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Loss of neuron network coherence 
induced by virus‑infected 
astrocytes: a model study
Sergey V. Stasenko 1,3*, Alexander E. Hramov 2,4 & Victor B. Kazantsev 1,3

Coherent activations of brain neuron networks underlie many physiological functions associated with 
various behavioral states. These synchronous fluctuations in the electrical activity of the brain are also 
referred to as brain rhythms. At the cellular level, rhythmicity can be induced by various mechanisms 
of intrinsic oscillations in neurons or the network circulation of excitation between synaptically 
coupled neurons. One specific mechanism concerns the activity of brain astrocytes that accompany 
neurons and can coherently modulate synaptic contacts of neighboring neurons, synchronizing their 
activity. Recent studies have shown that coronavirus infection (Covid-19), which enters the central 
nervous system and infects astrocytes, can cause various metabolic disorders. Specifically, Covid-19 
can depress the synthesis of astrocytic glutamate and gamma-aminobutyric acid. It is also known 
that in the post-Covid state, patients may suffer from symptoms of anxiety and impaired cognitive 
functions. We propose a mathematical model of a spiking neuron network accompanied by astrocytes 
capable of generating quasi-synchronous rhythmic bursting discharges. The model predicts that if the 
release of glutamate is depressed, normal burst rhythmicity will suffer dramatically. Interestingly, 
in some cases, the failure of network coherence may be intermittent, with intervals of normal 
rhythmicity, or the synchronization can disappear.

The synchronization of neuron network activity at the cellular and network levels gives rise to rhythmic volt-
age fluctuations traveling across brain regions, known as neuronal oscillations or brain waves1,2. Modulation of 
neural oscillations is provided by the dynamic interplay between neuronal connectivity patterns, cellular mem-
brane properties, intrinsic circuitry, speed of axonal conduction, and synaptic delays3–6. The neural oscillations 
fluctuate between two main states, known as “up states” and “down states”7. The network coherence provided by 
the up state in spatially organized cortical neural ensembles plays a crucial role for several sensory and motor 
processes, as well as for cognitive flexibility (i.e., attention, memory), thereby playing a fundamental role in the 
brain’s basic functions8–10. Furthermore, different network dynamics (from slow to ultra-fast oscillations) can 
change according to the behavioral state, with some frequency bands being associated with sleep, while other 
frequencies predominate during arousal or conscious states11–13.

To study the mechanisms of synchronization of the neuron network activity at the cellular and network levels, 
a number of mathematical models have been proposed14,15. One approach is to consider the model of short-term 
synaptic plasticity as a possible synaptic mechanism for the formation of bursting activity16–19.

Besides purely neuronal mechanisms, many recent studies revealed the essential contributions made by 
astrocytes to many physiological brain functions,including synaptogenesis20, metabolic coupling21, nitrosative 
regulation of synaptic release22–24, synaptic transmission25, network oscillations26, and plasticity27,28. Astrocytes 
can play a significant role in the processing of synaptic information through impact on pre- and post-synaptic 
neurons. This fact leads to the concept of a tripartite synapse29,30. A part of the neurotransmitter released from 
the presynaptic terminals (i.e., glutamate) can diffuse out of the synaptic cleft and bind to metabotropic glutamate 
receptors (mGluRs) on the astrocytic processes that are located near the neuronal synaptic compartments. The 
neurotransmitter activates G-protein mediated signaling cascades that result in phospholipase C (PLC) activa-
tion and insitol-1,4,5-trisphosphaste (IP3) production. The IP3 binds to IP3-receptors in the intracellular stores 
and triggers Ca2+ release into the cytoplasm. Such an increase in intracellular Ca2+ can trigger the release of 
gliotransmitters31 [e.g., glutamate, adenosine triphosphate (ATP), D-serine, and GABA] into the extracellular 
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space. A gliotransmitter can affect both the pre- and post-synaptic parts of the neuron. By binding to presynap-
tic receptors, it can either potentiate or depress presynaptic release probability. One of the key pathways in the 
tripartite synapse is mediated by glutamate released by the astrocyte32–34. Such glutamate can potentially target 
presynaptic NMDA receptors, which increase the release probability35, or presynaptic mGluRs, which decrease 
it36. Presynaptic kainate receptors exhibit a more complex modulation of synaptic transmission through both 
metabotropic and ionotropic effects37,38. Based on experimental data, many computational models have been 
proposed taking into account neuron to astrocyte interactions to describe the interneuronal communication39–46. 
Many experimental studies have shown that astrocytes can coordinate the neuronal network activations45,47–49. 
Because astrocyte is affected by a large number of synapses, the gliotransmission should also contribute to the 
effect of neuronal synchronization50–54. Particularly, it was demonstrated in a hippocampal network that cal-
cium elevations in astrocytes and subsequent glutamate release led to the synchronous excitation of clusters of 
pyramidal neurons55,56.

Coronavirus SARS-CoV-2 has become a global challenge of the modern world, stimulating intensive research 
in many related areas of science. Along with the development of vaccines, a fundamentally important global 
task is to investigate Covid-19 effects on different systems of human organisms. Recent studies have shown that 
coronavirus infection, entering the central nervous system and infecting astrocytes, causes various metabolic 
disorders57,58, one of which is a decrease in the synthesis of astrocytic glutamate and gamma-aminobutyric 
acid (GABA)57. It is also known that in the postcovid state, patients may suffer from symptoms of anxiety and 
impaired cognitive functions57,58. In this paper, we propose a mathematical model of impact infected astrocyte 
on the ability to synchronize neural networks and produce brain rhythms. We show that depending on the 
degree of disturbance in the synthesis of gliotransmitters neuronal network synchronization can be partially or 
completely suppressed.

Methods
Classical model of single neuron.  To describe the dynamics of a single neuron, we use the Izhikevich 
model59, which represents a compromise between computational complexity and biophysical plausibility. 
Despite its computational simplicity, this model can replicate a large number of phenomena that occur in real 
neurons. The Izhikevich model is formulated as a system of differential Eq. (1):

If Vi ≥ Vpeak , then

where i (i=1,...,N) corresponds to a neuronal index, a, b, c, d, k,C,VtandVr are the different parameters of the 
neuron. Vi is the potential difference between the inside and outside of the membrane, and Ui is a “recovery 
variable” describing the process of activation and deactivation of potassium and sodium membrane channels, 
respectively. As a result, we have negative feedback that affects the dynamics of the potential Vi on the cell mem-
brane. The resting potential value in the model lies in the range from -70 to -60 mV. Its value is determined by 
the parameter b, which describes the sensitivity of the recovery variable to subthreshold potential fluctuations 
in the neuronal cell membrane. The parameter a sets the characteristic time scale of the change in the recovery 
variable u. The Vpeak value limits the spike amplitude. Parameters c and d specify the values of Vi and Ui after spike 
generation. Iexti is the externally applied current. The neuron model is in an excitable mode and demonstrates the 
generation of spikes in response to an applied current. Isyni represents the total synaptic current from all neurons 
with which this neuron is connected. The total synaptic current Isyn received by neuron i from M presynaptic 
neurons was calculated as follows:

where wi,j denotes the weights for glutamatergic and GABAergic synapses between neurons. For excitatory and 
inhibitory contacts, the weights have positive and negative signs, respectively. Variables yi,j denote the output 
signal (synaptic neurotransmitter) from the j-th neuron to the i-th neuron involved in the production of Isyni , 
M is the number of non-zero contacts. Note that the total number of synaptic connections is N2

× p , where N 
is the number of neurons, p is the probability of communication between two random neurons , which is set to 
0.1 (corresponding to 10% of connections). Each synaptic weight was set randomly for all connections in the 
range from 20 to 60. If a spike is generated on the presynaptic neuron, a jump in the synaptic current occurs on 
the postsynaptic neuron, which then decays exponentially. As a result, synaptic neurotransmitter concentration, 
yi,j , was calculated as follows:

where ts denotes the time moments of consequent presynaptic spikes, τy is a relaxation time constant.
Each spike in the neuron model induces the release of neurotransmitter. To describe the neuron to astrocyte 

cross-talk, here we only focus on the excitatory neurons releasing glutamate. Following earlier experimental and 

(1)
{

C dVi
dt = k(Vi − Vr)(Vi − Vt)− Ui + Iexti + Isyni ,

dUi
dt = a(b(Vi − Vr)− Ui).

(2)
{

Vi = c,
Ui = Ui + d,

(3)Isyni =

M
∑

j=1

wi,jyi,j ,

(4)yi,j(t) =

{

yi,j(ti)exp(−t/τy) if , ts < t < ts+1,
yi,j(ts − 0)+ 1 if , t = ts ,
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modeling studies, we assumed that the glutamate-mediate exchange was the key mechanism to induce coherent 
neuronal excitations55,56. The role of GABAergic neurons in our network is to support the excitation and inhibi-
tion balance avoiding hyperexcitation states.

For simplicity, we take a phenomenological model of released glutamate dynamics. In the mean-field approxi-
mation average concentration of extyrasynaptic glutamate concentration for each excitatory synapses, Xe , was 
described by this equations:

where e = 1, 2, 3, ... is the index of excitatory presynaptic neurons, s = 1, 2, 3, . . . is the index of the presynaptic 
spikes, τX is the time relaxation. After a spike is generated on the presynaptic neuron, the neurotransmitter is 
released, and the concentration of the extrasynaptic neurotransmitter increases due to diffusion processes, but 
it decreases over time with its characteristic time constant,τX . So that, the difference in mathematical descrip-
tions of synaptic (4) and extrasynaptic (5) is accounted for by the different time constants τy and τX , respectively.

Dynamics of astrocytic signal.  Part of the extrasynaptic glutamate can bind to metabotropic glutamate 
receptors on the astrocyte processes. Subsequently, after a cascade of molecular transformations mediated by 
an elevation of intracellular calcium, the astrocyte release gliotransmitter back to the extracellular space. For 
our purpose, in the framework of qualitative mean-field description, we have omitted molecular details of these 
transformations, and instead defined only the input-output functional relation between the neurotransmitter 
and gliotransmitter concentrations, as follows43,46,51,54:

where e = 1, 2, 3, . . . is the index of excitatory neuron, Ye is the gliotransmitter concentration in the neighborhood 
of the corresponding excitatory synapse, αY is the clearance rate and βY is the release rate. So that, the second 
term in Eq. (2) describes the gliotransmitter production when the mean-field concentration of gliotransmitter 
exceeds some threshold, Xthr . Figure 1 illustrates the network construction and neuron-to-astrocyte crosstalk 
for excitatory glutamatergic synapses.

We also considered the effect of the astrocyte infection. Recent experimental studies demonstrated that 
COVID-19 infection results in a decrease in astrocytic glutamate and GABA synthesis57. For our purposes, this 
means that the amount of released gliotransmitter locally decreases with the overall level of infection. In the 
mean-field approach, this can be modeled by scaling the release rate as follows:

where β0
Y  represents the release rate for non-infected astrocyte and 0 < γvirus < 1 is the scaling coefficient. 

Phenomenologically, quantity γvirus can be treated as the infection probability for local astrocyte. In a “spatial” 
treatment γvirus describes the fraction of infected astrocytes in the whole ensemble and can be associated with 
the level of viral load. In the limit cases of well-functioning cell γvirus = 0 , it takes unity value and the production 
rate is accounted by βY , while for totally infected cells, γvirus = 0 , it takes zero value and no release happens at all.

It should be noted that the depression of gliotransmitter release might not be specific to Covid action only. 
The release process is regulated by a complex cell molecular machinery that can not be fully accounted for 
in the framework of phenomenological models. However, such Covid-associated local astrocyte dysfunction, 
accounted in the mean-field model by the release scaling, will result in global changes in neural circuit dynamics 
at the network level.

Astrocytic modulation of neural activity.  It follows from experimental evidence that astrocytes can 
influence the probability of neurotransmitter release34,60,61, which in turn results in modulation of synaptic cur-
rents. We take this into account in the following form for glutamatergic synapses:

where Isyni is the sum of all synaptic currents of the postsynaptic neuron, wi,j is the weight for glutamatergic 
synapses between neurons, γY is the coefficient of astrocyte influence on synaptic connections.

Spiking neural network.  Schematic representation of the network with astrocytic modulation of the prob-
ability release of neurotransmitter is presented in Fig. 1a. After the generation of an action potential on the 
presynaptic neuron, the neurotransmitter is released from the presynaptic terminal. A part of it can diffuse out 
of the cleft, where it can bind to specific astrocyte receptors62. The activation of the astrocyte results in the gen-
eration of calcium transients in the form of short-term increases in the intracellular concentration of calcium. In 
turn, the calcium elevations lead to gliotransmitter (particularly glutamate) release. The released gliotransmitter, 
upon reaching the presynaptic terminal, leads to a change in the probability of neurotransmitter release, poten-
tiating the synaptic current. Fig. 1b shows a diagram of the sequence of influences and interactions in a tripartite 
synapse: 1 - input from the neural network to the presynaptic terminal, 2 - release of the neurotransmitter, 3 
- diffusion of the neurotransmitter and binding to receptors on the astrocyte membrane, 4 - release of the gli-

(5)Xe(t) =

{

Xe(ts)exp(−t/τX), if ts < t < ts+1,
Xe(ts − 0)+ 1, if t = ts ,

(6)
dYe

dt
= −αYYe +

βY

1+ exp(−Xe + Xthr)

(7)βY = β0
Y (1− γvirus),

(8)Isyni =

M
∑

j=1

wi,jyi,j(1+ γY · Ye)
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otransmitter from the astrocyte and its effect on the presynaptic terminal through a change in the probability of 
neurotransmitter release. This, in turn, leads to the formation of burst activity.

The architechture of synaptic connections in our model neywork is illustrated in Fig. 2. The left panel shows 
the connections between pre- and postsynaptic neurons. Neurons on the vertical axis are ordered with excitatory 
ones, Nex , coming first followed by the inhibitory ones, Ninh . The synaptic connections are illustrated by lines 
from the left (“Pre”) to the right (“Post”) in the figure. Red lines denote the excitatory connections, and the blue 
lines correspond to the inhibitory ones. The figure on the right shows connectivity matrix, wi,j , with coordinates 
according to the numbers of pre- and postsynaptic neurons. Each dot in the field denotes the presence of nonzero 
synaptic connections.

In our simulations, we used N = 125 spiking cortical neurons with 1562 synaptic connections in real time 
(resolution 1 ms). Motivated by the anatomy of a mammalian cortex, we choose the ratio of excitatory to inhibi-
tory neurons to be 4 to 1. Thus, we took Nex = 100 and Ninh = 25 , respectively. Besides the synaptic input, each 
neuron receives a noisy thalamic input ( Iexti ). The noisy thalamic input is set randomly for all neurons in the 
range from 0 to 50. Since the model uses a mean-field approach to describe changes in the main neuroactive 
substances (neurotransmitter and gliotransmitter), we do not separate the effect of a single astrocyte on a group 
of neurons or a group of neurons on a single astrocyte, but we introduce into the description of each synaptic 
contact its own dynamics for the neuro and gliotransmitter.

(a)

(b)

Figure 1.   (a) - Schematic view of the network and a schematic representation of astrocytic modulation of 
synaptic current, (b) - Diagram of the sequence of influences and interactions in a tripartite synapse: 1 - input 
from the neural network to the presynaptic terminal, 2 - release of the neurotransmitter, 3 - diffusion of the 
neurotransmitter and binding to receptors on the astrocyte membrane, 4 - release of the gliotransmitter from 
the astrocyte and its effect on the presynaptic terminal through a change in the probability of neurotransmitter 
release.
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For neuronal network simulation, we took parameters typically used in simulations of Izhikevich’s neurons 
in a spiking mode. The astrocyte was modeled phenomenologically, and the parameters were tuned to generate 
population bursts as a normal state of the network without infection.

We simulated the model by performing numerical integration of Eqs. (1) to (7) using the Euler method 
with a time step of 0.5 ms. Such a procedure has been shown to be appropriate for integrating large systems of 
the Izhikevich’s neurons59,63. The software used for simulation was written in the object-oriented programming 
language C++.

Network signaling characteristics.  We trained the network model to generate the so-called popula-
tion burst dynamics, which represent time intervals of quasi-synchronous spiking alternating with irregular 
spiking64–66. A typical example is shown in Fig. 3. Generally, such signalling may emerged from modulations of 
the weights of excitatory and inhibitory neuronal populations. For example, this modulation can be associated 
with short-term plasticity in local synapses16–19. Briefly, such short-term synaptic changes are frequency depend-
ent, and after high-frequency firing, the neurotransmitter release is suppressed. Here, we consider a different 
situation where local synapses were supplied with astrocytes regulating the neurotransmitter release via calcium 
activation and consequent gliotransmitter release. Note, that population bursting is quite different from single 
cell bursting generated by other neuronal models, such as the Hindmarch-Rose neuron. Without coupling, each 
neuron works in its spiking mode.

To characterize the bursting dynamics, we used the following calculation algorithm:

•	 The number of neural network spikes, Nspikes , was counted for all neurons, N, at a time, t = 1 ms, 

Nspikes =
∑N

i=1 S(Vi) , where S(Vi) =

{

1, if Vi > Vpeak

0, otherwise
.

•	 The number of spikes in the sliding time window,TW = 100 ms, was counted Wspikes =
∑TW

t=1 Nspikes.
•	 The sliding time window moves to t + 1 and the number of spikes is recalculated.
•	 According to the threshold of bursting generation (in Fig. 3 marked with a red line), determined by the burst 

mode of neural activity, the frequency of bursts is calculated.

Next, we calculated the graph of the dependence of the burst frequency on a model parameter. Each point of 
the graph was obtained by averaging 1000 simulation experiments. To estimate the regression curve, we used 
the following equation:

(9)y = A exp

(

−

(

x − B

C

)2

+ D

)

,

Figure 2.   Scheme of synapse connections in neural networks. The left panel shows the connections between 
pre and postsynaptic neurons. Neurons on the vertical axis are ordered with excitatory ones, Nex , coming first 
followed by the inhibitory ones, Ninh . The synaptic connections are illustrated by lines from the left (“Pre”) 
to the right (“Post”) in the figure. Red lines denote the excitatory connections, and the blue lines correspond 
to the inhibitory ones. The figure on the right shows connectivity matrix, wi,j , with coordinates according to 
the numbers of pre- and postsynaptic neurons. Each dot in the field denotes the presence of nonzero synaptic 
connections.
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where A, B, C, D are parameters of the regression equation, x is the data vector obtained for the numerical 
experiment.

Results
First, let us consider how the astrocytes induced the appearance of quasi-synchronous bursting dynamics. If no 
astrocytic feedback is activated, e.g., γY = 0 , the network showed asynchronous spontaneous firing due to the 
uncorrelated noisy component of applied current, Iexti , which stimulates all neurons (not shown in the figures). 
When the feedback is activated, γY > 0 , the model starts to generate population burst discharges, as illustrated 
in Fig. 3.

Similar to previous modeling studies45,47–49 the astrocytes started to coordinate neuronal activity, inducing 
a certain level of coherence in the network firing. On the one hand, each astrocyte is activated by integrating 
neuronal activity in its neighbouring space. On the other hand, when astrocyte is activated, it facilitates the 
synchronous activation of accompanying neurons within a certain area. As a result, neurons generated quasi-
synchronous high-frequency burst discharges (Fig. 3). These discharges are synchronized with peaks of extracel-
lular glutamate concentration associated with the astrocytes activations. It should be noted that population burst 
dynamics is typical for living networks formed in dissociated cortical (or hippocampal) neuronal culture models 
in vitro64,67,68. In such biological models, normal bursting indicates normal activity. In different pathological 
conditions (hypoxic-ischemic injury, alpha or theta coma or electrocerebral inactivity69) bursting fails, which 
indicates the decrease of functional coherence in the network firing.

Next, we activated the virus pathological action in the model by increasing γvirus > 0 . Figure 4 illustrates 
how network activity changes in this case. The raster plot shows that normal bursting were interrupted by the 
intervals of asynchronous uncorrelated firing. Corresponding graphs of glutamate concentration in the right 
panels indicate that in these intervals the astrocytes were partly (lower peaks) or completely (no peaks) inhibited. 
After this intervals bursts were spontaneously recovered to normal sequences. So, the result of the astrocyte 
infection at network level provokes the failure of normal synchronization at the network level, while each neu-
ron in the network works fine, and each synaptic connections stay well-functioning. Note that, for low values 
of γvirus associated with “light” infection cases, the intervals of uncorrelated firing are quite shot, indicating a 
kind of intermittent behavior between long-lasting normal synchronous (e.g. “laminar”) stages and rather shot 
pathological asynchronous (e.g. “turbulent”) breaks.

The next prediction of the model concerns the gradual character of the infection’s influence. This means that 
higher concentration of the virus in the organism will result in a stronger pathological response. In terms of our 
model, an increase in γvirus leads to an increase in the intervals of “pathological” firing (Fig. 5). One can note that 

Figure 3.   Network firing under normal conditions. Left upper panel: A raster plot of neural activity, 
with red dots indicating spikes by excitatory (glutamatergic) piramidal neurons and blue dots 
indicating spikes by inhibitory (GABAergic) interneurons. Right panels: Changes in the extracellular 
concentrations of synaptic glutamate diffused from the cleft (green color) and the glutamate released by 
astrocyte (red color) for all tripartite synapse. Left lower panel: the count of spikes over a sliding time 
window of 100 ms is shown for the entire simulation time of the model. We set the burst generation 
threshold at 65 spikes, marked by a red dashed line. The parameter values used are: for neuron - 
a = 0.02, b = 0.5, c = −40, d = 100, k = 0.5,C = 50,Vr = −60,Vpeak = 35,V0 = −60,U0 = 50 ;  
other - τy = 4, τX = 100,αY = 80,βY = 1,Xthr = 5.6, γY = 0.72.
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the number of normal bursts within the same sample window significantly decrease. In terms of the concentra-
tions of neuro- and gliotransmitter (right panels of Fig. 5), we also noticed a decrease in functionality not only of 
all astrocytes but also neurons. Some of them become depressed due to the lack of a sufficient amount glutamate 
to support normal excitatory transmission. Therefore, the higher virus concentration is exposed, then more astro-
cytes are infected and, hence, more “explicit” pathological synchrony breaks appear at the level of network firing.

As one may expect now, further increase in γvirus completely inhibit the synchronization. This is illustrated 
in Fig. 6. Correspondingly, all astrocytes fail to release any glutamate. However, note that overall network firing 
still persists, sustained by activations of excitatory neurons with relatively strong glutamatergic synapses. To 
quantify the gradual character of network dysfunction due to the infection we calculated a quantity reflecting 

Figure 4.   Raster chart of neural activity and dependences of gliotransmitter and neurotransmitter 
concentration from time with infected astrocyte feedbacks for γvirus = 0.10.

Figure 5.   Raster chart of neural activity and dependences of gliotransmitter and neurotransmitter 
concentration from time with infected astrocyte feedbacks for γvirus = 0.2.
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the average burst frequency versus γvirus (Fig. 7). The graph represents monotonically descreading function, 
vanishing at γvirus → 1.

Discussion
At the cognitive level, normal brain function is associated with functional networks that involve long-range 
correlations between different groups of neurons, each responsible for a particular function70,71. Failure of these 
correlations may indicate the appearance of cognitive dysfunctions72.

At the cellular level, functional synchronization is achieved through coherent firing patterns of spiking 
neuronal circuits. Our mathematical model, following in vitro biological models of neuronal cultures where 
the appearance of population bursts provides functional synchronization, predicts that infected (in particular, 
infected by Covid-19 virus) astrocytes might be responsible for the failure of functional synchronization and 
consequent cognitive dysfunctions.

It was also found from our model study that the change in the period of the “laminar phase”, i.e. the duration 
of regular bursts, and the duration of asynchronous states (say, the “turbulent phase”) is controlled by the γvirus 
parameter (taking into account the level of astrocyte dysfunction), as shown in Fig. 7. In this context, the dura-
tion of the “turbulent” phase (e.g. without bursting) can be associated with temporal cognitive state of mental 

Figure 6.   Raster chart of neural activity and dependences of gliotransmitter and neurotransmitter 
concentration from time with infected astrocyte feedbacks for γvirus = 0.8.

Figure 7.   Dependence of bursts frequency from γvirus.
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dysfunction. Increasing the virus load (accounted in the model by gamma) induces longer periods of dysfunc-
tions. Recovering the gliotransmitter release immediately recovers normal bursting rhythmicity.

At present, cognitive dysfunctions are reported as one of the most dangerous consequences of Covid-19 infec-
tion in post-covid states (patients may suffer from symptoms of anxiety and impaired cognitive functions57,58). 
Patients’ EEG scans show a range of abnormalities in brain activity, including some rhythmic patterns and 
epileptic-like spikes in activity73. Therefore, we hope that our developed model and the results obtained can 
clarify the processes occurring in the body after Covid-19 infection.

Conclusion
We constructed spiking neuron network that communicates with astrocytes. For a certain choice of model 
parameters, the network demonstrated signals in the form of robust quasi-synchronous population bursts, 
which we treated as the basic or normal state of the network. The model takes into account astrocyte activation 
depending on the integrative level of neuronal firing and the astrocyte-to-neuron feedback that is based on the 
released gliotransmitter (glutamate), which facilitates group firing of neurons within the astrocyte territory. 
Following experimental facts, we assumed that infected astrocytes (in particular, infected by Covid-19) suffer 
from decreased gliotransmitter release. We accounted this fact by incorporating feedback that depends on the 
viral load.

Next, the model predicted qualitative changes in neuronal network firing depending on the strength of the 
feedback. We found that network coherence, such as the level of synchronization in population bursts, signifi-
cantly suffered from virus infection. Interestingly, intervals of pathological signalling, such as asynchronous fir-
ing, alternated with stages of self-recovered “normal” population burst dynamics. Furthermore, there was direct 
correlation between the level of viral load and the durations of pathological signaling intervals.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.

Code availability
Code used to produce the results presented herein is available in a public GitHub repository at https://​github.​
com/​sstas​enko/
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