations r;, A; ~ 1//k; are applicable only to large-scale
populations formed around the network’s hubs. At the same
time, the local coherence of peripheral groups around low- and
medium-degree units starts rising above the estimate given
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FIG. 4. Synchronization diagrams R(X¢) for the fixed value of
B = 0.04 and different @’s: (a) « = 0.04; (b) = 0.08; (¢) « = 0.12.
(d) Phase diagram on the («, A¢) parameter plane plotted upon the
mean-field approximation given by Egs. (7) and (8).

by this approximation. With increasing criticality [Figs. 3(c)
and 3(f)], local coherence around the low- and medium-
degree nodes grows whereas hubs remain desynchronized.
Taking into account that R ~ 1/ /N in all considered cases,
facilitation of local coherence does not contribute to global
synchronization. Instead, the critical dynamics of this model
form a complex of populations synchronized on different
spatial and temporal scales and weakly interacting with each
other. Noteworthy, due to the coupling consumption, the
coherence of small groups is not long term preserved but in-
creases and decreases over time independent of other groups,
thus, resisting a transition to global synchronization. However,
as soon as a large number of local populations with simi-
lar frequencies accidentally synchronize, at the same time,
critical dynamics create conditions for synchronizing key
components—the network’s hubs. Involvement of hubs in the
coherent motion launches an avalanchelike process of a large-
scale phase locking resulting in an abrupt first-order transition
to metastable global synchrony.

In addition, we demonstrate how the balance between re-
covery rate o and consumption rate B affects the critical
dynamics of the considered model. Figure 4 reports the syn-
chronization diagrams R()¢) for different values of « at fixed
B = 0.04. It follows from Egs. (7) and (8) that increasing «,
or, equivalently, decreasing 8, reduces the impact of coupling
constraints on the system’s dynamics. Indeed, the region of
critical behavior bounded by the critical value 1. from the
left and the onset of forward transition from the right shrinks
with increasing recovery rate « [Figs. 4(a) and 4(b)] until the
transition to coherence becomes of a first order [Fig. 4(c)].
This observation for a finite-size network is consistent with
the mean-field approximation in the thermodynamic limit
N — oo [Fig. 4(d)].

Up to now, we have considered the emergence of such
synchronization events and associated critical dynamics of
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FIG. 5. (a)—(c) Long-term time series R(¢) and (d)—(f) corre-
sponding log-log histograms in the proximity of forward transition
for fixed @ = 0.04, g = 0.04, and different Ay’s: (a) and (d) Ay =
1.93; (b) and (e) Ap = 1.95; (c) and (f) Ao = 1.99. The orange line in
(d)—(f) shows a fitted power law.

the Kuramoto network under coupling constraints. Now, we
explore the statistics of their appearance in the proximity of
forward transition in terms of extreme events theory. Let us
fix @ = 0.04, B = 0.04 and consider the Kuramoto ensemble
under coupling constraints approaching the point of forward
transition. Although the area of criticality is broad enough as
displayed in Figs. 1(b) and 4(a), the generation of solitary syn-
chronization events is quite rare and occasional in a long-term
perspective, not exceeding one event per 2x 10* time units.
However, the probability of their emergence drastically in-
creases in the proximity of forward transition point Xy >~ 2.05
(Fig. 5), allowing us to explore the statistical properties of
these events.

Figures 5(a)-5(c) show the time series R(¢) and corre-
sponding histograms [Figs. 5(d)-5(f)] with increasing Ag. As
Ao approaches the forward transition point, the number of pro-
duced metastable coherent events increases. Analysis of the
histograms reveals that the variation of R near the preferable
incoherent state obeys power-law P(R) ~ R™¢. Although the
power law is fitted in a relatively narrow region of R values
near the stable fixed point, this observation could be con-
sidered a hallmark of self-organized criticality [7]. It implies
that the occurrence of small- and medium-size events, i.e., the
short-term establishment of coherence in small- and medium-
size groups, obeys scaling of the same physical mechanism.
Although the dynamics seem to be highly turbulent at first
glance, the power-law fit of the tail indicates the presence of
spatial order. At the same time, a peak beyond the power-law
fit indicates a non-negligible probability of large deviations
of R. Such events lie outside the scaling rule and obey differ-
ent physical principles. Such distribution is a hallmark of a
specific type of extreme events—DXKs [13,32]. DKs possess a
remarkable property—these events are significant and nonran-
dom; therefore, they are predictable to some degree. Indeed,
DKs are generated in a deterministic system and obey certain
mechanisms underlying critical behavior in the vicinity of
the typing point. The possibility of predicting such states,
although tangible, is a challenging task that requires a deep
understanding of the structure and dynamics of the considered
networked system.

To finalize our analysis of the BA model, we explored
the distribution of return intervals between neighboring syn-
chronization events 7. Figure 6 displays long-term time series
R(t) and corresponding return intervals distributions P(t) for
different A(’s in the proximity of forward transition. Despite
an increase in criticality and changes in characteristic scales of
return intervals at different A’s, their distribution is well fitted
by the power-law P(t) ~ t=%2. Pearson’s x> test, which
has been used to assess the goodness of fit, yields a corre-
spondence between the observed and the expected power-law
distributions (test outcomes are presented in each subplot).
Similar to the previous discussion on the histograms P(R),
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FIG. 6. (a)—(c) Long-term time series R(¢) and (d)—(f) corresponding distributions of return intervals in the proximity of forward transition
for fixed @ = 0.04, B = 0.04, and different X(: (a) and (d) 1o = 1.97; (b) and (e) 1y = 1.99; (¢) and (f) 1y = 2.03. Black lines in (d)—(f) show
a fitted power law ~7 %2 The outcomes of the x? test are presented within each panel.
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FIG. 7. Forward and backward synchronization diagrams in the
absence of excitability constraints 8 = O for different values of y:
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computed for fixed o = 0.04. In panels (e)—(h), the median value,
the maximum value, and the IQI of R(t) were computed over the
time series of 2x 10* time units.

a distinct power-law fitting of P(t) evidences the presence
of temporal order in the sequence of synchronization events
despite being aperiodic and visually irregular. This obser-
vation is most probably rooted in the concept of “on-off”
intermittency—an alteration of turbulent (on) and laminar
(off) phases of the system’s motion in the vicinity of syn-
chronization onset [33]. In on-off intermittency, an analogous
power-law fit with characteristic exponent —3/2 defines the
distribution of laminar phases duration and reflects the ap-
proach to ordered dynamics from turbulence as the system
evolves towards synchronization. The —3/2 power law is
also reported in empirical observations of epileptic activity
in the rodents’ brain [34-37]. For instance, Refs. [34-36]
propose a theoretical framework bonding on-off intermittency

and occurrence of epileptic seizures. Reference [37] explicitly
demonstrates both extreme properties of seizures’ amplitudes
and temporal scaling fitted by the —3/2 power law.

Lastly, we investigate how the structure of the SF network
affects SOB. Specifically, we are interested in the influence of
scaling exponent y since this parameter regulates the preva-
lence of highly connected hubs in SF networks. The latter
units play a principal role in the first-order transition and,
consequently, the emergence of an SOB in our model. Earlier,
Coutinho ef al. [21] have developed a theoretical framework
to show that in the frequency-degree correlated networks,
the first-order transition is present at 2 < y < 3. Recall that
this particular range of scaling exponent is the most common
in real SF networks [38]. For y > 3, Coutinho et al. have
predicted the suppression of hysteresis that determines the
continuous type of transition.

Using the CL model, we have generated the degree-degree
uncorrelated SF networks with y = {2.6,2.8,3.2,3.4}.
Figure 7 displays the synchronization diagrams R(}() for
these networks in the absence and presence of coupling
constraint for fixed o = 0.04. Consistent with the work by
Coutinho et al. [21], our results confirm that in the absence
of coupling constraints, the network undergoes an explo-
sive transition at Yy < 3 and a continuous transition at y > 3
[Figs. 7(a)-7(d)]. As in Ref. [21], one can also see that the
hysteresis area shrinks as y increases to 3. Introduction of
coupling constraints at rate 8 = 0.04 results in a distinct SOB
behavior for y < 3. In Figs. 7(e) and 7(f), one can see the
area of critical dynamics followed by an abrupt stabilization
of a globally coherent state, i.e., a discontinuous transition of
median R(z). With a further increase in y, the area of critical
dynamics associated with SOB vanishes as the transition to
coherence becomes continuous [Figs. 7(g) and 7(h)]. Actually,
for y > 3, the very concept of SOB itself is meaningless since
the network is no longer bistable. However, there are still,
at least, two reasons for the SF network to exhibit SOB-like

0.6 1.0 2.0x103

FIG. 8. Distributions of return intervals in the proximity of for-
ward transition for fixed @ = 0.04, 8 = 0.04, and different scaling
exponents y in the CL model: y = 2.6, 1y = 2.16 (blue dots) and
y = 2.8, Ao = 2.06 (red dots). Green dots repeat the distribution for
the BA model with y = 3.0 and A, = 2.03. Solid lines of respective
colors show the power-law fit. The outcomes of the x? test are
presented for each line.
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FIG. 9. Constructed uncorrelated scale-free networks according to the Chung-Lu model. Top row presents expected degree profiles k;(i)
[orange curves, determined by Eq. (A1)] and actual degree profiles of generated scale-free networks k;(i) (blue dots) for different values of
scaling exponent y. The bottom row presents respective degree distributions P(k) of generated uncorrelated networks (blue dots) along with

the expected slope ~ k=7 (orange curves).

behavior at y = 3.2 as displayed by Fig. 7(g). First, it could be
due to a consideration of a finite-sized and relatively small net-
work (N = 1000). In this case, the scaling of y = 3.2 could
still provide a sufficient amount of highly connected units for
the system to synchronize rapidly yet continuously. Second,
it could be due to the chosen values of « and B, i.e., cou-
pling recovery and consumption rates. With o« = 8 = 0.04, a
continuous transition runs much faster than the self-tuning of
coupling strength A that determines sufficiently rapid but not
bistable switches.

Besides the above-discussed effect, the variation of scaling
exponent y within the SOB-associated range of 2 <y < 3
impacts the slope of distribution of return intervals. Figure 8
displays such distributions for y equal to 2.6, 2.8, and 3.0
along with the respective power-law fits. One can see that
decreasing SF scaling exponent y increases the slope of re-
turn intervals distribution. Although the particular reasons for
these observations require further investigation and are yet
to be discovered, one may conclude that the SF network’s
structure is closely related to the properties of its tempo-
ral self-similarity. Indeed, increasing the amount of highly
connected hubs on the SF network might cause more fre-
quent bistable switches whereas maintaining the distribution’s
exponential slope. At the same time, the slope of return inter-
vals distribution converges to the universal constant —3/2 as
y — 3 since y =3 is the point of critical singularity,
separating the first- and second-order transitions on the
frequency-degree correlated SF networks.

IV. CONCLUSION

To conclude, this paper reports a theoretical study of
the self-organized bistability of a scale-free Kuramoto
network under coupling constraints. Our analysis shows that
the imbalance between the rates of coupling consumption
and recovery determines the delay between the forward
synchronization and the critical point at which the global

incoherence becomes unstable. Facilitated critical dynamics
of the networked ensemble in this area provide self-consistent
switching between coexisting states of incoherence and
coherence. Current observations demonstrate that the ap-
pearance of such switches bistablely exhibits the pronounced
statistical properties of extreme events and reproduces the
features of epileptic seizure recurrences. It evinces a high
degree of self-similarity and ordered dynamics behind the
process looking uncorrelated at first glance. Finally, we
establish that emergence of self-organized bistability on a
scale-free is determined by its structural properties, e.g., in
terms of its scaling exponent y. We reveal that this type of
critical behavior is observed at 2 < y < 3, which is the most
common in real scale-free networks and suppressed at y > 3.
Our conceptual and yet biologically motivated network
model sheds light on the macro- and mesoscopic properties
of collective behavior behind the disruptive emergent
hypersynchronization of the brain networks paving the way
for their study in dynamical and graph-theoretical contexts.
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APPENDIX: GENERATING A SCALE-FREE GRAPH
WITH ARBITRARY EXPONENT

The Chung-Lu model has been used to produce an uncorre-
lated scale-free graph with arbitrary scaling exponent [26,27].
Specifically, we exploited a recent algorithm proposed by
Fasino et al. [39]. Briefly, it generates a random graph with an
arbitrary power-law degree distribution P(k) ~ k7 by adjust-
ing a specific degree to each ith unit according to the expected
degree profile,

1

K=clo+i)?. p=r—r (A1)
-V
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In Eq. (A1), parameters ¢ and i; are defined as

¢ 1/p
c=(1— p)k*NP, ioz( > — 1. (A2)

kmax

Here, k* and k&, are mean and maximal expected degrees.
For our calculations, we have set k* = 10 and k. = 100.
Degree distributions of constructed scale-free networks for
different values of scaling exponent y are presented in Fig. 9.
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