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volunteers who did not take medications at the age of 19-21 -
10 people (approximately equal ratio of men and women).
All volunteers were asked to adhere to a healthy lifestyle
(at least 8 hours of sleep, eliminate alcohol consumption,
eliminate or limit consumption of caffeine-containing foods)
for 48 hours before each experiment. The volunteers were
familiarized in advance with the procedure for conducting the
experiment and the possible inconveniences caused by it, had
the opportunity to ask questions of interest and get satisfactory
answers to them. Each subject completed and signed an
informed consent form to participate in the experiment. All
experimental work was carried out in accordance with the
requirements of the Declaration of Helsinki and approved by
the Ethics Commission of Innopolis University.

The experiment was carried out as follows. The subject was
sitting in a comfortable chair, and a tablet was placed on the
table in front of him (distance from the screen to the eyes ≈
30−40 cm). The tablet was used both for the demonstration of
simple tasks for spatial perception and for registering answers
with a stylus. The duration of each individual experiment was
≈ 30 minutes, depending on the speed and performance of
tasks by the subjects.

During the experiment, brain activity was recorded using
functional near-infrared spectroscopy (fNIRS). For this, equip-
ment was used at the disposal of the Neuroscience and Cogni-
tive Technologies Laboratory. The arrangement of optodes was
the same as in [23]. The obtained neurophysiological data were
used to restore functional connectivity between the neuronal
activity of different parts of the cortical network of the brain
based on the joint processing of signals of electrical activity
and hemodynamic response.

The signals obtained during the perception and process-
ing of sequentially presented visual stimuli were used. The
functional connectivity between the recorded hemodynamic
response signals in different areas was restored. The areas
under consideration were the parietal and frontal cortex, which
are known to demonstrate functional interaction in processing
sensory information in the event of an increase in cognitive
load [25].The hemodynamic response signals had been pre-
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I. INTRODUCTION

The study of the mechanisms of the work of the brain is 
one of the most important tasks of modern science. Interest in 
works related to the study of the brain and neural activity has 
been growing since the publication of the first works on brain 
mapping in the early 20th century [1]–[9]. Brain research is 
now being done in neuroscience, which is a fundamentally 
interdisciplinary field of knowledge [8]–[10]. It incorporates a 
variety of methods and concepts from physics, mathematics, 
computer science, and other disciplines to advance understand-
ing of how the brain works [11]–[20].

At the same time, one of the most important tasks of 
neuroscience is the study of the process of perception and 
processing of information [3], [7], [21]–[24]. It is known 
that the brain’s response to visual stimulation is complex and 
involves the activation of coherent neural structures in various 
areas of the brain responsible for processing external sensory 
information. At the same time, characteristic time-frequency 
patterns are formed, which can be detected using modern 
neuroimaging methods (EEG, fNIRS, fMRI and ect.).

This work is devoted to the analysis of the dynamics of the 
functional connectivity of the cerebral cortex during process-
ing and perception of simple cognitive stimuli associated with 
spatial perception. fNIRS is used to obtain information about 
brain activity.

II. MATERIALS AND METHODS

The experimental studies involved nonsmokers, not involved 
in professional sports, without neurophysiological diseases,
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processed and were filtered in three narrow-frequency ranges
(0.005-0.03, 0.03-0.06, 0.06-0.09 Hz) using the Butterworth
filter of the fifth-order [26].

III. RESULTS

For each pair of obtained time series, cross-correlation
coefficients were calculated. The correlation coefficients of
Pearson [27] and Spearman [28] were calculated. A compari-
son was made of the results obtained using these approaches.
As a result, it was shown that the deviation averaged + -0.07,
which is insignificant. Thus, further analysis of changes in
functional interaction with varying experimental parameters
was carried out on the basis of Pearson’s correlation.

Fig. 1. Coefficients of functional connectivity of the cortical network of
the brain in the frequency range 0.005-0.03 Hz between all branches of the
fNIRS for signals of total hemoglobin and oxyhemoglobin in various parts of
experiment.

The analysis of the dynamics of the functional connectivity
of the cortical network of the brain between the signals
of oxyhemoglobin and total hemoglobin when performing a
monotonous cognitive task for a long time is carried out. For
this purpose, the experiment was divided into three equal parts
(Part 1, Part 2 and Part 3), for which the above correlation
analysis was applied. Found characteristic changes in the
dynamics of functional connectivity in the course of the
experiment. In particular, in the first stage of the experiment
(Part 1), oxyhemoglobin signals in the frequency range 0.005-
0.03 Hz, in the parietal cortex (channels 9-16, Figure 1), are
characterized by a high correlation coefficient. At the same
time, functional connectivity between the frontal and parietal
regions are practically absent in the considered frequency
range. Then there is a sequential destruction of connections
in the parietal cortex and the formation of new connections
between the parietal and frontal cortex of the brain, and the
formed connections are characterized by a negative correla-
tion coefficient, which indicates an antiphase hemodynamic
response between these areas (see figure 1 (Part 2 and Part 3)
).

In turn, the restoration of functional connectivity according
to the signals of total hemoglobin shows that in the first stage

Fig. 2. Coefficients of functional connectivity of the cortical network of
the brain in the frequency range 0.03-0.06 Hz between all branches of the
fNIRS for signals of total hemoglobin and oxyhemoglobin in various parts of
experiment.

of the experiment in the frequency range 0.005-0.03 Hz the
prefrontal and parietal cortex are characterized by a high corre-
lation index. At the same time, functional connectivity between
these areas of the brain are much weaker. Nevertheless, it is
possible to restore the functional connectivity between leads
1, 2 of the prefrontal cortex and 9, 10 of the parietal cortex,
and antiphase dynamics is observed between them. Over time,
the functional connectivity in the prefrontal and parietal areas
is destroyed, as well as the strengthening of the connections
between them, and the connections between the areas are
characterized by a negative correlation coefficient (see Figure
1 (Part 2 and Part 3)).

Fig. 3. Coefficients of functional connectivity of the cortical network of
the brain in the frequency range 0.06-0.09 Hz between all branches of the
fNIRS for signals of total hemoglobin and oxyhemoglobin in various parts of
experiment.

Note that the analysis of the dynamics of functional connec-
tivity in the frequency ranges 0.03-0.06 and 0.06-0.09 Hz is
characterized by a high correlation between all branches, while
the general tendency aimed at the destruction of connections
within the frontal and parietal regions during the experiment
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remains (see Figure 2 and 3). At the same time, the highest
correlation between all hemodynamic channels was found in
the frequency range 0.06-0.09 Hz.

IV. CONCLUSION

In this work, we analyzed the functional connectivity be-
tween changes in the concentration of oxyhemoglobin, de-
oxyhemoglobin, and total hemoglobin, recorded by various
leads of fNIRS from the frontal and parietal cortex. The
obtained coefficients characterizing the functional connectivity
between a pair of leads were presented in the form of a
matrix. To analyze changes in functional connectivity over
time, the entire experiment was divided into three equal
parts, for which the relationship matrices were calculated. The
results were analyzed and interpreted. In particular, groups
of channels were found and characterized, showing inverse
and direct correlation. At the same time, correlations were
also compared between the signals recorded by adjacent leads
(frontal or parietal) and leads that are distant from each other
(for example, located in the parietal and frontal regions).
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