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A B S T R A C T

We delve into the intriguing realm of reservoir computing to predict the intricate dynamics of a stochastic
FitzHugh–Nagumo neuron model subjected to external noise. Through innovative reservoir design and training,
we unveil the remarkable capacity of a reservoir computer to forecast the behavior of this stochastic system
across a wide spectrum of noise intensity variations. Notably, our reservoir computer astutely replicates
the intricate phenomenon of coherence resonance in the stochastic FitzHugh–Nagumo neuron, signifying
the superior modeling capabilities of this approach. A detailed examination of the microscopic dynamics
within the reservoir’s hidden layer reveals the emergence of distinct neuronal clusters, each displaying unique
behaviors. Certain neurons within the reservoir are adept at faithfully reproducing the dynamical traits of the
neuron, particularly the spike generation mechanism. In contrast, the remaining neurons within the reservoir
seem to emulate stochastic influences with remarkable precision, accurately capturing the moments of spike
generation in the neuron under the sway of noise. This innovative reservoir design proves to be highly effective
across a diverse range of noise control parameters, faithfully replicating the essential characteristics of the
original stochastic FitzHugh–Nagumo neuron. These findings illuminate the potential of reservoir computing
to model and predict the dynamics of complex stochastic systems, showcasing its adaptability and versatility
in understanding and simulating natural phenomena.
1. Introduction

Complex nonlinear systems can exhibit very rich dynamics, en-
compassing chaos, structural formations, frequency entrainment, mul-
tistability, and intricate transitions when parameters are turned or
external forcing is applied [1–3]. In most cases, the introduction of
noise to such systems leads to heightened unpredictability in their
dynamics. Nevertheless, there are instances where the noise interacts
with the system’s intrinsic order in a resonant manner. Under specific
conditions, the motion reaches its peak coherence at a particular noise
intensity level. This intriguing phenomenon, recognized as coherence
resonance, has been observed in stochastic systems where regularity or
coherence is maximized near critical points, such as a supercritical Hopf
bifurcation [4] or a saddle–node bifurcation on the invariant circle [5],
when noise intensity is judiciously varied.

Coherence resonance is a phenomenon that occurs across diverse
natural and technical systems and complex networks (see, e.g., [6] and
references therein). One prominent illustration of coherence resonance
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can be found in the FitzHugh–Nagumo (FHN) model, representing an
excitable neuron [5]. In this model, resonant behavior emerges as
a pronounced regularity in noise-induced oscillations when subjected
to a specific intensity of external noise. This results in a resonant
pattern in the regularity (or, in other words, coherence) of the neuron’s
spike sequence, with the spikes becoming notably more regular at the
optimal noise intensity. Coherence resonance’s manifestation hinges
on the nature of the noise and is evident in the inter-event or inter-
spike intervals within time series data, as well as in the characteristic
correlation times that align with the resonance scale.

Coherent resonance has been the subject of investigation in a wide
array of systems, ranging from mathematical models to experimen-
tal settings, encompassing neural networks [7,8], neurophysiological
systems [9,10], and even the intricacies of the human brain [11].
Across these studies, the presence of noise, whether introduced exter-
nally or as an internal additive, has consistently influenced systems
displaying resonant behavior in various coherence metrics. In many
cases, such investigations can only be conducted through experiments,
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especially in the context of complex and less formally described sys-
tems like the human brain. However, recent years have witnessed the
development of data-driven approaches, wherein models for poorly
formalized processes and phenomena are constructed. These models
generalize features using machine learning methods, drawing upon
meticulously prepared and annotated datasets containing empirical,
often experimental, data on the system under study.

One powerful tool within these model-independent machine learn-
ing techniques is the echo state network [12]. Also referred to as
reservoir computers [13] or liquid state machines [14] in the literature,
it has gained prominence for its efficacy in predicting and classify-
ing dynamic systems. Its appeal lies in its training cost efficiency,
architectural simplicity, and fixed reservoirs. In this context, reservoir
computing plays a pivotal role in forecasting a diverse range of dynam-
ical characteristics. A reservoir computer is a type of recurrent neural
network (RNN) architecture designed for various machine learning and
time-series prediction tasks. It is known for its simplicity, training
efficiency, and strong predictive capabilities, particularly in dealing
with complex dynamical systems, including predicting chaotic time
series [15,16], estimating Lyapunov exponents [17], forecasting cluster
synchronization [18], analyzing burst synchronization [19], observing
spatiotemporal dynamics [20], characterizing macroscopic properties
of complex adaptive networks [21], modeling basin of attraction [22],
and elucidating stable/unstable manifolds, among others.

Despite the extensive research into reservoir computing, there is
a notable gap when it comes to its application in predicting stochas-
tic systems. The primary reason for this gap is the lack of efficient
stochastic frameworks for reservoir computing, which currently hinder
its ability to accurately predict stochastic dynamical systems. Specif-
ically, when a reservoir computer is trained to forecast a stochastic
system, it often encounters a swift accumulation of sliding predic-
tion errors. In essence, establishing proper probabilistic models for
prediction errors becomes imperative when dealing with stochastic
dynamical systems [23–25]. This underscores the critical importance
of researching and predicting the dynamics of systems influenced by
noise, making it a pressing and significant challenge. Noteworthy recent
contributions in this domain include the work by Grigoryeva and
colleagues [26], where a time-delay reservoir computer, a type of
echo state network, demonstrated robust performance in forecasting
conditional covariances linked to multivariate discrete-time nonlinear
stochastic processes of the VEC-GARCH variety. This model also ex-
celled in predicting actual daily market realized volatilities based on
intraday quotes, using daily log-return series of modest size as training
input.

Another noteworthy advancement is presented in Fang et al.’s pa-
per [27], where a data-driven framework fuses Reservoir Computing
and Normalizing Flow to predict the long-term evolution of stochastic
dynamical systems and replicate their behaviors. The authors validate
the effectiveness of this framework through various simulations, en-
compassing systems like the stochastic Van der Pol oscillator, the sim-
plified El Nino-Southern Oscillation model, and the stochastic Lorenz
system. Furthermore, Liao and collaborators [28] propose a low-power-
consumption physical reservoir computing model based on an over-
damped bistable stochastic resonance system, offering an innovative
avenue for efficient computation in stochastic environments.

Simultaneously, research exploring the application of reservoir com-
puters in predicting the behavior of deterministic systems as control
parameters are altered has attracted significant interest. In a note-
worthy study, Fan and collegues [29] demonstrated the capability to
anticipate the threshold coupling strengths at which synchronization
modes occur. Similarly, Xiao et al. [30] successfully predicted ampli-
tude death resulting from parameter drift. At the same time, Kim and
co-authors [31] employed an alternative training scheme for recurrent
neural networks, enabling the prediction of period doubling as sys-
tems transition towards chaos. In addition, in the study by Roy and
2

team [22], an echo state network was trained on three time series with n
appropriate parameter values, creating a parameter-aware reservoir
that exhibited remarkable accuracy in predicting dynamics across a
range of parameters. Notably, the authors illustrated the reservoir com-
puter’s ability to infer dynamics with different parameters from training
data, even when the training dynamics were relatively straightforward,
such as pure periodic behavior.

Given the considerations above, pivotal questions arise: Can we
expand the capacity of reservoirs to capture and generalize the dy-
namics of studied systems, potentially reducing it to a smaller number
of parameters, perhaps even down to a single value? Is it conceiv-
able to predict the behavior of a system across a wide spectrum of
control parameters, especially when we include the characteristics
of noise as one of these parameters? This intriguing avenue of ex-
ploration could significantly enhance our comprehension of how to
forecast the behavior of stochastic systems amid variations in noise
parameters. In light of these questions and to address the existing gap
in the domain of predicting system behavior under the influence of
varying control parameters, we employ a data-driven machine learn-
ing approach. Our objective is to predict the phenomenon of coher-
ence resonance within the excitable FHN neuron, leveraging reservoir
computing, while systematically adjusting the noise power.

2. Methods

2.1. FitzHugh–Nagumo neuron model

We employed a mathematical paradigmatic model of an excitable
FHN neuron [32] as a representative model of an excitable system
capable of exhibiting coherence resonance through the interplay of
excitatory and restoring variables [33]. The governing equations for
this stochastic system are as follows:

̇ = 𝑥 − 𝑥3

3
− 𝑦 + 𝑅𝐼, 𝑦̇ = 0.08(𝑥 − 0.8𝑦 + 0.7) +𝐷𝜉(𝑡), (1)

here 𝑥 represents the excitatory variable, often referred to as the
embrane potential, while 𝑦 corresponds to the recovery variable,
denotes the magnitude of the stimulus current, with 𝑅 set to 1.

dditionally, 𝜉(𝑡) signifies the zero-mean white Gaussian noise with
n autocorrelation function of ⟨𝜉(𝑡)𝜉(𝑡 + 𝜏)⟩ = 𝛿(𝜏), and 𝐷 represents
he noise amplitude. The 𝐼 parameter, indicative of the stimulus cur-
ent, plays a pivotal role in determining the equilibrium points and,
onsequently, the neuron’s excitability threshold.

The system described by Eq. (1) operates in either an excitable
egime (when 𝐼 < 0.3218) or an oscillatory regime (when 𝐼 > 0.3218),
ndergoing a Hopf bifurcation at 𝐼 ≈ 0.3218. For our study, we focus
n the excitable regime, specifically in the pre-critical state where the
ystem remains devoid of self-sustained oscillations. To do this, we set
he stimulus current to 𝐼 = 0.3, a value well within the excitable regime.
n this configuration, the system Eq. (1) without any noise influence
𝐷 = 0) reaches a stationary state. However, as the noise intensity 𝐷
ncreases, the system exhibits spike generation, with the characteristics
f these spikes becoming increasingly dependent on the noise intensity.

For numerical solution, we employed the first-order Euler method
ith a time step of integration set at 𝛥𝑡 = 0.1.

.2. Reservoir computer architecture

The architecture of a reservoir computer typically consists of three
rimary components: Input Layer which receives the external input
ata or time series, Reservoir Layer which comprises a large number of
ecurrent neurons and randomly generated connections between them,
nd Output Layer responsible for producing predictions or classifica-
ions based on the information stored and processed in the reservoir.
n our work, we employ a reservoir computer architecture known as the
cho state network. This design utilizes an ensemble of interconnected
odes as its internal reservoir [13,34,35].
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Fig. 1. Schematic presentation of the reservoir computer with fully separated inputs in the training mode (A) and predicting (testing) mode (B).
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Fig. 1 illustrates the schematic structure of the reservoir computer
odel we considered. A distinctive aspect of our proposed reservoir

onfiguration is the complete segregation of reservoir inputs among
ifferent neurons within the hidden inner layer. It is this unique fea-
ure that enables us to attain remarkable efficiency in prediction and
odeling of the stochastic neuron. We refer to this specific type of echo

tate network as a reservoir computer with fully separated inputs.
The input vector, denoted as 𝐠(𝑡), comprises three components,

namely, 𝐠(𝑡) = (𝐷𝜉(𝑡), 𝑥(𝑡), 𝑦(𝑡))𝑇 , corresponding to the external noise
exciting the neuron and the dynamical variables of the neuron model.
This input vector influences the internal high-dimensional hidden state
of the reservoir, represented as 𝐡𝑡, with a dimension of 𝑁ℎ = 3𝑛 (where
𝑛 ∈ N+ is a member of the set of natural numbers excluding zero). The
coupling of the input to the hidden state is mediated by the input-to-
hidden matrix, 𝐆, which is an 𝑁ℎ × 3 matrix with elements taking the
values

𝐺𝑖,𝑗 =

{

𝛿𝑖,𝑗 , 1 + (𝑗 − 1)𝑛 ≤ 𝑖 ≤ 𝑗𝑛,

0, otherwise,
(2)

where 𝛿𝑖,𝑗 are uniformly sampled from interval [−𝜎, 𝜎], index 𝑗 can take
values from the set (1, 2, 3), i.e., the external noise corresponding to the
first component of the input vector (𝑗 = 1) affects the first 𝑛 neurons of
the hidden layer of the reservoir with weights 𝛿𝑖,1, variable 𝑥 (𝑗 = 2) is
related to the next 𝑛 neurons with weights 𝛿𝑖,2, and variable 𝑦 (𝑗 = 3)
corresponds to the remaining 𝑛 neurons with weights 𝛿𝑖,3, as shown in
Fig. 1A.

In addition to inputs originating from the input layer, each reservoir
node 𝑖 receives inputs from other reservoir nodes, with correspond-
ing weights dictated by the reservoir’s (hidden-to-hidden) adjacency
matrix, denoted as 𝐖, possessing dimensions 𝑁ℎ ×𝑁ℎ. This hidden-to-
hidden matrix 𝐖 defines a random network characterized by the mean
node degree ⟨𝑘⟩. In network theory, the mean node degree ⟨𝑘⟩ refers to
the average number of links that a node possesses. To ensure network
stability, the hidden-to-hidden matrix 𝐖 is rescaled in such a way that
the network’s spectral radius is denoted as 𝜆 (the absolute value of the
largest eigenvalue of the adjacency matrix).

Several key hyperparameters determine the configuration of the
reservoir. These include 𝜎, 𝑁ℎ, ⟨𝑘⟩, and 𝜆, and each must be optimally
chosen when designing a specific reservoir computer. In our case, we
established the following values for these hyperparameters: 𝜎 was fixed
at a constant value of 1, 𝑁ℎ = 1002, ⟨𝑘⟩ was optimized within the range
of [10, 20], and 𝜆 was explored within the interval of [0.5, 0.9].

An important and defining characteristic of the reservoir computer
is that once the matrices 𝐆 and 𝐖 are created, they remain unaltered
throughout the process. This means that the input vector 𝐠 enters the
reservoir in a fixed manner, and the network’s internal connections
between neurons within the reservoir remain unchanged.

Each reservoir node also possesses an output, which can be de-
scribed by the following equation:

𝐡𝑡 = 𝜑
(

𝐆𝐠𝑡 +𝐖𝐡𝑡−1
)

. (3)

In this equation, 𝐡𝑡 represents the internal hidden state, allowing for
3

the encoding of temporal dependencies based on past state history. s
The function 𝜑(⋅) signifies the activation function of the hidden layer
neurons, applied element-wise to the state vector 𝐡𝑡. In this study,
we employed hyperbolic tangent functions as the activation functions,
denoted as 𝜑(⋅) = tanh(⋅).

The objective of reservoir computing in this paper is to forecast the
behavior of a nonlinear stochastic system Eq. (1), governed by noise,
using the known signals of dynamical variables 𝑥(𝑡) and 𝑦(𝑡), along with
the external noise 𝜉(𝑡). The input signals 𝑥(𝑡) and 𝑦(𝑡) and the desired
output signals 𝑥̃(𝑡) and 𝑦̃(𝑡) in our work all stem from the same system.
Subsequently, employing a readout hidden-to-output matrix denoted as
𝐆̃, the reservoir computer’s estimate at time (𝑡 + 1) is computed using
the following equation:

𝐠̃𝑡+1 = 𝐆̃𝐡̂𝑡, (4)

Here, the augmented hidden state, represented as 𝐡̂𝑡, is an 𝑁ℎ-dimension
vector. Each component of 𝐡̂𝑡 is defined as follows:

ℎ̂𝑖,𝑡 =

{

ℎ𝑖,𝑡, 𝑖 is odd,
ℎ2𝑖,𝑡, 𝑖 is even,

(5)

This augmentation enriches the dynamics by squaring the hidden state
in half of the nodes [22]. The augmented output from each reser-
voir node is then directed to the output layer of the reservoir com-
puter, where a linear operation involving specific weights is applied
to generate the overall reservoir output.

Typically, when applying reservoir computing for predicting tem-
poral sequences, the dimension of the output data vector matches
that of the input data vector. However, in this particular scenario, we
must deviate from the standard procedure to construct the reservoir
computer. This is because predicting the random process 𝐷𝜉(𝑡), which
acts as an external independent influence on the system Eq. (1) under
investigation, is not feasible. Consequently, the output vector 𝐠̃𝑡 com-
prises only two components, namely 𝐠̃𝑡 = (𝑥̃(𝑡), 𝑦̃(𝑡))𝑇 , and the output
ayer 𝐆̃ takes the form of a (2 ×𝑁ℎ) matrix with trainable weights. For
onvenience in subsequent analysis, we can introduce the target state
f the neuron at time 𝑡 as a vector denoted by 𝐠̄𝑡 = (𝑥(𝑡), 𝑦(𝑡))𝑇 .

During the training process, the input signal 𝐠𝑡, encompassing the
riving noise 𝐷𝜉(𝑡) and the FHN neuron signals 𝑥(𝑡) and 𝑦(𝑡), is fed into
he input of the reservoir computer, and the corresponding output sig-
al 𝐠̃𝑡+1 is obtained. To train the output layer 𝐆̃, the 𝐿2-error between
he target states 𝐠̄𝑡 and the estimated states 𝐠̃𝑡 is minimized. This is
chieved using ridge regression [36], which helps mitigate overfitting
y penalizing excessive values of the fitting parameters. The aim is
o determine an output matrix 𝐆̃ that minimizes the following loss
unction:

𝑅𝐶
2 =

𝑇𝑡𝑟𝑎𝑖𝑛
∑

𝑡=1
‖𝐠̄𝑡 − 𝐠̃𝑡‖2 + 𝛽‖𝐆̃‖

2, (6)

here the term 𝛽‖𝐆̃‖

2 is included to prevent overfitting, with 𝛽 set to
0−8 as the 𝐿2 regularization hyperparameter.

After the completion of training, we initiate the prediction phase,
uring which the reservoir computer attempts to autonomously predict

ignal dynamics, as illustrated in Fig. 1B. The prediction phase employs
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the same reservoir equations as described above [refer to Eqs. (3) and
(4)], with the output layer weights 𝐆̃ already determined. However, the
nput vector 𝐠̄𝑡+1 is now represented by the computed output vector 𝐠̃𝑡+1
rom the previous step, while external noise (noise from the first input
1(𝑡) = 𝐷𝜉(𝑡)) continues to drive the reservoir computer, maintaining
ontinuous external noise influence.

The output vector 𝐠̃𝑡+1 can be viewed as the macroscopic variables
escribing the integral dynamics of the trained reservoir computer
nder the influence of noise. Meanwhile, the internal state of the
eservoir, 𝐡𝑡, characterizes the internal microscopic dynamics of the
eservoir [37]. This approach aligns in many aspects with the descrip-
ion of neuronal ensemble dynamics in the brain, whether at the level
f macroscopic signals recorded using non-invasive techniques like
lectroencephalography (EEG) or magnetoencephalography (MEG), or
t the microscopic level of individual neurons, which is examined
hrough invasive electrode recordings [38].

.3. Coherence resonance measure

To assess the regularity (coherence) of the spike train produced by
he neuron or the reservoir computer, we employ the coefficient of
ariation. This measure is defined as the standard deviation 𝜎𝐼𝑆𝐼 of

the interspike interval (ISI) normalized to the average ISI [5]:

 = 𝜎𝐼𝑆𝐼∕⟨𝛥𝑇 ⟩, 𝜎𝐼𝑆𝐼 =
√

⟨𝛥𝑇 2
𝑖 ⟩ − ⟨𝛥𝑇 ⟩2, (7)

where 𝛥𝑇𝑖 = 𝑇𝑖+1 − 𝑇𝑖 represents the duration of the 𝑖th ISI, ⟨𝛥𝑇 ⟩ is
the average ISI, and 𝑀 denotes the number of spikes in the analyzed
sequence (𝑚 = 1,… ,𝑀).

In the assessment of the spike sequence generated by the stochastic
neuron, we utilize the variable 𝑥(𝑡) from Eq. (1) and denote the coeffi-
cient of variation as . When evaluating the spike sequence predicted
by the reservoir computer, we employ the variable 𝑔̃1𝑡 = 𝑥̃(𝑡) and refer
to the result as 𝑅𝐶 .

When the coefficient of variations  reaches its minimum value
with respect to the noise amplitude 𝐷, we are dealing with coherence
resonance, meaning that all ISIs 𝛥𝑇𝑖 are distributed in a narrower region
towards the average value ⟨𝑇 ⟩. The inverse value −1 characterizes the
regularity of the spike train generated by the neuron.

To estimate regularity measure of temporal dynamics of internal
state of the reservoir 𝐡𝑡 describes the microscopic dynamics of the
reservoir computer we also use the coefficient of variations defined by
Eq. (7) generalized to a neural network. In this case we evaluate the
normalized standard deviation of the average ISI as follows

𝑅𝐶
𝐼𝑆 =

√

⟨𝛥𝑇 2
𝑖 ⟩ − ⟨𝛥𝑇 ⟩

2

⟨𝛥𝑇 ⟩
, (8)

where the over-line indicates the additional average over considered
nodes of hidden layer of the reservoir computer.

3. Results

3.1. Macroscopic dynamics of reservoir computer versus stochastic FitzHugh–
Nagumo neuron

We initiate our investigation by analyzing the macroscopic signal
dynamics of the reservoir computer 𝐠̃𝑡+1 as it predicts the behavior
f the output variables 𝑥(𝑡) and 𝑦(𝑡) in the stochastic FHN neuron.
n Fig. 2A, we illustrate the relationship between the coefficient of
ariation  given by Eq. (7) and noise intensity, which demonstrates
esonant behavior at varying noise intensities for both the stochastic
HN neuron and the reservoir computer.

As the noise intensity increases, there is a noticeable reduction in
he coefficient of variation, indicating an enhancement in the regularity
f the output spike sequence. This reaches a minimum at 𝐷 = 𝐷∗ ≈
4

.23, corresponding to the most regular signal. Subsequently, with a
further increase in noise intensity, we observe an increase in the
oefficient of variation, implying a decrease in the coherence of the
pike sequence.

To predict the dynamics of a stochastic neuron, we employed the
echnique outlined in Section 2.2 to train the reservoir computer.
pecifically, we selected a single noise intensity value, denoted as
0, and used signals 𝐷0𝜉(𝑡), 𝑥(𝑡), and 𝑦(𝑡) with a duration of 𝑇𝑡𝑟𝑎𝑖𝑛 to
enerate the input signal 𝐠𝑡 during the training phase of the reservoir
omputer, as depicted in Fig. 1A. For this specific noise intensity value,
0, we determined the output weight matrix 𝐆̃𝐷0 that minimizes the

oss function Eq. (6). Following the completion of training, we initiated
he testing phase by using the first point of the testing signal 𝐠𝑡 as
n initial condition for the reservoir computer. We then compared
he actual signal with the predicted signal over a time interval of 𝑇𝜂 .
he primary feature we compared was the coefficient of variation,
stimated from the spike statistics over a designated time interval, for
oth the actual signal generated by the neuron model (specifically,
he variable 𝑥) and the signal predicted by the reservoir (in this case,
ariable 𝑔̃1 = 𝑥̃).

Subsequently, we selected a different value, denoted as 𝐷 ≠ 𝐷0, and
onducted calculations in the prediction phase using the same trained
eservoir, which retained the same hidden-to-hidden matrix 𝐖 and the
utput weight matrix 𝐆̃𝐷0 corresponding to the noise intensity 𝐷0. In
his case, a noise signal 𝑔1(𝑡) = 𝐷𝜉(𝑡) was applied to the reservoir.

hile any pair of values (𝑥0, 𝑦0) could serve as the initial condition,
o ensure a fair comparison between the signal of the stochastic FHN
euron and the macroscopic signal of the reservoir, it was essential
o select identical initial values (𝑥0, 𝑦0) for both the FHN neuron and
he reservoir, and to provide the same realization 𝐷𝜉(𝑡) of the noise to
oth the neuron and the reservoir. This level of matching was not a
rerequisite when predicting only the statistical characteristics of the
utput signal, such as the coefficient of variation .

We generated the output macroscopic signal over a time duration
f 𝑇𝜂 = 500000 and determined the coefficient of variation 𝑅𝐶 (𝐷)
f the predicted signal. Fig. 2A illustrates the dependencies of the
oefficient of variation 𝑅𝐶

𝐷0
𝑙

of the predicted signal 𝐠̄ as a function of
oise intensity 𝐷 in comparison to the true coefficient of variation 
or the stochastic neuron. These results were obtained for three distinct
alues of noise intensity 𝐷0

𝑙 (𝑙 = 1, 2, 3) for which the reservoir had been
rained.

It is worth noting that as the noise intensity 𝐷 increased, the spike
requency of the stochastic neuron also increased. Consequently, we
djusted the duration 𝑇𝑡𝑟𝑎𝑖𝑛 of the input signal used for training the
eservoir so that the number of spikes remained constant and approxi-
ately equal to 75. Fig. 2A clearly indicates that a reservoir trained for

nly one specific noise intensity value (which could be selected either
n the left branch of the curve (𝐷) at 𝐷 = 𝐷0

1 = 0.05 (𝑇𝑡𝑟𝑎𝑖𝑛 = 48500),
t the minimum 𝐷0

2 = 𝐷∗ ≈ 0.23 (𝑇𝑡𝑟𝑎𝑖𝑛 = 35000), or on the right
ranch of the curve 𝐷0

3 = 1.0 (𝑇𝑡𝑟𝑎𝑖𝑛 = 30000) effectively predicts the
ffect of coherence resonance. In other words, the trained reservoir
an accurately model the statistical characteristics of the output signal
t various noise levels 𝐷 ≠ 𝐷0. This demonstrates that the reservoir,
rained with a specific noise value 𝐷 = 𝐷0, successfully captures
he dynamics of the neuron at different noise levels and accurately
eplicates the coherence resonance phenomenon within the reservoir
omputer.

Figs. 3 present the predicted time series 𝑔̃1, 𝑡 generated by the
eservoir computer, which was trained using noise intensities 𝐷0

1,2,3,
longside the target time series 𝑥(𝑡) of the stochastic neuron for three
istinct fixed noise intensities, namely 𝐷1,2,3. The gray boxes in the
igures denote the values of 𝐷𝑖 that correspond to 𝐷0

𝑖 , which represent
he noise intensities used for training the reservoir computer. The
hoice of initial values (𝑥0, 𝑦0) was identical for both the stochastic
euron and the reservoir. It is evident that the reservoir computer

ccurately replicates the dynamics of the stochastic neuron at the same
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Fig. 2. (A) Coefficient of variations of the spike train versus noise intensity 𝐷 for the stochastic FHN neuron model, , (black dashed line) and the reservoir computer, 𝑅𝐶 ,
rained for three values of noise intensity 𝐷0

1 = 0.05 (red dashed line), 𝐷0
1 = 0.23 (solid black line), and 𝐷0

1 = 1.0 (red solid line) [in a semi-logarithmic scale]. (B) Prediction
erformance 𝛥 of the reservoir computer [see Eq. (9)] versus noise intensity 𝐷0 at which the reservoir was trained. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)
Fig. 3. Predicted time series 𝑔̃1,𝑡 of the reservoir computer trained with noise intensities 𝐷0
1,2,3 and target time series 𝑥(𝑡) of the stochastic neuron Eq. (1) for three fixed values of

oise intensity 𝐷1,2,3. The gray boxes show the values of 𝐷𝑖 corresponding to 𝐷0
𝑖 at which the reservoir computer was trained.
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oise levels. Furthermore, the best-fit of the time series is observed at
he highest noise intensity 𝐷3.

As seen from Fig. 2A, the most precise correspondence in the behav-
or of the degree of spike regularity occurs when the reservoir is trained
sing signals with the maximum noise intensity, 𝐷0 = 𝐷3. In this case,
he dependencies of the coefficient of variations of both the stochastic
euron and the reservoir computer are nearly identical. However, when
he reservoir is trained at smaller noise levels (𝐷1 and 𝐷2), some

prediction deviations become apparent, with these deviations becoming
more prominent as the noise intensity 𝐷0 decreases. This phenomenon
is illustrated in Fig. 2B, which depicts the prediction performance
𝛥
(

𝐷0) of the reservoir as a function of the noise intensity 𝐷0 at which
the reservoir was trained. For each chosen noise value 𝐷0, we obtain
the dependence 𝑅𝐶

𝐷0 (𝐷). To assess the prediction performance from the
perspective of the ISI statistics, we compute the dependence of

𝛥
(

𝐷0) =
(

∫

(

(𝐷) −𝑅𝐶
𝐷0 (𝐷)

)2
𝑑𝐷

)1∕2
, (9)

integrated across all noise intensity values 𝐷. It is evident that the
prediction error remains minimal and relatively constant across the
entire range of noise variations for 𝐷0 > 𝐷∗. However, when 𝐷0 < 0.1,
he prediction performance 𝛥

(

𝐷0) begins to decrease sharply. This de-
rease aligns with the slight deviations in the statistical characteristics
f the spike sequences, such as the coefficient of variations, from those
f the stochastic neuron, as seen in Fig. 2A.

These deviations may be attributed to the increase in the average ISI
ime, which could potentially degrade the quality of reservoir training.
his is because longer training samples are required to maintain the
5

d

ame number of spikes used for training, thereby affecting the echo
tate network’s ability to predict effectively. As a result, the network
ay face the issue of overfitting. Consequently, while the network

ontinues to exhibit resonant behavior, it may fail to accurately predict
tatistical characteristics at specific noise values.

Our findings indicate that a reservoir, when subjected to a stochastic
ignal, can successfully predict the dynamics of a noisy neuron and the
henomenon of coherence resonance. Remarkably, this prediction can
e achieved when the reservoir is exclusively trained using a single
oise intensity value, denoted as 𝐷0. When exposed to varying noise
ntensities (𝐷) post-training, the pre-trained reservoir fully captures
he dynamics of a stochastic neuron, including the effect of coherent
esonance as noise intensity changes. Crucially, the prediction accuracy
f the ISI statistics remains largely constant across the entire range of
otential reference noise intensity values used for training. This con-
istency is only compromised when 𝐷0 becomes very small (e.g., 𝐷0 <
.1), which we attribute to the low spike frequency that hampers the
raining process efficiency.

.2. Coherence resonance in microscopic dynamics of reservoir computer

Now, let us delve into the microscopic dynamics of the trained
eservoir computer as we vary the intensity of the noise influencing
he system. As previously explained in Section 3.1, the most accurate
lignment between the reservoir’s dynamics and the dynamics of the
tochastic neuron model, with respect to varying noise intensity, occurs
hen the reservoir is trained under high noise conditions (specifi-

ally, 𝐷0 = 1.0). Consequently, this section exclusively focuses on the
0
ynamics of the reservoir trained at 𝐷 = 𝐷3 = 1.0.
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Fig. 4. Reservoir’s internal hidden state dynamics for different values of noise intensity (A) 𝐷1 = 0.05, (B) 𝐷2 = 0.23, (C) 𝐷3 = 1.0. According to Eq. (2) the first 334 neurons
with 𝑖 = 1,… 𝑛 corresponds to the hidden layer neurons affected by a noise signal 𝜉, the next 334 neurons with 𝑖 = 𝑛 + 1,…2𝑛 — variable 𝑥, and the last 334 neurons with
𝑖 = 2𝑛 + 1,…3𝑛 — variable 𝑦, where 𝑛 = 334. The scale on the left describes the amplitudes ℎ𝑖 of the states of the hidden layer neurons.
Fig. 5. Coefficient of variations of the spike train versus noise intensity 𝐷 for the
stochastic FHN neuron model, , (orange solid line 1); for the output macroscopic
signal 𝑔̃1,𝑡 of reservoir computer, 𝑅𝐶 , trained for noise intensity 𝐷0

3 = 1.0 (black dashed
line 2); for the whole hidden layer neural network of reservoir computer (black solid
line 3); and only for the sub-networks of hidden layer neurons, 𝑅𝐶

𝐼𝑆 , receiving only
𝑥(𝑡)-variable (red solid line 4), 𝑦(𝑡)-variable (red dashed line 5), and noise 𝐷𝜉(𝑡) (blue
solid line 6) inputs [in a semi-logarithmic scale]. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4 displays the typical internal hidden state dynamics of the
reservoir for various noise intensity values, specifically 𝐷1,2,3. The
horizontal axis represents time, while the vertical axis corresponds to
the ordinal number 𝑖 of the hidden layer neurons. According to Eq. (2),
the initial 334 neurons in the hidden layer receive input in the form
of noise 𝐷𝜉(𝑡), the following 334 artificial neurons receive the variable
𝑥(𝑡), and the last 334 neurons receive the variable 𝑦(𝑡). The amplitude
ℎ𝑖 of hidden layer neuron activation is represented by the color scale,
ranging from −1 to 1, a result of employing the hyperbolic tangent
activation function 𝜑 described in Eq. (3).

Based on the activation dynamics of the artificial neurons in the
hidden layer, as governed by Eq. (8), we computed the coefficient of
variations 𝑅𝐶

𝐼𝑆 to analyze the hidden layer neural network’s dynamics.
The corresponding results are presented in Fig. 5. This figure illustrates
the coefficients of variations 𝑅𝐶

𝐼𝑆 plotted against noise intensity 𝐷
for the entire hidden layer neural network and separately for the sub-
networks of neurons that exclusively receive input from the 𝑥(𝑡), 𝑦(𝑡),
and noise 𝐷𝜉(𝑡) variables. Additionally, it includes the coefficient of
variations 𝑅𝐶 calculated from the reservoir’s macroscopic dynamics
(originating from Fig. 2A for ease of comparison). Fig. 5 clearly illus-
trates that the degree of coherence in the microscopic dynamics across
the complete reservoir hidden layer network and the subnetworks of
neurons linked to external inputs corresponding to the 𝑥 and 𝑦 vari-
ables generally follows the behavior observed in the stochastic neuron
and the macroscopic reservoir dynamics, as discussed in the previous
section.

Simultaneously, the dynamics of artificial neurons within the hidden
layer display a considerably higher level of irregularity, as indicated by
the larger values of 𝑅𝐶 computed from the dynamics of the hidden
6

𝐼𝑆
layer neuron ensemble. Among the sub-networks of artificial neurons
that solely receive input from the 𝑥(𝑡) variable, the dynamics are the
closest in quantitative agreement with the dynamics of the analyzed
stochastic neuron. The sub-networks of neurons receiving input from
the 𝑦(𝑡) variable show more noticeable deviations from the dynamics of
the stochastic neuron but still exhibit the effect of coherent resonance.
Conversely, the dynamics of neurons influenced by noise input do not
show the coherent resonance effect at all.

Therefore, the architecture of a reservoir with input separation
based on the original system variables, including noise, results in
complex dynamics within the hidden layer network. Different artifi-
cial neurons exhibit varying behaviors as the noise intensity changes.
However, the process of optimizing the output weights through the loss
function Eq. (6)) and forming a hidden-to-output matrix 𝐆̃ enables the
predicted signal 𝐠̃ to closely match the target signal of the stochastic
neuron 𝑥(𝑡) and 𝑦(𝑡). This raises the question: how is this achieved?

To address this question, we can calculate the coefficient of varia-
tion 𝑖 for each neuron in the hidden layer (as defined in Eq. (7)) and
compare it to the amplitude of the coefficients in the hidden-to-output
matrix 𝐆̃. This matrix characterizes the extent to which a particular
neuron influences the output values 𝐠̃. To facilitate the comparison,
we can plot these values for each hidden layer neuron in a coordinate
system, where the coefficient of variation 𝑖 is on one axis, and the
corresponding element in the output layer matrix 𝐺̃1,𝑖 or 𝐺̃2,𝑖 for the
variables 𝑔̃1 = 𝑥 and 𝑔̃2 = 𝑦, respectively, is on the other axis. The
results can be visualized in Fig. 6, separately for the 𝑥 and 𝑦 variables.
To differentiate between neurons receiving input from noise 𝜉, 𝑥, and 𝑦
variables, we can use different colors for the points representing them.

Based on Figs. 6A and 6B, it is clear that two distinct clusters of
neurons can be identified from the presented two-dimensional distri-
bution of individual artificial neurons in the hidden layer. We will
refer to these clusters as the ‘‘I cluster’’ and the ‘‘II cluster.’’ The ‘‘I
cluster’’ mainly consists of neurons that receive input from the variable
𝑥(𝑡). These neurons exhibit a high degree of coherence, with  < 0.5,
while they vary widely in the amplitude of the coefficients of the
hidden-to-output matrix 𝐆̃, featuring both large and small values.

On the other hand, the ‘‘II cluster’’ is characterized by a lower
degree of regularity, with  > 0.5 and a mean value of approximately
 ≈ 0.716. This cluster has less distinct boundaries and includes a long
tail of noisy neurons with  > 1.0. The ‘‘II cluster’’ predominantly
consists of hidden layer neurons that receive input from the noise
variable 𝜉 and the variable 𝑦(𝑡) of the stochastic neuron.

Let us now proceed with the process of selecting hidden-to-output
connections to predict the signal of the stochastic neuron using only the
artificial neurons from the first cluster or the second cluster. Mathemat-
ically, this involves the transformation of the hidden-to-output matrix
𝐆̃′ to obtain a new matrix 𝐆̃′, i.e. 𝐆̃′

𝐺̃′
𝑗,𝑖 =

{

𝐺̃𝑗,𝑖, 𝑖 < 0.5,
(10)
0, 𝑖 ≥ 0.5
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Fig. 6. (A) Representation of all neurons in the hidden layer of the reservoir computer (indexed as 𝑖 = 1,… , 𝑁ℎ) in the spaces defined by the coefficient of variation 𝑖 and the
coefficient of the output layer matrix 𝐺̃1, 𝑖. (B) The same representation for 𝑖 and 𝐺̃2,𝑖. The red points (with 𝑖 = 1,… , 𝑁ℎ∕3) correspond to neurons that receive input from the
noise variable 𝐷𝜉, the blue points (𝑖 = 𝑁ℎ∕3 + 1,… , 2𝑁ℎ∕3) represent neurons receiving input from the 𝑥-variable, and the green points (𝑖 = 2𝑁ℎ∕3 + 1,… , 𝑁ℎ) depict neurons
receiving input from the 𝑦-variable. (C) Comparison between the target signal of the 𝑥(𝑡)-variable from the stochastic neuron (black line) and the predicted signals 𝑔̃1,𝑡 recovered
from the neurons of the first I cluster (red line) and the second II cluster (blue line). (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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in the case of the first cluster, and

𝐺̃′
𝑗,𝑖 =

{

0, 𝑖 < 0.5 ∨ 𝑖 > 1.0,

𝐺̃𝑗,𝑖, 1.0 ≥ 𝑖 ≥ 0.5
(11)

in the case of the second cluster. To recover the predicted signal 𝐠̃ in
Eq. (4), we use new matrices Eq. (10) or Eq. (11) depending on the
cluster used: 𝐠̃𝑡+1 = 𝐆̃′𝐡̂𝑡.

Fig. 6C provides an illustration of the results obtained for the case
when 𝐷3 = 1.0. The figure shows the target signal of the stochastic
neuron and the predicted signals recovered from the neurons of the
first I cluster using Eq. (10) and the second II cluster using Eq. (11).
It is evident that in the first case, the predicted signal 𝑔̃1 closely
matches the target signal 𝑥 of the stochastic neuron, indicating that
the remaining neurons of the second cluster do not significantly con-
tribute to the original signal. This is further supported by the signal
reconstructed from the neurons of the second cluster, which appears as
an amplitude-modulated noise signal.

These results imply that the separation of input signals in the
reservoir during its training and prediction, as depicted in Fig. 1,
allows for an effective separation of the sub-network responsible for
predicting spike generation and the sub-network that characterizes
the noise influence on the neuron. It is crucial to segregate the hid-
den layer neurons into sub-networks that receive different signals. To
demonstrate the significance of this separation, let us briefly consider
a modified reservoir model that lacks such input signal separation, as
described in Section 2.2.

Fig. 7A presents a reservoir computer in which the segregated arti-
ficial neurons of the hidden layer receive signals from the 𝑥(𝑡) and 𝑦(𝑡)
variables of the stochastic neuron, similar to the previously considered
reservoir configuration [see Eq. (2)]. However, in this configuration,
the input associated with the noise signal 𝜉 affects all neurons in the
hidden layer. Consequently, the elements of the coupling input-to-
hidden matrix 𝐆 (also with dimension 𝑁ℎ × 3, where 𝑁ℎ = 2𝑛 and
𝑛 ∈ N+) take the form: 𝐺𝑖,1 = 𝛿𝑖, where 1 ≤ 𝑖 ≤ 𝑁ℎ, 𝐺𝑖,2 = 𝛿𝑖 if
1 ≤ 𝑖 ≤ 𝑁ℎ∕2, and 𝐺𝑖,2 = 0 if 𝑁ℎ∕2 < 𝑖 ≤ 𝑁ℎ, 𝐺𝑖,3 = 0 if 1 ≤ 𝑖 ≤ 𝑁ℎ∕2,
and 𝐺𝑖,3 = 𝛿𝑖 if 𝑁ℎ∕2 < 𝑖 ≤ 𝑁ℎ. Here, the values 𝛿𝑖 are uniformly
7

sampled from the interval [−𝜎, 𝜎]. All other aspects of the reservoir o
design, its training method, and quantitative hyperparameters remain
consistent with the previous case.

Let us now consider the outcomes of this modified reservoir model
and discuss any differences in its performance compared to the earlier
configuration.

Training this reservoir at different noise intensities 𝐷0 allows us
to reproduce and predict the dynamics of the stochastic FHN neuron
only at the same noise value 𝐷 ≈ 𝐷0. However, this reservoir design
does not enable accurate predictions of the system’s behavior at other
noise values 𝐷. This limitation is illustrated in Fig. 7B, which shows the
coefficients of variation 𝑅𝐶 at different noise values 𝐷 for reservoirs
trained at 𝐷0

1 = 0.08, 𝐷0
2 = 0.23, and 𝐷0

1 = 0.36. The plots reveal that
only at high noise intensity (𝐷0 > 0.35) can the reservoir qualitatively
reproduce the coherent resonance dynamics observed in the stochastic
FHN neuron.

Fig. 7C further illustrates the prediction performance 𝛥 (as defined
in Eq. (9)) as a function of the noise intensity 𝐷0 at which the reservoir
was trained, allowing for a direct comparison with Fig. 2B. In con-
trast to the previous case, this reservoir configuration only achieves
a reliable reproduction of the stochastic FHN neuron’s dynamics at
𝐷0 > 0.2, and an acceptable level of accuracy for reproducing the
tochastic resonance effect is only reached at noise intensity 𝐷0 > 0.4.

This distinct behavior is influenced by the microscopic dynamics
f the modified reservoir within its hidden layer. Fig. 7D displays the
oefficient of variation 𝑖 (defined in Eq. (7)) and the amplitude of
he coefficients of the hidden-to-output matrix 𝐆̃) for each 𝑖th neuron
n the hidden layer, with respect to 𝑔̃1 = 𝑥 and 𝑔̃2 = 𝑦 variables,
espectively (for comparison, see Fig. 6A, B). In this case, we observe
hat, unlike the reservoir with fully separated inputs, there is no clear
tructure or specialization in the distribution of artificial neurons in
he hidden layer. This lack of specialization hampers the construction
f an effective scheme for predicting the dynamics of a system of
tochastic differential equations, specifically in predicting the behavior

f coherence resonance.



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 178 (2024) 114354A.E. Hramov et al.

l
i
[
f
r

4

c
n
t
i
s
v
r
m
m
a
r

o
e
r
g

Fig. 7. (A) Schematic presentation of the reservoir computer with partially separated inputs both in training and testing modes. (B) Coefficient of variations of the spike train
versus noise intensity 𝐷 for the stochastic neuron, , (black dashed line) and the reservoir computer, 𝑅𝐶 , trained for three values of noise intensity 𝐷0

1 = 0.08 (red dashed
ine), 𝐷0

1 = 0.23 (solid black line), and 𝐷0
1 = 0.36 (red solid line) [in a semi-logarithmic scale]. (C) Prediction performance 𝛥 of the reservoir computer with partially separated

nputs versus the noise intensity 𝐷0 at which the reservoir was trained. (D) Representation of all neurons of hidden layer of reservoir computer with partially separated inputs
𝑖 = 1,…𝑁ℎ] in the spaces: coefficient of variation 𝑖 — coefficient of the output layer matrix 𝐺̃1,𝑖 or 𝐺̃2,𝑖. Blue points with 𝑖 = 1,… , 𝑁ℎ∕2 correspond to neurons receiving input
rom 𝑥-variable, and red points [𝑖 = 2𝑁ℎ + 1,… , 𝑁ℎ] — neurons receiving input from 𝑦-variable. (For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)
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. Conclusion

In this study, we have explored the potential of utilizing a reservoir
omputer to predict the dynamics of a stochastic FitzHugh–Nagumo
euron model under the influence of external noise. We demonstrated
hat a specially designed reservoir computer, trained with a single noise
ntensity value, can effectively predict the behavior of the stochastic
ystem across a wide range of noise intensity variations. The reser-
oir computer accurately reproduces the phenomenon of coherence
esonance in the stochastic FHN neuron, indicating the high-quality
odeling capabilities of reservoir computing. This achievement was
ade possible by the unique reservoir design, which separates the

rtificial neurons in the hidden layer based on the information they
eceive from the input.

Our analysis of the microscopic dynamics within the hidden layer
f the reservoir revealed the formation of distinct clusters of neurons,
ach exhibiting different dynamics. Some neurons are responsible for
eplicating the dynamical properties of the neuron, primarily the spike
eneration mechanism, while the remaining neurons in the reservoir
8

an be viewed as simulating stochastic influences that accurately repro-
uce the moments of spike generation in the neuron under the influence
f noise. This configuration proves to be effective over a broad range
f noise control parameters for replicating the essential characteristics
f the original stochastic FHN neuron.

Future work may involve fine-tuning the parameters of the reservoir
omputer, including various hyperparameters of the computational
ramework, and conducting theoretical analyses to optimize connec-
ions within and between reservoir layers. This approach can be ex-
ended to various stochastic systems and could find applications in
redicting the dynamics of neuronal networks under stochastic influ-
nces. The framework we have developed provides a practical means
o leverage reservoir computing for the analysis, classification, and
rediction of stochastic processes, which are prevalent in the natural
orld alongside deterministic processes.
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