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A phenomenon of intermittency of intermittencies is discovered in the temporal behavior of two

coupled complex systems. We observe for the first time the coexistence of two types of intermittent

behavior taking place simultaneously near the boundary of the synchronization regime of coupled

chaotic oscillators. This phenomenon is found both in the numerical and physiological experiments.

The laws for both the distribution and mean length of laminar phases versus the control parameter

values are analytically deduced. A very good agreement between the theoretical results and

simulation is shown. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4819899]

Intermittent behavior occurs widely in nature. At pres-

ent, several types of intermittency are known and well

studied. However, the investigation of intermittency was

limited to the analysis of the cases where only one certain

type of intermittency takes place. In this paper, we report

for the first time on a new temporal behavior of two

coupled complex systems, when two types of intermittent

behavior coexist and alternate with each other. In other

words, we report on intermittency of intermittencies. We

demonstrate the presence of this phenomenon both in the

numerical and physiological experiments.

Intermittent behavior is a typical phenomenon in nature,

which has been found in a great number of nonlinear sys-

tems. At the present time, the origin and main statistical

properties of intermittent behavior have been studied.

Different types of intermittency have been classified as types

I, II, and III intermittencies,1,2 on–off intermittency,3–5 eye-

let intermittency,6 and ring intermittency.7 In the case of

intermittencies of types I–III, the time intervals of periodic

oscillations alternate with the stages of chaotic motion.

Similarly, for the eyelet and ring intermittencies, the epochs

of synchronized oscillations are interchanged with the

epochs of asynchronous motion. However, for any kind of

intermittency reported hitherto, one dynamical regime
always alternates with another dynamical regime. These

regimes can be of different type, for example, a stationary

state, bursts, periodic, or even chaotic oscillations.

From the theoretical point of view, one can imagine

that two intermittencies of different (or the same) types can

alternate with each other and expect that this phenomenon

may be observed in a broad range of different systems, and,

as a consequence, be generic. Nevertheless, such kind of

system dynamics has not been found out and described hith-

erto anywhere. In this paper, we report for the first time on

a new temporal behavior of two coupled complex systems,

when two types of intermittent behavior alternate with each

other. In other words, in this case, we deal with the

intermittency of intermittencies, a novel type of intermittent

behavior that differs greatly from the ones known so far.

Although this phenomenon has not been reported until now,

we show below that such kind of behavior is typical for a

wide class of systems and can be observed under different

circumstances.

In the case of intermittency of intermittencies, the distri-

bution of the laminar phase lengths has the following form:

pðsÞ ¼ 1

T1 þ T2

ð1
s

ds

s

ð1
s

½p1ðlÞp2ðsÞT2 þ p1ðsÞp2ðlÞT1� dl

2
4

þ
ð1
s

1� s
s

� �
½p1ðsÞp2ðsÞT2 þ p1ðsÞp2ðsÞT1� ds

#
; (1)

where p1;2ðnÞ are the distributions of the laminar phase

lengths of the alternating intermittencies considered sepa-

rately and T1;2 ¼
Ð1

0
sp1;2ðsÞ ds are the mean lengths of lami-

nar phases for these intermittencies.

To deduce Eq. (1), we consider two different types of

intermittency, say, the type-1 and type-2 intermittencies

characterized by the distributions p1ðsÞ and p2ðsÞ, respec-

tively. Let us assume that these types of intermittent behav-

ior coexist in a certain range of the control parameter values.

It is supposed that the occurrence of turbulent phases of

type-1 intermittency does not depend on the turbulent phases

of type-2 intermittency and visa versa. The occurrence of

turbulent phases of each type of intermittency is assumed to

be determined only by the distribution of the laminar phase

lengths of the corresponding intermittency.

Let pðsÞ be the distribution of the laminar phase lengths

in the case of intermittency of intermittencies, where s is the

length of laminar phase. At the arbitrary choice of the phase

slip without the loss of generality, we can suppose that it cor-

responds to the type-1 intermittency. Then, the probability to

observe the laminar phase with a length falling in the range

½s; sþ dsÞ will be defined by a sum of probabilities of two

events. The first event is associated with the phase slip of

1054-1500/2013/23(3)/033129/5/$30.00 VC 2013 AIP Publishing LLC23, 033129-1

CHAOS 23, 033129 (2013)

http://dx.doi.org/10.1063/1.4819899
http://dx.doi.org/10.1063/1.4819899
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4819899&domain=pdf&date_stamp=2013-08-30


type-2 intermittency within the time t 2 ½s; sþ dsÞ and

described by the probability

P12ðsÞ ¼ ds
ð1
s

p2ðsÞ
s

ds

ð1
s

p1ðlÞ dl: (2)

The probability of the second event is associated with the

phase slip of type-1 intermittency within the same time inter-

val t and described by the probability

P11ðsÞ ¼ p1ðsÞ ds
ð1
s

1� s
s

� �
p2ðsÞ ds: (3)

Similarly, if the chosen phase slip corresponds to the

type-2 intermittency, the probability to observe the phase

slips associated with the type-1 and type-2 intermittencies

will have the form

P21ðsÞ ¼ ds
ð1
s

p1ðlÞ
l

dl

ð1
s

p2ðsÞ ds (4)

and

P22ðsÞ ¼ p2ðsÞ ds
ð1
s

1� s
l

� �
p1ðlÞ dl; (5)

respectively.

The probability that the arbitrary chosen phase slip cor-

responds to the type-1 intermittency is

P1 ¼
N1

N1 þ N2

¼ T2

T1 þ T2

; (6)

where Ni ¼ L=Ti (i¼ 1, 2) is the number of turbulent slips of

the ith type observed in the time series of length L.

Similarly, the probability that the arbitrary chosen phase slip

corresponds to the type-2 intermittency is

P2 ¼
N2

N1 þ N2

¼ T1

T1 þ T2

: (7)

Taking into account all the above mentioned arguments,

the probability to observe the laminar phase of the length

falling in the range ½s; sþ dsÞ takes the following form:

PðsÞ ¼ pðsÞ ds

¼ P1½P12ðsÞ þ P11ðsÞ� þ P2½P21ðsÞ þ P22ðsÞ�: (8)

Substituting Eqs. (2)–(7) in Eq. (8), one obtains Eq. (1).

We expect that the intermittency of intermittencies is in-

herent in different types of intermittent behavior; but in this

paper, we report on observation of this phenomenon for the

eyelet, type-I with noise, and ring intermittencies.

The intermittency of intermittencies takes place in the

certain ranges of time scales and coupling strength values of

interacting oscillators. To illustrate this phenomenon and

show its universality, we consider several systems, namely,

the human cardiovascular system, the Van der Pol oscillator

€x � ðk� x2Þ _x þ x ¼ A sinðxetÞ þ DnðtÞ (9)

driven by the external harmonic signal with the amplitude A
and frequency xe with the additive stochastic term DnðtÞ,
and two coupled chaotic R€ossler oscillators

_x1 ¼ �x1y1 � z1; _x2 ¼ �x2y2 � z2 þ eðx1 � x2Þ;
_y1 ¼ x1x1 þ ay1; _y2 ¼ x2x2 þ ay2;

_z1 ¼ pþ z1ðx1 � cÞ; _z2 ¼ pþ z2ðx2 � cÞ;
(10)

where ðx1; y1; z1Þ and ðx2; y2; z2Þ are the Cartesian co-

ordinates of the drive and the response oscillators, respec-

tively, and e is a parameter characterizing the coupling

strength. Since the behavior of the systems (9) and (10) is

quite similar from the point of view of intermittency of inter-

mittencies, we illustrate this phenomenon with the more

complex system (10), synchronization in which has been dis-

cussed in many papers, e.g., Refs. 8–10.

The intermittency of intermittencies takes place near the

origin of the time scale synchronization regime.11 Time scale

synchronization means the presence of the synchronous dy-

namics in the certain range ½sl; sh� of the time scales s, intro-

duced with the help of the continuous wavelet transform12

Wðs; t0Þ ¼ s�1=2
Ðþ1
�1 xðtÞw� t�t0

s

� �
dt, with Morlet mother

wavelet function wðgÞ ¼ p�1=4expðj2pgÞexpð�g2=2Þ. Each

of the time scales can be characterized by the phase

uðs; tÞ ¼ argWðs; tÞ. Near the boundary of the time scale

synchronization regime, the dynamics of the phase differ-

ence DusðtÞ exhibits time intervals of phase synchronized

motion (laminar phases) persistently and intermittently inter-

rupted by sudden phase slips (turbulent phases) during which

the value of jDusðtÞj jumps up by 2p. Depending on the sys-

tem under study and selected values of the control parame-

ters, the observed intermittent behavior may be the eyelet

intermittency, type-I with noise intermittency, or ring inter-

mittency,13 and, as we show below, two different types of

intermittent behavior may alternate with each other in some

regions of the parameter values.

The typical dependence of the phase difference Dus

on time for two coupled R€ossler systems (10) is shown in

Fig. 1 for the case of intermittency of intermittencies regime

at e ¼ 0:032 and s¼ 4.99. The intermittency of intermitten-

cies was studied by the analysis of time intervals si (laminar

phase lengths) between the consequent turbulent events

(slips of eyelet intermittency or ring intermittency). From

Fig. 1, one can see that it is hard to distinguish visually the

difference between the phase slips corresponding to the dif-

ferent types of intermittency. The simplest way to reveal the

intermittency of intermittencies is to use the rotating plane

approach.7,13 For example, for two coupled R€ossler systems

(10) with a¼ 0.15, p¼ 0.2, c¼ 10.0, x2 ¼ 0:95, and

x1 ¼ 0:93, the boundary of the time scale synchronization

regime occurs at ec � 0:045, with the boundaries of the

range of synchronous time scales being sl ¼ 4:99 and

sh ¼ 8:25. If we consider ~x1;2 ¼ Re W1;2ðs; tÞ and ~y1;2 ¼ Im

W1;2ðs; tÞ as the variables determining the system state, then

in the rotating plane ðx0; y0Þ with13 x0 ¼ ~x1 cos u2ðs; tÞ
þ ~y1 sin u2ðs; tÞ and y0 ¼ �~x1 sin u2ðs; tÞ þ ~y1 cos u2ðs; tÞ;
the ring intermittency can be separated easily from the eyelet

intermittency. According to the rotating plane concept, the

tangle of phase trajectories in the ðx0; y0Þ plane, which looks
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like a fixed point smeared with noise (Fig. 2(a)), corresponds

to the synchronous behavior. When the trajectory starts rotat-

ing around the origin (Fig. 2(b)), it is the evidence of the eye-

let intermittency presence;6 whereas in the regime of ring

intermittency, the phase trajectory envelops the origin (see

Ref. 7 for detail) as it is shown in Fig. 2(c).

From Figs. 2(a)–2(c), one can easily see that at some

values of time scale s and coupling strength e either the eye-

let (Fig. 2(b)) or ring (Fig. 2(c)) intermittency takes place.

However, at the certain time scales, the eyelet and ring inter-

mittencies exist simultaneously (Fig. 2(d)). It means that

eyelet intermittency interrupts ring intermittency, and vice

versa, i.e., the intermittency of intermittencies takes place. In

this regime, the phase trajectory in the ðx0; y0Þ plane rotates

around the origin that is the manifestation of eyelet intermit-

tency and, from time to time, envelops it giving the evidence

of the ring intermittency presence. The same results can be

obtained for a driven Van der Pol oscillator in the presence

of noise, where the type-I intermittency with noise and ring

intermittency are observed. Note, that eyelet intermittency

and type-I intermittency with noise are closely related to

each other.14

For the eyelet, type-I with noise and ring intermittencies

the distribution of the lengths of laminar phases is governed

by the exponential law p1;2ðsÞ ¼ ð1=T1;2Þexpð�s=T1;2Þ,
where the subscript 1 is used for the ring intermittency and

the subscript 2 is used for the eyelet or type-I with noise

intermittency. As the result, for the intermittency of intermit-

tencies, Eq. (1) takes the form

pðsÞ ¼ expð�s=T1Þ
ðT1 þ T2Þ

1� s
T1

� �
C 0;

s
T2

� �

þ T2
1 þ T2

2

T1T2ðT1 þ T2Þ
exp � s

T1

� s
T2

� �

þ expð�s=T2Þ
ðT1 þ T2Þ

1� s
T2

� �
C 0;

s
T1

� �
; (11)

where Cða; zÞ is the incomplete gamma function. The mean

length of laminar phases for this type of intermittent behav-

ior can be obtained as

hsi ¼ �
T2

1 log
T1 þ T2

T1

� �
� 2T1T2 þ T2

2 log
T1 þ T2

T2

� �
T1 þ T2

:

(12)

The mean lengths of laminar phases of the considered types

of intermittencies are known to depend on the control param-

eters. Therefore, substituting the corresponding dependen-

cies for T1 and T2 in (12), one can reveal the dependence of

the mean length hsi of laminar phases on the control parame-

ters for the examined type of the behavior. It can be also

shown that the probability distribution (11) obeys the nor-

malization condition
Ðþ1

0
pðsÞ ds ¼ 1.

The probability distributions of the laminar phase lengths

obtained numerically for the driven Van der Pol oscillator with

noise (9) at the control parameter values k ¼ 0:1; xe ¼ 0:98,

and D¼ 1.0 (Eq. (9) was integrated using the one-step Euler

method with the time step h ¼ 5� 10�4) and for two coupled

R€ossler systems (10) in the regime of intermittency of intermit-

tencies are shown in Fig. 3. Since one can distinguish between

the cases of eyelet (or type-I with noise) and ring intermitten-

cies, which result in the phase slips, the values of T1 and T2

can be estimated from the analyzed time series and used to

compare the obtained distribution pðsÞ with the theoretical law

(11). The theoretical probability distributions pðsÞ correspond-

ing to these values of T1 and T2 are also shown in Fig. 3 by

solid lines. One can see that the obtained distributions of the

laminar phase lengths agree well with the theoretical prediction

(11). Note that a very good agreement between the theoretical

curves and numerically obtained data is observed for different

values of the control parameters. The dependencies of the

mean length hsi of laminar phases on the control parameter

values closely match the theoretically deduced relation (12) for

the examined intermittent regimes (Fig. 4).

FIG. 1. Typical phase difference DusðtÞ for two coupled R€ossler systems in

the regime of intermittency of intermittencies at e ¼ 0:032 and s¼ 4.99. The

turbulent phases are shown by rhombuses. The turbulent (asynchronous)

regions are denoted by “e” for the slips of eyelet intermittency and by “r”

for the slips of ring intermittency.

FIG. 2. The phase trajectory of the R€ossler system in the ðx0; y0Þ plane rotat-

ing around the origin: (a) synchronous regime at e ¼ 0:045 and s¼ 5.50,

(b) eyelet intermittency at e ¼ 0:032 and s¼ 5.50, (c) ring intermittency at

e ¼ 0:045 and s¼ 4.99, and (d) intermittency of eyelet and ring intermitten-

cies at e ¼ 0:032 and s¼ 4.99.
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Finally, to prove the generality of our findings, we consider

briefly the experimental results of the physiological data analy-

sis. Recently, it has been shown15,16 that physiological systems

generating the main heart rhythm and the rhythm associated

with slow oscillations in heart rate can be regarded as self-

sustained oscillators, and that the respiration can be regarded as

an external forcing of these systems. At the certain values of the

breathing frequency, the rhythmic processes operating within

the cardiovascular system can be synchronized.16 Therefore, the

phenomenon of intermittency of intermittencies is assumed to

be observed in the vicinity of the region of synchronization.

We studied eight healthy young male subjects having aver-

age levels of physical activity. The study protocol was approved

by the institutional ethical board and all subjects gave their writ-

ten informed consent. The signals of electrocardiogram (ECG)

and respiration were simultaneously recorded in the sitting posi-

tion with the sampling frequency 250 Hz and 16-bit resolution.

The duration of experiments was 10 min. The rate of breathing

was set by sound pulses. Having taken into account that the pro-

cess of slow regulation of heart rate is characterized in humans

by the fundamental frequency close to 0.1 Hz,17 the experiments

were carried out under paced respiration with the breathing fre-

quency of 0.2 Hz to avoid the spurious synchronization caused

by the presence of the respiratory component in the heart rate

variability.18 As a consequence, the intermittent behavior has

been studied near the 1:2 synchronization tongue with the phase

difference defined as DusðtÞ ¼ ubðs; tÞ � 2uRRð2s; tÞ, where

ubðs; tÞ is the phase of the signal of breathing at the time scale s
and uRRð2s; tÞ is the phase of the heart rate introduced at the

doubled time scale 2s. The time scale s¼ 5 s corresponds to the

frequency of breathing fb ¼ 0:2 Hz and the time scale 2s¼ 10 s

corresponds to the frequency of slow oscillations in heart rate

f¼ 0.1 Hz.

From Fig. 5(a) one can see that the dependence DusðtÞ
contains both the regions of synchronous behavior and the

phase slips. Unfortunately, due to the objective limitations,

we cannot obtain the records, which have enough length for

calculation of the laminar phase length distribution and

mean length of laminar phases. However, we can apply the

rotating plane approach to the recorded data in the same

FIG. 3. The laminar phase length distributions for the regime of intermit-

tency of intermittencies in two coupled R€ossler systems (curves 1, 3, and 5)

and driven Van der Pol oscillator with noise (curves 2 and 4). The theoreti-

cal curves (11) are shown by solid lines and the numerically obtained data

are shown by dots. The ordinate axis is selected in the log-scale. Curve 1 �
e ¼ 0:036, s¼ 4.870, T1 ¼ 50:0, and T2 ¼ 1666:7; 2 � A¼ 0.02308,

s¼ 3.50, T1 ¼ 56:0, and T2 ¼ 148:1; 3 � e ¼ 0:036, s¼ 4.965, T1 ¼ 322:6,

and T2 ¼ 1666:7; 4 � A¼ 0.02497, s¼ 3.57, T1 ¼ 120:0, and T2 ¼ 6002:9;

5 � e ¼ 0:038, s¼ 4.980, T1 ¼ 540:5, and T2 ¼ 17921:1.

FIG. 4. The mean length hsi of laminar

phases versus the observation time scale

s (a) and coupling strength e (amplitude

A of the external signal) (b) for driven

Van der Pol oscillator with noise (curve

1) and two coupled R€ossler systems

(curve 2). The theoretical curves (12)

are shown by solid lines and the

numerically obtained data are shown by

dots. In (a), sc ¼ sh ¼ 8:62 for curve 1

and sc ¼ sl ¼ 4:99 for curve 2.

FIG. 5. Intermittency of intermittencies in the human cardiovascular system:

(a) the dependence Dusðs ¼ 5 s; tÞ, curve 1, (b) the trajectory in the rotating

plane ðx0; y0Þ revealing the phase slips of eyelet intermittency, s¼ 5.0 s, and

(c) the trajectory in the rotating plane ðx0; y0Þ, where the intermittency of

eyelet and ring intermittencies is observed, s¼ 4.0 s. Intermittency of inter-

mittencies in two coupled R€ossler systems at e ¼ 0:035: (a) the dependence

Dusðs ¼ 6:3; tÞ, curve 2, (d) the trajectory in the rotating plane ðx0; y0Þ
revealing the phase slips of eyelet intermittency, s¼ 6.3, and (e) the trajec-

tory in the rotating plane ðx0; y0Þ, where both types of intermittent behavior

are observed, s¼ 4.4.
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manner as it was done in Fig. 2 to separate from each other

the asynchronous phase jumps corresponding to different

types of intermittency (Figs. 5(b) and 5(c)). As one can see

from Fig. 5(c), the intermittency of intermittencies takes

place in the human cardiovascular system. For comparison,

we plot also the phase difference and the rotating plane pic-

tures for two coupled R€ossler oscillators (10) considered in a

similar way to the human cardiovascular system (Figs.

5(a)–5(e)), i.e., the phase difference in this case is calculated

as DusðtÞ ¼ u1ðs; tÞ � 2u2ð2s; tÞ.
In conclusion, we have reported for the first time on the

new phenomenon revealed in the temporal behavior of two

coupled complex systems at the onset of time scale synchro-

nization regimes at which two different types of intermit-

tency alternate with each other. Such type of intermittency

differs greatly from all other types of intermittency known

so far. The theoretical dependencies of the mean length of

laminar phases on the control parameter values are derived

that are in perfect agreement with the numerically obtained

data. Since the features of the discovered intermittent pro-

cess are explicitly deduced at the boundary of the time scale

synchronization, we expect that the same phenomenon may

occur under certain conditions in a variety of coupled

oscillators.
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